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Abstract 

We show how the Feigin-Fuchs Coulomb gas construction, with two free gaussian 
bosom, can be used to derive the representation theory of the SU(2) parafermion 
models. We identify the generators of the chiral algebra within the bosonic Fock 
space and derive the chiral algebra of the finitely reducible models, which correspond 
to the SU(2) and SU(1,l) parafemion algebras. We focus on the SU(2) case in this 
paper, the’SU(1, 1) case will be discussed in a subsequent publication. Unitarity of 
the chirsl algebra requires the parafermion Hilbert space embedding in the bosonic 
Fock space to be independent of two fermion zero modes. The expressions for the 
Virasoro highest weights of the models are doubly degenerate in the bosonic Fock 
space. We formulate the correlation functions of these operators in the parafemion 
Hilbert space, and in particular, the fusion rules for the Virasoro highest weights 
are derived in an elegant way. Finally, the irreducible parafermion characters arc 
derived. We discuss the connection between our analysis and previous work on 
representation theory based on BRST cohomology. 
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1. Introduction 

The main purpose of this paper is to use the Feigin-Fuchs Coulomb Gas construction 

[1],[2],[3] to derive, and not just reconstruct, the representation theory of SU(2) 

parafermion (PF) models [4] using conformal field theory techniques. 

The Coulomb gas construction, developed by Feigin and Fuchs [1],[2], and Dot- 

senko and Fateev [3] for the minimal conformal models [5],[6], provides in principle 

a powerful way of studying two dimensional conformal field theories. For instance, 

it presents a more practical way of computing the conformal blocks for the minimal 

conformal series than the bootstrap program advocated BPZ [5]. Examples of mod- 

els where the chiral algebra is constructed via this method are bc ghost systems [7], 

2s W-algebra models [8], SU(N) affine Lie algebra models [9],[10],[11],[12],[13], and 

SV(l,l) models [14],[15]. The construction of the representation theory for these 

models using Coulomb gas techniques is incomplete in most cases. The common 

element in the constructions is the use of free bosons J$ with gaussian propagators 

defined on the complex plane, but with anomalous Coulomb charge conservation. 

The anomaly is due to the presence of a background charge Q, It signifies the cou- 

pling of these bosons to the two dimensional metric, with interaction Lagrangian 

Lint N ~QRI++, and with the curvature scalar R receiving support only at infinity. 

In this paper we will be concerned primarily with the minimal [4] 2~ parafer- 

miens, which correspond to the GKO [16] coset SV(Z)/V(l), and partially with the 

non-minimal finitely reducible [17] p arafermions, which have been shown [18] to be 

a subset’of the GKO coset SU(l,l)/U(l). Th e representations of the minimal and 

non-minimal PF models are building blocks for N = 2 superconformal field theories 

[19],[17]. This is because the GKO coset of the superconformal algebra by it’s U(1) 

current is either a .X’(2) or SU(l,l) parafermion algebra. The minimal N = 2 

superconformal models with central charge c < 3 are constructed from the SU(2) 

PF models plus a free boson [20],[21]. Th e representations of the superconformal 

models with c 2 3 are allowed representations of the SU(l,l) PF algebra [17],[18]. 

Recall that the critical string models with N = 1 space-time supersymmetry are 

built up from N = 2 superconformal field theories [22]. In principle therefore, the 

Feigin-Fuchs construction of the parafermion models may be a way of providing a 

concise represention of the space of string compactifications with N = 1 spacetime 

supersymmetry. 

i Not all SU(l,l) parafermion models are finitely reducible. The models dis- 
cussed in [la] with irrational central charge are not in this class. 
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In practice however, there has been little progress in this direction. One prob- 

lem is the lack of deductive analysis applied with the Feigin-Fuchs construction. In 

addition to representing the spectra of known models, one would like to be able 

to deduce new theories. Our focus in this paper will be to develop the calculus of 

the Feigin-Fuchs construction using the admittedly well studied SU(2) PF model, 

with the clear intention of applying these techniques to the more difficult SU(l,l) 

PF case later [23]. We resolve some of the technical problems with the SU(2) PF 

constructions [9],[10],[11],[12],[13]. 0 ur analysis lends itself to generalization, and 

application to the other Feigin-Fuchs models described above. 

The Coulomb gas construction of PF models is more complicated than the 

c < 1 minimal models. In the c < 1 minimal models the screening operators come in 

Feigin-Fuchs conjugate (FF-conjugate) pairs with the sum of their charges cancelling 

the background charge. This does not happen in the PF models. We will have 

to understand the zero mode structure, the Hilbert space structure, and how the 

PF Hilbert space is imbedded in order to cancel the background charge and get 

the correlation functions right. Calculating correlation functions via the free field 

bosonic theory will involves working in the boson Fock space with the background 

charge balanced out. We will see that the parafermionic theory lives in a “smaller” 
Hilbert space and we will have to know how to correctly move between the two 

spaces. 

The basis of our construction is the Fock space of two free bosons on a Lore&an 

lattice. The embedding of the SU(2) PF models in this basis was first given by 

Nemeschansky [lo], and the embedding of the chiral algebra was generalized to 

the non-minimal case by one of us [14]. I n section 2 we discuss this embedding 

in detail and in a unified way for both the minimal and non-minimal PF models. 

The starting point of our program is a natural ansatz which leads to the correct 

identification of 111 and $l, the generators of the PF algebra. From this we derive 

compact expressions for the entire PF chiral algebra. We also derive the three 

chiral screening operators; two of which turn out to be fermionic. In fact, they are 

members of two non-commuting (q,[) f ermion ghost systems with central charge 

c = -2 which are embedded in the boson Fock space. The lack of commutation 

means that states cannot in general be simultaneously diagonalized in terms of 

both systems. 

In section 3 we discuss the issue of unitarity of the chiral algebra. We focus 

on the SU(2) case at this point, for which the unitarity constraint for the chiral 

algebra is non-trivial. We find that we must require that states in the “small” PF 

2 



Hilbert space be mutually local with respect to both (q, I) systems and independent 

of both fermion zero modes to, (0; then the PF chiral algebra truncates onto unitary 

states with non-negative conformal dimension. To calculate correlators in the PF 

Hilbert space, one must therefore reintroduce one of the dimension zero fermions to 

soak up the zero modes resulting from the integration over &, (or equivalently &,) 

in the bosonic path integral. We need to introduce only one fermion, because when 

one of the zero modes is rediagonalized in the other fermion basis, it contains the 

other zero mode. Because this result, and hence the structure of the Hilbert space 

embedding into the bosonic Fock space, differs for the SU(l,l) PF case, we defer 

further analysis of these models to a later publication [23]. 

The Virasoro highest weights of the PF theory can be derived systematically. 

We postulate that the order operators, (the highest weights of each PF module), 

are Virasoro primary vertex operators or screened vertex operators of the bosonic 

theory. The operator product expansion (OPE) of these operators with the pa- 

rafermions f&es the allowed momenta, i.e. charge sectors. Then one can use the 

simple expressions of the parafermions derived in sec. 2 to find the lowest confor- 

mal dimension states in each PF charge sector; i.e. the Virasoro primaries and PF 

decendants of the theory. Thus we obtain the PF representation in the allowed 

charge sectors. This construction is presented in section 4. The Virasoro primaries 

which have negative conformal dimension decouple from the theory because their 

two point function is not defined in the small Hilbert space. The resulting spectrum 

is double the usual result; each PF/Virasoro primary with given PF charge has two 

alternate representations in our construction. This degeneracy is the generalization 

of the FF-conjugate degeneracy of the minimal c < 1 conformal models. 

With the states at hand, and an understanding of the embedding of the PF 

modules in the bosonic Fock space, the correlation functions of the models can be 

calculated in a straightforward way. In particular we focus on the three-point func- 

tions of the PF descendants in sec. 5. We find the fusion rules by using bosonic 

expressions for the correlators to determine when they do not vanish. To cal- 

culate when this happens recall that correlation functions generically require the 

introduction of screening operators to balance the bosonic U(1) charges. Screening 

operators in other Feigin-Fuchs constructions have previously been used to con- 

struct null states, states which are primary with respect to the chiral algebra and 

yet chiral algebra decendents of primaries of lower conformal dimension [24]. If the 

screening operators that must be added to our correlators define such a state, then 

the correlator must vanish. This restricts the number of screening operators that 
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can be added and hence restricts the non-vanishing correlators. This analysis is the 

implementation of the notion that the truncation of the operator algebra is due to 

factorization onto null states [5]. 

Characters of the parafermion theories are constructed in sec. 6. This construc- 

tion is a two step process. First, one finds characters of the reducible PF modules 

for each Virasoro highest weight in each charge sector by eliminating the states 

in the bosonic Fock space module of the highest weight which are proportional to 

either fermion zero mode. Secondly, one subtracts the characters of the null vectors 

which remain in the PF highest weight module. Null vectors are constructed using 

the analysis of Kato and Matsuda [24] via the screening operators. Also, we must 

subtract the characters of the null vectors constructed using the alternate represen- 

tation of the highest weights. Our analysis gives us the parafermionic character in 

a form first derived in [12] but without the introduction of a BRST charge operator 

125ls121. 

One of our fermion systems plays an explicit role in the alternate SU(2) PF 

construction given by Distler and Qiu [12] in which the PF Hilbert space is diago- 

nalized in terms of (v,t) and a single Feigin-Fuchs boson (r. We discuss the relation 

of our work to this formulation in appendix A. In section 7 we show that our other 

non-commuting fermion system is related to the BRST charge introduced in their 

analysis and discuss the equivalence of both approaches. Finally in section 8 we 

summarize our work and discuss its implications. 

Before proceeding we would like to call attention to an alternative bosoniza- 

tion scheme which relies on the GKO construction to find a free boson Coulomb 

gas representation of minimal parafermions without the introduction of background 

charge [26],[27],[28]. For a SU(2) PF model with ZN symmetry, this requires the 

introduction of 2N free bosons. Correlation functions and characters can be de- 

termined in this formalism, however the construction is much less elegant than the 

Feigin-Fuchs bosonization we will discuss in this paper. 

2. Embedding of Chiral Parafermion Algebra in Boson Fock Space 

We first construct the finitely reducible chiral parafermion algebra from the Fock 

space of two free bosom. Consider two commuting free scalar fields +1 = &(t) + 

&(z) and +pz = &(z) f&(z). In thi s section we will consider the h&morphic 
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sector with propagators on the complex plane given by 

h(z)ch(~) = -I+ - .w), 
$2(z)&(w) = +ln(z - WJ). 

(2.1) 

The currents j, = G’4, generate a U(1) $ U(1) Kac-Moody (Heisenberg) algebra. 

The h&morphic stress energy tensor is defined to be [lo] 

*(=) = -+(+~l(Z) + ;w2(L)8f#12(*) +qa*dl(*), (2.2) 

where the Q. term corresponds to background charge -Q. at the point z, [3],[7]. 

The central charge is 

c=2-3Q;, (2.3) 

and the normal ordered vertex operators 

: exp(i4,(z)) exp(+$2(z)) : (2.4) 

have conformal dimension [3] 

We suppress the normal ordering symbols : : for vertex operators, and products of 

vertex operators and fields a”& evaluated at the same point, in expressions below. 

Psrafermions $1 and $1 of conformal dimension A, are defined by the operator 

products [4] 

qJ)1(z)7J](w) =(z -w)-- [1+ y* - u)czyw) f.. -1 , 

T(+)$I(~) =(z -J)-~[A,~~(~)+ (2 -~)&.$l(~) +.-I 
(2.6) 

In addition, the parafermions must have simple fusion rules [4], i.e. [$i][+j] - 

[1cli+j]. From the analysis of Dotsenko and Fateev [3], it is clear that parafermions 

constructed with vertex operators (2.4) with non-vanishing ~$1 charge a are likely to 

have non-trivial fusion rules, since the definition of the four-point function for such 

operators with CI # 0 will generically require insertion of screening operators. The 

contour choices available for the integration over the position screening operator 

will correspond to different conformal blocks. Therefore, to assure trivial fusion 
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rules, we make the ansatz’ 

41 =i(aa& + pa&) eiYd2 , 
$f =i(CX’& + P’&$,) eviYdZ 

(2.7) 

The complex parameters a, ~9, p, p’, are completely determined in terms of 7 by 

requiring that $1 and $J! satisfy the operator products (2.6). The OPE’s also fix 

the parameter 7 to be a function of the background charge: 

(2.8) 

Note that yz determines A, 

A,=l-‘~‘12 (2.9) 

and that Qz determines c through eq. (2.3). TX us our ansatz implies that A, and 

c are not independent parameters but are related: 

A,=!L. 
2Cfl 

This is consistent with all the PF models obtained from N = 2 superconformal field 

theories and discussed in [17], but excludes the PF models discussed in appendix A 

of ref. [4]. To reproduce these models we need to consider a more general ansate, 

such as adding a third boson to the construction presented here. 

Finite reducibility of the algebra requires all of the operator product exponents 

of the theory be units of the fraction l/N where N is an integer [17]. In particular, 

the relative monodromy of $1 with $1 is defined by the integer 6, such that the 

conformal dimension A, = 1 - b/N. From the ansatz of eqn. (2.7) this requires 

yz = 26/N and from the relation eqn. (2.8) the background charge is determined in 

terms of the monodromy parameters 6, N 

Q.=\/,z,b,, . (2.11) 

The full expressions for the parafermions which satisfy the operator products (2.6) 

’ We can also arrive at this ansatz by demanding that we obtain Virasoro 
primary fields of dimension A, and then use the simplest solution which meets this 
criterion. 
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hb) =i i 
J( 

Wz(z) -W,(Z) Ni2b exp(i*&(z)) 
I’ 

d(z)= -i i Wzb) +&l(Z) Ni2b exp(-i@@&(z)) 
J-C m 

(2.12) 

Finite reducibility also restricts the form of the Virasoro primary states of eqn. (2.4). 

It is convenient to reparametriae these fields as 

VA( *) = exp ($Qh(l)) =xp( $\i2bjNm2(z)) . (2.13) 

They have conformal dimension 

Ai = w+w ma 
m 4b(N + 2b) - 4bN 

(2.14) 

The FF-conjugate V;L-*b(z), and the 42 conjugate V!,,(z) have the same con- 

formal dimension as VL(z). Finite reducibility requires the operator product of 

parafermion with these vertex operators to have monodromy in units of l/N. This 

implies that m is an integer, and places no constraint on e. This is easily seen by 

calculating the OPE of the parafermions and the VA, as is done in sec. 4. 

Before we continue the discussion on the spectrum of the models, it is con- 

venient to find the screening operators (3). Recall [3] that given J, the contour 

integral J.7 can be inserted into correlation functions to balance the Coulomb 

charge without effecting the properties of the correlation function with respect to 

the chiral algebra. This requires the .7 to have conformal dimension one and oper- 

ator products with $1(z) and $i( ) I w K are total derivatives. Consider screening h’ h 

operators of the form 

.7 = i(A& + B&z)V~ , (2.15) 

with non-vanishing A or B. There are three solutions of this type, however only 

one is not a total derivative. (Screening operators 3 = 8H are non-applicable since 

$ ,7 vanishes.) The remaining non-trivial solution is 

.J = i&+zVo-2b . (2.16) 

Since it is the screening charge which is important, J is only determined up to a 

total derivative term. It is also possible to find screening operators of the form Vg, 

7 



which we denote as 
v(z) =v~N+2b)(*) , 
f(z) =VIN,fZb’(z) 

These fields are dimension one fermions 

9(2)9(w) = (2 - w) : 97(~)9(W) := -9(10)9(z) , 
ii(z)?(u) = (2 -w) : ?j(t)?j(w) := -F/(w)?j(z) . 

Their charge conjugates are given by 

t(z) =v:&N+2b)(z) ) 
i(z) =V,-(NfZb)(t) , 

(2.17) 

(2.18) 

(2.19) 

and these are conformal dimension zero fermions. The eqns. (2.17) and (2.19) are 

bosonic representations of two c = -2 fermion ghost systems [7] (q,t) and (fj,i). 

The representative OPE’s are 

7)(2)((w) =(z - w)-1 +. . . ) 

((z)[(w) =(z - v)v:;~N+2b)(w) +. . . , 

q(z)i(w) =(z - W)-(1+N~w2N(w) +. . . ) (2.20) 

7J(z)?j(vJ) =(z - W)1+Nh@N+2b)(w) +. , 

((*)i(w) =(z - w)‘+Nw~2(N+2b)(w) + . . 

The two boson Fock space can be reexpressed in terms of the (9, <) system and 

a commuting boson o. Since the dimension zero operator V{ commutes with the 

(71~0 system, (the OPE’s are non-singular), we define the boson g such that 

V,(z) = ear(‘) , 

u(z)r(w) = - ln(z - W) 
(2.21) 

This determines the constant a and the relation between u and &, ~$2 

+) = -iJN/2b 41(z) +i&fTii@ 42(z) , 
a =JNI(N + 2b) 

Since VNN ’ IS a dimension zero operator, the cr boson system has backgound charge 

-ia and the stress tensor Z’, has central charge c., = 1 + 3a’. This is the basis 
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Distler and Qiu [12] used for their analysis of the minimal (b = 1) character form&e. 

Similarly, we define the boson C? orthogonal to the (ii, t) system: 

VYN(*) = ea’tz) , 

S(z) = -iJN/2b h(2) - iJ7Tzpb &(*) 
(2.23) 

The U(1) currents of the two fermion systems are [7] 

j(z) = - 9t , 

j(*) = -g . 

The charge operators j, and j’s count the fermion charge of the vertex operators 

(2.13) as 

j,[V$ = * , 
26 

$[VA] = * 
(2.25) 

In particular, j,[,] = 1, j,[t] = -1. In appendix A, we discuss diagonalization of 

vertex operators with respect to the (7, [, C) and the (+, i, 5) systems. 

Returning to the construction of the parafermion chiral algebra, we first observe 

that the parafermions (2.12) can be expressed as 

+1(z) = “11 j 9 v:iry:a’b’(4 , 

d(z) = n+ht ! f v,!yb’(*) 
(2.26) 

where the normalization coefficients n+ = (b/N)’ - 2 - n+t, and the contour integrals 

are about the point z. In eq. (2.26), and below, we use the symbol $ as a shorthand 

for $ &/(2ai). The parafermion chiral algebra [4] is defined by eqns. (2.6) and 

$J1(z)&,(0) =ZAl+A+P+yp+l(0) +. ‘. , 

?/J;(z)+;(o) ‘zA’+A~-A~+~lg+I(o) +. . . . 
(2.27) 

These operator products characterize the action of parafermions on the identity 

highest weight 40 such that the states created (the &,) are Virasoro highest weights. 

The representations of $1 and l/i given by eqns. (2.26) enable us to solve for the 

&, and $! via the OPE’s (2.27): 

&(z) =hJlP j rl K‘$,“,“‘C4 I 

!f#z, =[n+tlP j 6 V,-I:~b’(z) 
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We prove eqn. (2.28) inductively. Rewrite one of the OPE’s (2.27) as 

tiPp+l(O) = j Z2b”‘N!h(~)~p(0) 

Inserting the expressions for 41 and & from (2.26) and (2.28) we find 

(2.29) 

* p+1 
(2.30) 

where the contours Co are shown in figure 1, and the polynomial f(z, z,) is de- 

terminied by normal ordering the vertex operators which are at the points t, z1 

and 0 : 

f(Z, 21) = zp+lz;(p+l)(z - q)-Z . (2.31) 

From figure 1, the configuration of contours can be written as a difference, Co = 

C1 - C2. The expression (2.30) vanishes for the configuration Cz since the fermions 

at points z1 and zz anticommute. The remaining configuration C, has the t1 contour 

evaluated about the origin inside the z contour. If the (z - ~1)~’ term of eqn. (2.31) 

is expanded about ~1, then the only part of f( .z, ~1) which survives both integra- 

tions over z and z1 is f - z-‘z;’ . Evaluating these contours then reproduces the 

expression (2.28) for the case $p+l. 

3. Unitarity of the Chiral Algebra and Fermion Zero Modes 

The conformal dimension for I,!J~ and 4; , given by 

Ap = P(N - bp)lN (3.1) 

is unbounded from below for positive b, as p becomes large. For a unitary identity 

module, these negative dimension states must decouple from the physical spectrum. 

To determine the constraints required for this decoupling we consider parafermion 

correlation functions. 

Denote the correlator of operators 01,02, . , in the bosonic theory with the 

presence of the background charge placed at the point at infinity via the insertion 

of the vertex operator VoZb(r,), as (01,02,. . .)zb. It is clear that the two point 

~correlator ($i(z)$,(w))zb, with the parafermion operators defined by eqns. (2.28) 

vanishes by a lack of 41 charge conservation. We therefore need to construct the 

correct conjugates for the parafermions ‘cp, $J! in the presence of background charge. 
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Consider the non-vanishing two point correlator 

cp =(v~~lI~~~‘(t)V,N_,b,(o))Zb 

-2A, =t . 
(3.2) 

Introduce into the correlation function the factor 1 = $7(&)((w) on the complex 

plane at radius between IzI and infinity. Then deform the contour so that $q(w’) 

winds about the operators at the points I and 0 in the correlator. The operator 

products of I with the background charge vertex operator Vt” and the vertex 

operator VNN_2bp are both non-singular and mutually local; therefore the only non- 

vanishing winding of the contour integral is about the operator V~~~+2b2p6). Using 

the definition of +p given by eqn. (2.28), we see that the correlator (3.2) is 

cP = “~p(~(W)~p(Z)V~-2pb(0))2b (3.3) 

To interpret the non-vanishing correlators, note that the parafermions given by 

eqns. (2.28) are independent of both zero modes, & and &,. For instance, the opera- 

tor tip is clearly independent of &, because the contour integral J 7 = 70 projects out 

the <,J dependence. Also, by explicitly diagonalidng $p with respect to the (4, [, e) 

system we find it independent of the zero mode (0. Therefore the correlator cp 

describes a mapping from the Hilbert space of parafermion operators, which does 

not include the zero mode to, to the Fock space of the bosonic theory. The operator 

t(w) inserted into the correlator cp soaks up the path integral over the zero mode. 

At this point the analysis depends upon the value of the parameter b; in this 

paper we consider b > 1. In this case we must find a trunction of the parafermion 

algebra because the parafermion dimension Ap is unbounded from below. The 

natural ansatz is to require that the parafermion Hilbert space be independent of 

both zero modes &, and $0. Again consider the correlator cp given by eqn. (3.3). The 

? charge of V,m2bp is given by (see eqn. (2.25)) &[V#-,,I = (N - !1p)/6. If K = N/b 

is integral, then this operator can be rediagonalized in the (q, .$, 5) basis. In this 

case, and if p 5 N the 3 charge is a positive integer and the operator is independent 

of Es, (see appendix A). This is precisely the truncation required for non-negative 

conformal dimensions Ap ! In the correlator cp both zero modes are soaked up by 

the operator [(ut). This is clear since the [ charge of < is &[(I = -K - 1. The 

expression for t(w) in the (fi, i, *) basis is t = exp( dm E) i0[. . a”[. The 

analogous expression holds for { in terms of (q, [, c). 

We denote the h&morphic subspace of states in the boson Fock space as 

7i. Consider the subspace Xl,,,1 c 7-1 which contains states which are relatively 
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local with respect to the (v,[) and (+j,[) systems. States in this subspace can be 

rediagonalized with respect to the fermion systems as we have previously discussed. 

We define the small Hilbert space ‘&,,u c ?&,,I to be the restriction of states in 

Xl,,.1 to only those states which are independent of both fermion zero modes I,, 

and &. When diagonal&d in the (7, t, u) basis, states in ‘H.,.u are independent of 

to, and when rediagonalized in the (ii, t, 5) b asis, they are independent of &. We 

can decompose the relatively local Hilbert space ‘?Ilocal as 

xxal = nsmall $ &Bn1 $ io?iHz . (3.4) 

Since states are in general not simultaneously diagonalizable in both fermion bases, 

there will be an overlap of states in the spaces El and ‘Hz. We will construct the 

embedding of the irreducible parafermion modules into the small Hilbert space in 

sec. 6. 

The condition that &, and its conjugate V/-,, be in ?&,,,1 requires N/b to 

be an integer. The chiral algebra states T&, for p > N decouple from other states in 

the %ma~ because, by construction, there arc no combination of states in the small 

Hilbert space which can be combined via fusion to form the conjugate field V$m2ap, 

which for p > N is proportional to &. 

This analysis is for the case b 2 1. The vertex operators we have discussed 

depend only upon the combination N/b, which is an integer. The models which 

can be constructed in this framework with b > 1 are in fact equivalent to the b = 1 

models. Keeping N/b fixed, there are extra states in the b > 1 models without 

counterparts in the b = 1. However these are projected out of the spectrum since 

they are not in ‘Iflocal. This is the subset of b 2 1 models found to have associative 

parafermion four-point correlators [17]. We see that the Coulomb gas contruction 

and independence of both zero modes requires truncation of the b 2 1 models to 

this subset. 

For the parafermions +$ the non-vanishing two point correlator is 

c; = n~~(~(~)lCI~(~)V_N+Zpb(0))lb . (3.5) 

The identity operator 40 of the small Hilbert space has the non-vanishing two-point 

correlator 
co =M~)4&)vNN(o))2* I 

=(i(~hkJ(~e.d0))** , (3.6) 

=1 . 
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The dimension eero operators V# and VmNN are the conjugates of the identity oper- 

ator in the smal.I Hilbert space. The operators V,e2p and V-NN+2p which appear in 

the correlators cp and CL above are, up to normalization, +J and & acting on the 

identity conjugates 

wLp 0: ! @(~)V,“C~) 1 

v-NN+Zp OE ! h’(w,v-NN(z, . 
(3.7) 

Note that the vertex operator V/e2p is the conjugate of both $j and @N-r and we 

must identify +j with $,?--p, We generalize this identification in the next section. 

4. Parafermion Descendants and Virasoro Highest Weights for b = I 

In this section we consider the b = 1 models, which correspond to the unitary 

.%7(2)/V(l) GKO models [4],[20]. Th e irreducible modules are obtained from a 

finite set of highest weight primary conformal fields c$,, which satisfy the finite re- 

ducibility constraints. Define the monodromy parameters wc and w; via the operator 

products between parafermions and PF/Virasoro highest weights 

=.2-g &+z 

’ -t =2-P $h@ 

The independent parameters wa, w! E R satisfy the finite reducibility constraints, 

wq =+q/N mod 1 , 

wi = - q/N mod 1 , (4.2) 

q E integers 

and also satisfy the constraint that the 4s are highest weights with repect to the 

PF algebra. This requires the states &+r and 4i-r of eqns. (4.1) to have conformal 

dimension greater than or equal to the conformal dimension of the PF/Virasoro 

highest weight 4s. This is equivalent to the constaints 

w,<l-l/N, 

W;<l-l/N. 

We postulate that the only PF/V irasoro primary fields are vertex operators V$ 

defined by eqn. (2.13), (up to application of screening charges). The OPE’s of these 
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operators with the parafermions (2.12) are easily evaluated, for general b, within 

the free field theory. 

$~(z)V:(o) = z Z-~/N-’ (e -m) 

+z (e - m+ N)i&b(o) - J260 i&$,(o)) (4.4) 

+ Q(z2) I V~+d’J) 7 

and 

$f(*)v;(o) = $f *fmlN--l 1 
(e + m) 

--2 (e + m + N)+&(O) + ,/2- iam,( (4.5) 

+ O(zZ) 1 v:-,,(o) . 

It is easy to see that for b = 1 there do not exist any vertex operators that satisfy 

the highest weight constraints (4.2) and (4.3) unless m = ! or m = -J!. In either 

case, (4.2) and (4.3) imply e = O,l, 2,. , N - 1. 

To see this let us first consider m 2 0. The constraint on We of eqn. (4.3) requires 

! = m and m < N, as is seen by comparison of the explicit OPE eqn. (4.4) with the 

highest weight definition eqn. (4.1). Th e constraint Wt of eqn. (4.3) requires m 2 0. 

These solutions are consistent with the OPE of eqn. (4.5). Now consider m < 0. 

The constraints on ut given by eqns. (4.3) and (4.5) require .!J = --m and m < N. 

These solutions are consistent with the OPE of eqn. (4.4). The PF/Virasoro highest 

weights are labeled as 
40 =v: , 

wherel<_q<N-1. 

4q =v,’ , (4.6) 

d’n =v-q&, , 

In sec. 3 we discussed how unitarity of the bosonized PF theory required the 

parafermions and the PF Hilbert space to be independent of the zero modes to 

ans [s. Note that the highest weight states we derived above are also independent 

of both fermion zero modes. It is at first troubling that the FF-conjugate of a 

PF/Virasoro highest weight state is not a highest weight. However the criterion of 
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zero mode independence provides the solution to this problem. By construction, 

the vertex operators & and 4: have the same properties with respect to the chiral 

algebra, (i.e. the same conformal dimension and PF charge). We claim this is the 

Feigin-Fuchs double degeneracy in the bosonic construction of PF/Virasoro highest 

weights. FF-conjugation takes the highest weight state Vt to VteL-*. However 

if the original vertex operator is independent of both zero modes, it is clear that 

the conjugate is not. (The fermionic charges 3s and js of Vl are positive or zero, 

whereas those of the conjugate are strictly negative.) To move back to the small 

Hilbert space we integrate Vte l-r by the screening operator n or rj. The easiest way 

to see which screening operator one should use is to demand that the new state be 

in the list of highest weight states (4.6). Since 

‘$q =vqq = qv-&,-q) (N--9)--2 = 
P d4’.JFF I 

qsq ‘V-$yJ+ = 
(4.7) 

we identify & - 4’s in the PF Hilbert space. 

The state +q is the h&morphic part of the order operator oq of the parafermion 

theory. Consider the action of the parafermions on the highest weights eqns. (4.6). 

In section 2, we studied this problem for the identity highest weight 40. A similar 

analysis for the other highest weights follows by use of the explicit expressions for 

the parafermions given by eqn. (2.26). We use the same notation as Lykken [17] to 

label the PF decendents which are Virasoro highest weights. 

4;(z) = 
@-q(z) = 

4’;(z) = 
4 -y-q(*) = 

, 
(4.8) 

A(-N+c,--l+zp)/N .. .A(-N+,+l)lN+‘q 

Af-q-l+2p)lN. ’ ’ Af-q+I)IN@q 

1 
(4.9) 

The operators A and At are the modes of the parafermions $1 and +l, in the 

appropriate charge sector, defined in the usual way via contour integration [4]. The 

states 4; and $,“-’ for p = 0, 1,2,. . are parafermion decendents of dq z I$$ = #-‘. 

The states cSz and a,“-’ are parafermion decendents of flq = 4’: = &F-S By 

applying the bosonized form of $1 amd $1 given in (2.26), to (4.6) we find, (up to 

normalization constants), 

4;(z) = j Ilyz-~$,2’(z) , 
@-q(z) = vq-&) P 5’1 , 
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4%) = Vq%?+&) p I N -q , 

c$,N-q(z) = j fiv$e;;+-(N+2)(z) . 
(4.11) 

It is clear that these equations are the correct result. They have the correct dimen- 

sion and their bosonic 41 and 42 charges agree with (4.8), (4.9), (2.26), and (4.6). 

(For instance, 4; has &-charge q - N + 2p + N, where the last N is the &-charge 

of 7.) Note that the parafermions are 4; = &, and $7 = +i, and their conjugates 

are c$ = VNNvzP and 4’; = V-NN+2P. Also note that under the identification in (4.10) 

and (4.11), 4: = J,“-’ and qSz = $r-q, as can be checked by explicit calculation. 

The truncation of the index p of the states $,“-c and #,“-c can be seen in two 

ways. The first way is by explicit calculation using the OPE given by eqn. (4.5). 

The second way is by observing that the parafermion highest weights eqn. (4.6) are 

independent of both fermion zero modes, as are the parafermions. Therefore any 

parafermion decendents must also be independent of the zero modes. The fermion 

charges of 42-q are js = p and ?s = q - p. Therefore if p > q, the state is not 

independent of &, which is a contradiction. 

We now show that there is a similar truncation for the +;! and 4’; fields. The 

conformal dimension h: of the fields 4; , tip, 4’: and $7 is given by (2.14), with 

e=N-qandm=&2p: 

q(N - 4 
‘4 = A;-:-zp = 2N(N + 2) + 

P(N - q - P) 
N ’ 

The dimension of the @, 4’: fields is bounded by zero by the truncation described 

above. However, for large enough p these dimensions become negative for the 4;, 

4’; fields. Therefore, for unitary parafermion modules these states must decouple 

from the spectrum. This truncation is understood by considering the non-vanishing 

two-point function for 4; 

(1(~)4;(a)4;(0))2h = ZCZhZ (4.13) 

The conjugate field to 4; is therefore c$;, which is independent of the fermion zero 

modes if p 5 N - q. Restricting to only those bosonic vertex operators in the small 

Hilbert space enforces this truncation. For p > N - q there do not exist operators 

in the small Hilbert space that fuse onto 4 z. This assures that the @, with negative 

conformal dimensions decouple from the small Hilbert space. 
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In summary, we have 

4$(z) = V,~&,(4 I 
4’;b) = $%+,,(4 > 
4’;(z) = j ijv~~~?I:p”‘(*) , 
with p 5 N - ,J . 

(4.14) 

We see that p 5 N - q corresponds to the restrictions given in ref. [4] on the repre- 

sentation of the PF algebra. 

There exist two Zr degeneracies in this parametrization. First, this parametri- 

zation is by construction redundant, 

4’;(z) = &L,&) 

This redundancy requires us to identify the fields 

432) = 4%,-,(z) , 

because of the double degeneracy in the definition of the conjugate of &a. For 

example, instead of defining the conjugate as in eqn. (4.13), one can insert the 

fermion ((us) into the correlator to soak up the fermion zero modes. This leads 

to the field 4pN-r-r as the conjugate. If one classifies the PF Hilbert space ‘HPF 

by its L and M charge, L = N - q, M = L - 2p, these identifications are the 

7-&p = EgFL,N+M symmetry [29]. 

The second 2s symmetry is a degeneracy of states due to FF-conjugation sym- 

metry. Our case is more subtle than the c < 1 minimal models. FF-conjugation 

takes the vertex operator VA to V; ’ - r. By looking at the fermionic charges js and 

31, of VA, if the original vertex operator is independent of both zero modes, then its 

FF-conjugate is not. To define a conjugate in the small Hilbert space, we integrate 

V$* by the screening operator n or ii. The choice of which screening operator we 

use is dictated, (up to the first 21 degeneracy), by the constraint that the resulting 

field be in the list given by eqn. (4.14). This leads to the identifications 

4; =4’; > 
4; =$J’; . 
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5. Fusion Rules of b = 1 Virasoro Highest Weights 

To further understand the mechanism responsible for truncation of non-unitary 

states, we calculate the three-point functions of the Virasoro highest weights. More 

precisely, we will determine when the three-point functions do not vanish. This 

corresponds to the fusion rules for the states in the PF representation. Although the 

formalism developed allows us to calculate the four-point function, the calculation 

is not necessary to understand the truncation of the non-unitary states. 

The PF/Virasoro highest weights of eqn. (4.6) arc independent of both fermion 

zero modes & ans to. Since this is also the case for the paraferrnions, the entire 

parafermion module is in the small Hilbert space described in section 3. To calculate 

a PF correlator we must move to the boson Fock space which is where the path 

integral in terms of free bosons is defined. To do this we add E(w) or f(w) into the 

correlator to soak up the zero modes. Also, to satisfy charge conservation in the 

bosonic theory, we can add powers of the screening operator S = j J(y), where J(y) 

is given by eqn. (2.16). This screening charge is also independent of both ferrnion 

zero modes (see appendix A). 

Consider the correlator in the parafermionic theory 

0’ mm = (4;:(21, @:(4 @gzs)) . (5.1) 

Wc suppress the pj labels OII Cq14,1s to avoid cluttering the notation. The indices 

are raised and lowered by the metric tensor Sz, given by the two point function in 

the PF theory 

(q(&&lJ)) =S$(z -W)-*hz (54 

Again we have suppressed the p and p’ index in the metric tensor. By SL(2, C) 

invariance [5] the correlator is given by 

C” q,q~ = c’=qaqs n (zi - Zj)[“:+‘v-‘4 , 
i<, 

he‘,, 
(5.3) 

where cq’qrqa E R arc the operator product coefficient. Hence the fusion rules are 

4;; x Jpa = 
? cql Jq’ ’ 

91’1a p, 

To find the appropriate representation of Cq’qIq. in the bosonic Fock space, we 

use the bosonic form of 4; and 4; given in (4.14), and write down the correlator in 
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the boson Fock space by adding a [ and screening operators. 

(5.5) 
Deform the contour integral over z’ about the other vertex operators. It is clear that 

the OPE of 7 with Vp--2p is non-singular for p 2 0. The OPE of 7 with the screening 

operator J is singular but once we perform the $ dr’ integration we have a total 

derivative. Since S = $ J we get no contribution. Therefore the only non-vanishing 

contribution is $7((w) = 1. It . IS convenient to define Lj = N - gj, Mj = Lj - 2pj, 

j=l,2,3: 

(5.6) 

Taking into account the background charge, the bosonic charge constraints are 

(5.7) 

The correlator eqn. (5.5) is not specified until the contours of integration in 

the definition of the screening operators are defined. For a three point function, 

there is only one linearly independent set of contours to choose. There are two 

ways of seeing this fact. One way is to choose the points z1 = 1, z2 = 0 and take the 

limit zs + cc in eqn. (5.3). We write the correlator as Cqlqzqs = z~ti~mc~~q,q~.z~A’. 

Therefore when the points ~1, ~2, zs are taken to these limits, the contour integrals 

over the screening operators reduce to integrals either over the inverval [O,l] or 

the interval [l, m], (see ref. [3]). The integration over [0, co] vanishes since it is up 

to a constant the integral about all three points, which can be contracted to zero. 

Therefore, all of the contours can be defined to be over the interval [0, 11. 

The second way to see that there is only one linearly independent choice of 

contours is to construct a homology basis of loops for a configuration of Nth root 

branch cuts with X branch points. One result of this construction [30],[31] is the 

fact that independent of the monodromy l/N, th ere are X - 2 linearly independent 

closed contours for points on the sphere. We can write the correlator above as 

Corr=~~f(Yl,...Y~;rj) 
i=l i 

where we have labeled the points where the screening operators are inserted at y;. 

For each contour integral over yi, there are X - 2 = t choices of linearly independent 
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closed contours. However, the mutual monodromy between the screening operators 

is given by J(yj)J(yh) = ~2niZ”N’2’J(y~)J(yj) as is easily seen by calculating their 

OPE. As a result, if two variables yi are assigned the same contour, then the corre- 

lator vanishes. Since there are precisely as many linearly independent contours as 

points yi to assign, and since the screening operators J(yi) are all the same, there 

is only one independent set of contours to choose. 

Consider a subset of s contours, s < t such that the integrals arc well defined 

about one of the vertex operators at the points zi of eqn. (5.5). We define these 

local states as 0:. If it is possible to define these states, then the corrclator must 

vanish. Either the nf will vanish identically, or they will correspond to null vectors, 

i.e. states which are simultaneously chiral algebra decendents and highest weights. 

The correlator of such null vectors with the other Virasoro primaries vanishes [5]. 

Suppose it is possible to define the state n; = [n$, S] V~~‘+2)(zI). T&s 

state is well defined if the monodromy of each variable yi with respect to .q is local. 

The condition is derived by dragging the operator J(yi) about zl. Since the J(y&) 

are mutually non-local, each other J(yk) must be dragged about z1 to restore the 

original J(yi)J(yk) monodromy. The condition for a well defined state is 

2 
+a(3 - 1)- 

L1+2 - - 
N+2+‘N+2 

s=ar.. (5.9) 

If the integer 1. is non-negative, the state n; vanishes, if 1. is negative then it is 

a null vector [8],[24]. Thus whenever we can close the contour, we get a vanishing 

correlator. To have a non-vanishing correlator, the number of screening operator 

insertions 1 must be strictly less than the smallest value of s which satisfies eqn. (5.9) 

for any 1.. In the present case, that occurs when 1, = 0 and we find that the smallest 

valueofsisa -N+l-Ll. Thust<N-L1. rmn - - The charge constraint (5.7) 

eliminates t in terms of of the L1. Hence L1 5 2N - Lz - LJ. Since t 2 0 we also 

get L1 5 LZ + Ls. Putting this together we have 

LI 5 min [2N - Lz - LJ, LZ + Ls] . (5.10) 

Now consider the possible existence of the state fl; = [fli==, S] V$. The condition 

for a well defined state is now 

2 L 
$(a - 1)- - a- - 3 = 31 

N+2 N+2 *’ 
(5.11) 

The smallest integer s for which this state is well defined corresponds to 1. = -1 

and gives ati,, = Lz + 1. Therefore t < Lz. In the same way the state 0; gives the 

20 



constraint t 5 La. Putting these two constraints together with (5.7) yields 

Ll L 1-b - LJI . (5.12) 

Note also that eqn. (5.7) implies that 

L1 = Lz + La mod 2 , 

Ml=Mz+M3 
(5.13) 

Equations (5.10),(5.12) and (5.13) represent the non-trivial fusion rules for the fields 

in the correlator CN-L1~-~,,~-~a. Note that the primary fields Gk in the 3%(2)~ 

affine Kac-Moody theory [32] can be identified with the & of the parafermion theory 

in the following way 141: 

G!,,,(z) = $E:j(z) exp (kJ2/N &(z)) , (5.14) 

where da(z) is a free massless boson with the same signature as &(z) but no back- 

ground charge. We see that the CNeLl N-&J-& correspond to the fusion rules 

of the ji = Li/2 and m; = Mi/2 Kac-Moody primary fields [33]: 

G$$ x G$$ = c CN-LL~-~+~.G$$ . (5.15) 
LX 

Similarly, we can calculate the fusion rules for the “primed” fields by examining 

the correlator Ch,q’qa = (4’;; 4’;; 4’;;). T o re p resent this correlator in the bosonic 

theory, we must insert r(w) into the correlator. Due to the global bosonic & + -& 

symmetry of the theory, the calculation completely parallels that given above and 

the fusion rules are the same as above. 

Now consider the “conjugate” case for the three point function 

ryllPI 4s = (4;.:(a) 4;:(z*) JJg(z3)) 

+(W) @] ji, dZ’V(Zf)V:~+2)(~1) ‘j, dr”~(Z”)V~~‘+‘)(Z2) v&$3) )Zb 

(5.16) 

Deform the contour integral over z” about the other vertex operators. Again the 

only non-vanishing contribution is $7((w) = 1. We deform the contour integral over 

z’ so that it surrounds all of the vertex operators, including the screening operators. 

CPI’1Z qa Oc (A, d&(z’)[sQl +i~‘+2)(z,) V:,P$+*)(%) vk(z3) )Zb (5.17) 

21 



Again, we attempt to construct local states nf and then require t < ~,,,i”. After 

some algebra, we find the constraints 

N-Ml=Mz--Ma, 

N-L,=Lz+L~mod2, (5.18) 

ILz-L~I<N-L1<min[2N-Lz-L3,L2+L3] . 

This denotes the non-trivial constraints for non-vanishing operator product co&- 

cient CN-L1*N-L1~-~a. Similarly, the fusion rules for the correlator Citq,‘?a me 

calculated in the bosonic theory by adding E(w) to the correlator and the constraints 

on the operator product coefficients are also given by eqns. (5.18). 

We have derived the correct fusion rules [4],[33],[29] for the Virasoro primary 

fields #$, @, $7, a:, 0 5 p < N - q by analyzing the non-normalized three-point 

functions. They are given by 

4 -;: x 4;“. = c Cqlqlqa&?: > 
rll 

pl=pz+P3+(gz+q3-N-g1)/2, 

a= qz + 43 - N mod 2 , 

lN-qz-q~I~q1IN-Iqa-qa/, 

(5.19) 

4 ;: x @ = c cq’q’ 98 d;: I 
91 

Pl = -P2 +ps + (-92 + 93 - n1)/2 , 

ql=-gz+q3mod2, 

1~~-~~1~g,IN-IN-gz-q~~. 

It is clear that the conformal blocks, the holomorphic part of four point functions, 

can be easily calculated and expressed in terms of contour integrals over rational 

polynomials. 

6. Minimal b = 1 Parafermion Characters 

The characters of the minimal parafermion models (the string functions) are well 

understood [34],[29] and frequently used as building blocks of string model build- 

ing. In this section we will use the concepts developed in the previous sections to 

obtain these string functions. The small Hilbert space of the parafermion modules 

is independent of both fermion zero modes &, &. It is therefore necessary to include 
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only the states of the full bosonic Fock space which are not proportional to these 

modes. It is also necessary to subtract the states in the modules of any null vec- 

tors of the parafermion theory. We construct the irreducible PF character for the 

module {dz}irr of the Virasoro highest weights & in each PF charge sector. The 

construction of the PF character for {~~}i~r is similar. 

Consider the state 4; = V&, where L = N - g and M = N - g - 2p, with 

conformal dimension hjj = AL M given by eqn. (4.12). The character of the boson 

module [V&l is 
qA&C/24 

xkf = M)12 ’ (6.1) 

where g = e’“l, T E C, and p(g) = n,“=,(l - g”). A power series expansion of & 

with respect to g about g = 0 is the sum of states in the Hilbert space, where each 

state is weighted by it’s “Boltzman factor” of eixLor. The factor gmc/s4, where 

c is the central charge (2.3), represents the vacuum energy contribution, and the 

factor [v(g)]-’ is the contribution of the bosonic oscillators. Following Feigin and 

Fuchs [2], we assume that for the values of c given by (2.3) the only null vectors in 

the bosonic theory are parafermion null vectors. 

Let {Vjj} be the submodule of [V&l which contains only decendents of V$ 

restricted to the small Hilbert space ‘7fSmau, and denote j& as its character.sBy 

construction, the sum of this character and similar characters shifted by the charges 

of the zero modes must be the boson character x,& 

XL = x^k + (Io)x^$$+*) + (&l)&j;+2’ , (6.2) 

where (&), ((0) denote the charges of the zero modes. The conformal dimensions 

A&‘.NN+z and ALtvNN” of th e “second level” vertex operators are greater than Ah. 

(If their conformal dimensions were less than Ah then they would not be included 

in eqn. (6.2).) Equation (6.2) begins a recursion relation for the subcharacter gh. 

The next level for the recursion relation is generated by 

XLM++NN+2 + XM-N L+(N+Z) =2&+tc+z + &+$+a) 

+(lo))?~y~NN+2) + (&)&..$;+2) + (((0) + (&))&+*'N+" . 
(6.3) 

3 There are states in X Smau which decouple because their conjugates are not in 
-Ii smau. We examined some of these in sections 3 and 4. They are in charge sectors 
which are not counted. More precisely, we are calculating the reducible character 
z& which counts states in 7fHsm.u whose conjugates are also in XSrnau. 
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The last term )?&?z(N+2) 1s counted once and denotes an intersection of the sub- 

spaces ‘HI and 712 defined by eqn. (3.4). Again, note that the conformal dimensions 

of the third level, Az:$+‘), A&t?i$+2), Acz(N+2) are greater than the dimen- 

sions of the second level. The character j& is found recursively by continuing this 

process 

ik = E c--l) rta Lt(r+a)(N+Z) 

t,,=0 
x&f+(s--r)N 

This expression is obtained by adding and subtracting alternating levels, accounting 

for intersections of modules, and including only characters at level X + 1 with higher 

conformal dimension of their highest weights than at level X. This is shown in 

figure 2. 

This is not the end of the analysis for the irreducible character because of 

the existence of PF null vectors in the modules I$;}. These null vectors are the 

remaining null vectors of the PF module. We have already taken into account most 

of the null vectors in the theory. In particular, there are “boundary states”, such as 

$+1p 
which are not in 7&-u. They were eliminated by the construction of {&}. 

The null vectors we need to indentify below are only those which exist in ‘&,,.,~. 

An explicit construction of null vectors for the minimal conformal series was first 

given by Feigin and Fuchs [Z]. The construction below follows the later analysis of 

Kato and Matsuda [24], which we apply to the SU(2) parafermion case. We have 

discussed in section 2 the screening operators q,+, and J given by eqns. (2.17) and 

(2.16). We can use them to construct null vectors in ‘H.,,u since their screening 

charges are independent of both zero modes. Consider first the use of the q,q to 

construct null states in the module {&}. These are given by the states 

iqf(O) = sd, dz7+)v&:(.y+“(o) , 

iv$(O) = j dzfj(*)v~;(~+“‘(o), (‘3.5) 

~(“~~(0) = ~ d~i~(~~)~(*~)V~--Z’N+z’(0) 

Multiple applications of the fermions vanish by the anti-commutation property. The 

states in (6.5) are by construction highest weights in the module of V,&, however 

we will now show that they vanish identically. To see this consider fi ‘“E; for it 

not to vanish, the operator product of TJ with the vertex operator at z = 0 must 

have singularity z‘“, where w is a negative integer. One finds w = p - 1, so that 

the null vector is non-trivial only for p = 0 in which case it is equal to the original 

24 



highest weight state &. Similarly fi’“g ’ IS identically vanishing or trivial. The third 
state fpfig . . 1s identically zero because, for the highest weights in consideration, the 

monodromy of the variable tl about the origin is a positive integer. When that is 

the case, the contour integration gives zero. It is useful to state the values of L and 

M required for non-vanishing null states 

ivg#o (L-M)IO, 
i=P$#O (L+M)IO, (6.6) 

iPJQ~#O (LfM)<O. 
The non-trivial null vectors therefore require the use of the screening opera- 

tor J. Consider null vectors of the form 

fjq = fj [ 1 s vp, i=l (6.7) 

where S is a contour integral over J. By construction these null vectors are inde- 

pendent of both fermion zero modes to, &. These states are non-vanishing if 

2 
$T(T - l)- 

L + 2T 

N-I-Z -r--r=-r(nl +1), N+2 (64 

where nl is a positive integer. Represent each null vector of this type by the vertex 

operator used to construct it, (i.e. represent 6’2 by V,,+*, ). Then we have 

found null vectors represented by V$2(N+2)-(L+2). Each of these null vectors has 

a degenerate module. The construction described above can be used to find the 

null vectors of the null vector modules by replacing L + Znl(N + 2) - (L + 2). 

These new null vectors are represented by the vertex operator V$“+“‘)*(N+2)+L. 

Similarly each of these null vectors has a degenerate module, however the form of 

this next level of null vectors is equivalent to the first set of null vectors. 

Now consider the embedding of the null vector modules. The null vector with 

lowest conformal dimension is the nl = 1 case of the first set and represented by the 

vertex operator V~N+2)-(L+2). The first null vector of its module is the 7~2 = 0 case 

of the second set and is represented by V$N+2)+L. The full embedding diagram 

for the null vector in the two series above is given in figure 3. For each null vector 

represented by I’$, one can construct the states fivLM, ’ tie”;, and fi”“$. However, 

by the constraints given by eqn. (6.6), since L’ > L these states vanish identically. 

As discussed in section 4, there exists EI 22 degeneracy in the bosonic Fock space 

for each Virasoro primary of the PF theory. This is the FF-conjugate symmetry of 

25 



the SU(2) PF theory, $$ = 4’;. So we must also consider the construction of null 

vectors using the “primed” representation of the field. We define 

i=ti”‘E = j &j(2) [g s] VyN+*)+*’ . (6.9) 

The non-vanishing null vectors are represented by the vertex operator V~+2”i(N+2), 

The next level of null vectors is represented by V$i+nk)2(N+a)-(L+2). We see there- 
fore that these null vectors of the “primed” representation are contained in the series 

given by fig. 3. More specifically, they are the Feigin-Fuchs 21 symmetry null vet- 

tors in (I(&}. This result differs significantly from the unitary minimal conformal 

series case (case IIIb of ref. [Z].) In the minimal conformal series case, the first null 

vector of the “Feigen-Fuchs conjugate” representation of the highest weights is not 

in the module of the first null vector of the original representation. This generates 

the “ladder” embedding diagram of the minimal conformal modules. The source of 

the difference in our case is the extra --T term on the left side of eqn. (6.8). This 

comes from the operator product of the 842 terms in the definition of the screening 

operator .7 with the highest weight vertex operators in the construction of the null 

vectors. 

The correct character of the module {@},, is obtained by subtraction of the 

modules for each of the null vectors in the diagram fig. 3. Since all of the null 

vectors are in the module of the first null vector represented by V~N+Z)-(L+2’, we 

subtract only its module. The character (string function) is given by 

E;=$f--x, -2(N+2)-(L+Z) 

which can also be written as 

(6.10) 

z; =q A&c/24 [p(q)]-* 2 (~l)~+.q~“(‘+l)+~‘(‘+~)+rr(N+l~ 

t,.=o 

[ q* ( 
‘r L+M)+;a(L--M) N+l-L+~r(2N+2-L+A4)+~~(2N+2-L-M) 1 

(6.11) 

-Q 

This expression was first given by Distler and Qiu [12], however our derivation 

differs significantly from theirs. Since & N $‘z, c; = Z;. Similarly c; = c;. Finally, 

the global bosonic 42 charge symmetry m t-t --m implies Ez = c; and c; = C:. 

7. Interpretation as BRST Cohomology 

We now consider the relationship between our analysis and the BRST cohomol- 

ogy [25] analysis of the SU(2) PF theory given by Distler and Qui [12]. Their 
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representation of the PF operators uses the (7, {, u) basis introduced in sec. 2 and 

discussed further in appendix A. In their analysis, the physical PF Hilbert space is 

assummed to be in the submodule 7-l of the boson Fock space X which is indepen- 

dent of the 4 zero mode. The boson Fock space has the decomposition ‘H= ??@ foRi, 

and a BRST operator 

Q+$jip(~.) ’ (7.1) 

with the property Qz = 0, maps states from 3 to %. By calculating the cohomology 

kerQ/imQ, they found the characters of the PF theory. 

The Hilbert space ?? of [12] is related to 7iH.,,u defined in section 3 by 5 = 

%dl + ~o%nau. In our analysis the reducible PF modules consist of the states 

in 7f which are independent of both zero modes, and whose conjugates are also 

independent of both zero modes. These modules are a subset of ‘7&,u. Restricting 

to states in the kernel of Q corresponds to these reducible modules. In addition to 

this, moding out by the image of Q is equivalent to subtracting the PF null vector 

module from {@}. 

We begin by showing that moding out by states in the image of Q is equivalent 

subtracting the first PF null vector module. Recall that in sec. 6 we calculated the 

character of the PF module {J:},,. Alternatively, we could have directly calculated 

the character of {@}irr. Consider the null vectors of the module {@}, given by 

n’gy = j&??(Z) [fi s] vy+*) 1 
where L = N - q, M = L - 2~. Following the analysis of sec. 6, the first series of 

null vectors is given by T = nl(N + 2) - 1 + (L + Z), and represented by the vertex 

operator V~~“‘(N+2). The case n1 = 0 corresponds to T = L + 1 and the “null 

vector” in this case is actually the original highest weight 4:. The second series of 

null vectors is represented by the vertex operators V(“~‘“‘)2(N+Ca)-(L’2). AU null 

vectors are in these series. In particular, the lowest dimension null vector is in the 

second series and is given by 

(7.3) 

Namely, the first null vector is in imQ. The other PF null vectors are in 

{fl ‘“~‘_~-:-“} and hence also in imQ. 
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The BRST operator is not unique. The cohomology of the conjugate BRST 

operator 

&-j = “/ f(z) I$; j J(%) (7.4) 

generates the irreducible module of & = 4’: as we have shown in section 6. 

We have shown that the PF null vectors of (@I are in imQ. This together 

with the fact that our PF character agrees with [IZ], establishes the equivalence 

of our reducible PF module to kerQ. Although we do not prove this directly, we 

present an argument which shows one of the relationships between our analysis and 

kerQ. 

Consider the vertex operator VA in kerQ. It is in ‘H,,d when its fermion 

charges j, and 311 are non-negative integers. This requires e f m 2 0, and ! = m 

mod 2 (see eqn (2.25)). We now show that if e 5 N then the conjugate of VA is also 

in Xd. This agrees with the analysis of ref. 1121, where V,f, E kerQ only if e 5 N. 

Following the analysis of sections 3 and 4, we find the conjugate of V,f, in 7&+,u 

by introducing a factor 1 = 5 v(&)<(w) into the non-vanishing two point correlator. 

.-2Al, - - (v~(*)v~~+*)(o))** = (f(w)V:(z, ~Tf(w’)v:~+“)(o)),, . (7.5) 

There are actually two possible representations of the conjugate, given by $ qVCz+') 

and $ ijV:z+'), which require insertion of either f(w) or f(w) to balance the bosonic 

charges and soak up fermion zero modes. These states are in 7fH,,,u (independent 

of both fermion zero modes) if 

sf, = H 
f) vvI;f+*) 

(7.6) 

vanishes. For instance, if J qVIc+') (0) is proportional to f(O), then multiplication 

by $2~‘)~ and integration over 20’ will be non-vanishing because of the am 

OPE. The state Sf, vanishes if the monodromy of either q and 6 about the origin 

is a non-negative integer 

ZN-(fT&m)>O. (7.7) 

Hence if ! f m 5 ZN, the representations of the conjugate are in ‘?&-.u. Since 

t! f m 2 0, the bound t? f m 5 2N is saturated when m = e, and we have e < N. 

Note that we cannot define Sk itself to be the conjugate of VA; insertion of both 1= 

J 7(&)((w) and 1 = $ ii( does not lead to the definition of B local conjugate 

state because 9 G(u/)f(w) # 0. 
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Note that both Q and $0 have the same dimension and bosonic 41 and d2 

charge. This is not unexpected given that the restriction of physical states to the 

kerQ is equivalent to the restriction of physical states to 31.mau. Our zero mode & 

plays the opposite role of Q on the states in ??i; state which are annihilated when 

multiplied by & are not in the kerQ. 

8. Discussion and Conclusions 

We have developed the Fe&n-Fuchs Coulomb gas construction to the point where 

it can be used to derive, versus reconstruct, the structure of unitary irreducible 

representations. One of the keys to the analysis was the correct treatment of fermion 

zero modes. We developed our treatment of the zero modes by demanding that all 

negative dimension states decouple from the theory. This led us to describe the 

physical PF Hilbert space as the subset of the two boson Hilbert space which was 

mutually local with respect to both the (7, f) and (ij, i) system and independent of 

both the (0 and (0 zero mode. We discussed the connection between this Hilbert 

space and the BRST constraint that all physical state be in the kernel of the BRST 

charge Q. Recall that in our approach physical states and their conjugates must be 

in the small Hilbert space if the chiral algebrais to be unitary. Therefore there exists 

an explicit connection between unitarity and the BRST constraint &,phyl E kerQ. 

We have shown that our treatment reproduces the correct fusion rules and 

character formula. One advantage of our approach is that less assumptions are 

required to define the representation theory. In particular, we derived the PF highest 

weights, and used unitarity as the criterion to justify construction of the space 

‘H smd. The irreducible characters were found by subtracting the modules of all 

possible null vectors (constructed from screening operators), from the reducible PF 

characters. This leads naturally to the identification of a BRST operator. 

Our goal was to determine how well the Feigen-Fuchs construction could derive 

representation theory. A greater test will be to apply the formalism to models for 

which the representation theory is not well understood, such as the X7(1,1) PF 

models [23]. We have previously discussed the connection between these models 

and N = 1 spacetime SUSY. However, it is also of interest to find conformal field 

theories (exact string solutions) corresponding to string propagation on a non-flat 

~space-time manifold with Lorenteian signature, such as de Sitter space, which is the 

coset manifold = SO(4,1)/SO(3,1). It is natural to use the GKO constructions 

G/H, with G or both G and A as non-compact Kac-Moody algebras, to try to 
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understand such models. The simplest of these constructions are the SU(1,l) PF 

models. It is not obvious that the GKO construction G/X should be identified 

with the coset manifold G/H. The correct identification between CFT’s and target 

manifolds requires a matching of the physical states in perturbation theory. To 

find the representation theory of these models, the Feigen-Fuchs construction will 

clearly be a valuable tool. 

Appendix A. Mapping Between Different Coulomb Gas Representations 

In this appendix we discuss the relationship between the different bosoniza- 

tions in the literature [9],[10],[11],[12],[13],[14]. We will see that the relationship 

is basically a change of basis in the two boson space. Though the bosonization 

presented in [9],[10],[11],[12],[13] is only for the minimal case, in this appendix we 

give a unified treatment of both the SU(2) and SU(1,l) parsfermion models. 

In the Distler and Qiu basis the parafermionic energy momentum tensor is 

given by 

T(z) = T,(z) + q,(t) (A.1) 

where 

T&z) = - ++))* + ;a:+) 

T,<(Z) = - $3zx(z))* + (;) ftx(z) = -v(z)&f(z) 
(A.21 

and 
a E iqo = JNlo 

~(2) s eiX(‘) dim 7j = 1 

f(z) s e+Xb) &m x = 0 

The 111 OPE is 

(A.31 

V(z)f(w) = (2 - w)-l + finite parts (A.41 

In order that the energy momentum tensor in (A.l) agree with the one in (2.2), we 

must have 

41(z) = - iJN/2b u(z) - J@-Tii@ x(z) 

42(z) = zk (-i&Gqi u(z) - JN/26 X(“)) 
(A.51 
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Inverting this relationship we get 

4%) = - iJN/26 h(z) fit/~ d2(%) 
dz) = - m=iE h(t) f JNI2b da(*) 

(A4 

Taking the (+) sign gives the relationship between C, x and &, d2 whereas taking 

the (-) sign gives the relationship between 5, 2 and &, c$*. The f in the above 

equations reflects the $2 + -42 symmetry that exists in the energy momentum 

tensor. From the field 2 one gets the ?j screening operator and [ zero mode in the 

same way the x gave the 7 screening operator and 5 zero mode; 

fj(,z) z eiFXz) dim fj = 1 , 

&) E .-G(z) am 2 = 0 , 

;i(*)i(w) =(z - w)-l + finite parts . 

(A.71 

By induction we can also show that 

7f(z)&~(z). . . tl:-lq(z) 0: ein+) 

f(z)&f(r) . . . El:-‘f(z) K eminX(‘) 

&f(z) . . . a:[(%) cx a:( e-inx(z)) 

(A.81 

And similarly for the tilded basis. Using (A.8) we have that the vertex operators 

defined in (2.13) become 

v:(2) = =xp ((m/a - e4 +)/2) ~XP (i (e - m) x(2)/2) , 

= exp ((-m/a -ea) 5(2)/Z) exp (i (e +m) 2(2)/Z) . 
(A.91 

Thus we see that when the j (j) charge is non-negative, the vertex operator is 

independent of the f ([) zero mode. In the minimal case when b = 1, (e f m) is a 

positive even integer for the states in the PF representation and we have 

V:(Z) 0: exp ((m/a - ea) 42)/Z) ~~(x)&T(z). . @(---‘/*I , 

0: exp ((-m/a - ea) z(2)/2) +~(z)&$z) . . 0~f+m)/*7j(t) . 
(A.10) 

One can also show that in the 7, f basis the expression for the parafermions 
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become 

+I(%) =i 
T 

$ 8=X(z) exp (u(z)/a -ix(z)) = -& 8zf(z)eu(z)/a 

exp (-dz)/* + x(z)P) 

=- 
U 

$ ~~(z)&(e-“(z)la) + F&q(%)) e-gb)/a 

(AX) 

When written in terms of the tilded basis the above expressions are the same except 

that the role of $1 and $i is switched. 

There are three screening operators in our Coulomb gas representation. They 

are 7, ij, and J. Equation (2.16) d e fi nes J. In terms of the (~~0, (e, f) bases it is 

(A.12) 

Note that up to a total derivative, J is equal to the screening operator presented in 

[IZ]. We also have that 

J o( eau8f + total derivative , 

cc ea’&$ + total derivative . 
(A.13) 

The relevent quantity is the screening charge S = $ J, and (A.13) shows that S is 

independent of both zero modes. 
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Figure Captions 

Fig. 1: Manipulation of the contour configuration CO into C1 - Cz, leads to straight- 

forward evaluation of &,+, . 

Fig. 2: Graphical solution for the character &. is obtained by adding and sub- 

tracting alternating rows on the diagram. 

Fig. 3: Embedding diagram of null vectors in IV&}. 
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