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Abstract 

We study the structure of technicolor theories at finite baryon number. In particu- 

lar, we investigate whether ‘technicolor matter’, containing comparable numbers of all 

techrdfermions, may be absolutely stable, as opposed to individual technibaryons. This 
proposal is the technicolor analogue of Witten’s conjecture regarding the stability of 

strange (3-flavor quark) matter. We model technicolor using a resealed version of the 

MIT bag. For gauge group SU(N)TC, the stability and cosmic durability of techni- 

matter is enhanced with increasing N and for large flavor symmetry. For N 2 5 - 8, 

techni-matter nuggets formed at the technicolor confinement transition can survive to 

the present epoch, and they are likely to contain virtually ail of the tecimibaryon nun- 

ber of the Universe. We discuss various astrophysicai and experimental constraints on 

the abundance of technic&r nuggets in the galactic halo. 
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I. Introduction 

Technicolor theories, designed to provide a natural origin for spontaneous symmetry 

breaking in the electroweak model, bear a close resemblance to quantum chromodynamics, 

albeit scaled up by three orders of magnitude in energy. It is therefore natural to raise 

the same questions in technicolor that one asks in &CD. In this paper, we inquire into 

the ground state of technicolor at finite baryon number. In particular, we ask whether 

technifermion matter, the analogue of strange quark matter, may be the lowest energy state 

instead of the lightest technibaryon. Although we cannot answer this question definitively, 

we find it quite likely that techni-matter is stable. This result has important implications 

for technicolor cosmology, for it means that technibaryons present in the Universe will be 

condensed into large nuggets instead of roaming free. Tech&nuggets are observationally 

consistent candidates for the dark matter in galaxy halos, while free technibaryons, if they 

carry electric charge, are not. 

In the next Section, we review the general framework of technicolor and estimate the 

mass scales involved. In Section III, we compute the energy per technibaryon number of 

technifermion matter and compare it with the mass of the lightest technibaryon (LTB). 

Unfortunately, unlike the proton, the mass of the LTB is not known, so we estimate it 

using a resealed version of the MIT bag model. In Section IV, we discuss the technicolor 

confinement transition and the formation of nuggets during the coexistence phase in the early 

Universe. We show under what conditions these nuggets survive evaporation in Section V. 

Finally, in Section VI, we investigate the experimental and astrophysical constraints on 

nuggets in the galactic halo. 

II. The Framework of Technicolor 

The standard model of electroweak interactions requires a set of elementary scalar fields, 

the Higgs bosom, in order to trigger the spontaneous breakdown of gauge symmetry, ex- 

plicitly break flavor symmetry, and generate mass terms for vector bosom and fermions. 

Although the Higgs sector provides a single explanation for these phenomena in a rather 

economical way, it is plagued by serious difficulties. The unprotected quadratic divergences 

of scalar particle masses make the model unnatural [l]. M oreover, the arbitrariness of the 

Higgs sector and the large number of free parameters involved suggest that we are not dealing 
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with a fundamental theory. 

Technicolor theories* [2] hope to cure these problems by replacing the scalar sector of the 

standard model with a set of fermions interacting via a new, asymptotically free force. At 

the scale ATC, this new interaction - technicolor - becomes strong, and it is assumed that, 

similar to the behavior in &CD, the technifermion chiral symmetry is dynamically broken. 

Now, the Goldstone bosons of the spontaneously broken chiral symmetry provide the degrees 

of freedom for the longitudinal components of the bv* and 2’. 

In building a technicolor model, one has to specify the choice of gauge group and fermion 

representation. It will be convenient for us to concentrate on a definite class of techni- 

color theories, although most of our considerations can be generalized to different models. 

We take SU(N), with N arbitrary, as the technicolor group and assign n massless Dirac 

technifermions to the N fundamental gauge representation. We assume that left- and right- 

handed technifermions are respectively weak doublets and singlets. Finally, m of the n 

technifermions are SU(3)-color triplets. The hypercharge (Y) assignment is chosen to guar- 

antee anomaly cancellation. In particular, this implies Tr Y = 0, where the trace is taken 

over the techifermions. In the following, for illustrative purposes, we will often refer to the 

popular “one-family” model [4], which corresponds to n = 8, m = 2. (In the literature, the 

“one-doublet” model, with n = 2 and m = 0, is also occasionally considered.) 

In the absence of any direct experimental information on the structure of technic&r, N, 

n, and m are left arbitrary. However; we can infer the constraint n < YN by requiring that 

the running of the technic&r coupling constant 

(2.1) 

leads to an asymptotically free theory. In addition, the constraints m < 10, n < 20 must be 

imposed if one requires that the asymptotic freedom of SU(3) and SU(2) forces is preserved 

after the introduction of the technifermions. 

Using the l/N expansion [5], one can scale from QCD to estimate the technic&r scale 

Arc [3]. We find 

where we have assumed that all n/2 weak doublets develop dynamical condensates. At an 

‘For reviews, see e.g. ref.[3]. 
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energy scale below Arc, technic&r becomes confining and technifermions are bound inside 

technicolor singlets. Because of spontaneous breakdown of the approximate chiral symmetry 

(SU(n)L x SU(n)R + Su(n)v), the physical spectrum contains n* - 4 pseudo-Goldstone 

bosons, not eaten by the LV* and Z’, that are typically much lighter than the scale Arc. 

The other technimesons have masses of order the technicolor scale. A large number of 

technibaryons are also present in the theory. The mass of the lightest technibaryon (LTB) 

can be estimated by resealing the mass of the proton (mp) with the help of the l/N expansion 

[51: 

ill 
N ATC 

LTB = y&&m, = (2.3) 

The LTB has spin l/2 (0) if N is odd (even). For the one-family model, it has been predicted 

[6] that the LTB has electric charge * v (&+) and weak isospin l/2 (0) for N odd (even). 

We note that the requirement of asymptotic freedom, n < YN, yields a lower bound on the 

LTB mass, MLTB > 0.8 TeV. 

Here we are interested in the cosmological fate of technicolor particles. As the tempera- 

ture of the Universe drops, technimesons will annihilate away, and technibaryons will rapidly 

decay into the LTB. If technibaryon (TB) number is conserved, then the LTB is stable, and 

a relic density of technicolor particles produced in the early Universe could have survived 

until the present. 

TB number is conserved by technicolor and standard interactions. However, we know 

that new forces - extended technicolor (ETC) [7] - must be introduced in order to generate 

quark and lepton masses. ETC interactions, which explicitly violate technifermion chiral 

symmetry, will contribute to the masses of the pseudo-Goldstone bosons, thus explaining 

why these particles have not yet been observed in collider experiments. Does ETC violate 

TB number? Unfortunately, because of the serious difficulties involved in building a phe- 

nomenologically consistent picture of ETC, there exists no compelling model to which this 

question can be addressed. However, if fermions and technifermions are assigned only to 

fundamental representations of ETCt, TB number is conserved. In fact, in this case, TB 

number is carried also by the ETC gauge bosons which couple fermions to technifermions. 

It is straightforward to show that this quantum number is conserved in cubic and quartic 

gauge boson couplings. If higher dimensional ETC representations are allowed, the existence 

‘This is the generally considered case in which the ETC group SU(N + r) breaks down 
to ST(N) technicolor and each fundamental representation of ETC splits into one tech- 
nifermion and r ordinary fermions. If F > 1, F can play the role of a generation index. 
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of a conserved TB number is a model dependent issue. Nevertheless, barring the possibility 

of exotic ETC structures, it is reasonable to assume that the LTB is stable under ETC 

interactions*. Finally, some GUT-scale interactions could violate TB. However, since these 

forces are expected to be very feeble at the scale A TC, the resulting LTB lifetime, like that 

of the proton, would be much longer than the age of the Universe. For our purposes, such a 

particle is effectively stable. 

It is also worth noting that more than one technibaryon can be stable if, in addition to 

a conserved TB number, the technicolor model is invariant under some accidental global 

symmetries (like baryon and lepton number in the standard model). 

As for ordinary baryons, the relic density of technicolor particles may be fixed by a 

nonvanishing TB cosmic asymmetry, ~TB. In the absence of either a complete theory or 

observational evidence, not much can be said about the actual value of ~TB. However, if the 

LTB is stable, VTB must be smaller than the baryon asymmetry (7~) by at least an order of 

magnitude, in order for the present LTB energy density to satisfy the cosmological bound 

RLTB~’ < 1. It is interesting to note [9] that, if ~TB is indeed not much smaller than ~a, relic 

technicolor particles can account for the dark matter in galaxy halos, providing a natural 

explanation for the observed density ratio between the luminous and dark components of 

the Universe. 

In the next sections, we will consider the possibility that technicolor particles have sur- 

vived the early stage of the Universe not in the form of technibaryons, but in a different 

form of bound matter: technicolor nuggets. 

III. Technicolor Matter 

We now consider whether the ground state of technicolor might consist not of isolated 

technibaryons but, instead, of large technifermion nuggets. This idea is analogous to the 

proposal [lo] that strange quark matters may be the stable ground state of the hadrons. In 

this section, we investigate the zero temperature limit; the finite temperature case will be 

discussed in the next section. 

We will consider the MIT bag [12]” as a model for technihadron structure. Because of 

‘The cosmology of unstable LTBs has been considered in ref.[8]. 
SFor reviews, see ref. [ll]. 
nFor reviews, see ref.[13]. 
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the uncertainties of this model, the non-perturbative nature of the problem, and the la& 

of a unique technicolor theory, our considerations are necessarily approximate. However, in 

order to bolster confidence in the model, we also apply our simplified version of the bag 

model to the case of &CD, where a comparison with experimental observations is possible, 

and find plausible results. 

We first estimate the energy per TB number of a technicolor nugget in the limit of 

infinite TB number (bulk techni-matter). A sufficiently large nugget can be viewed as a 

degenerate Fermi gas of technifermions, and surface effects can be neglected. Inside the 

nugget, chemical equilibrium among the different species of technifermions is maintained 

by color, electroweak, a,nd ETC interactions. Ordinary quarks and leptons, although not 

trapped inside the nugget, participate in the reactions that establish equilibrium much in 

the same way that neutrinos help maintain chemical equilibrium between up- and down- 

type quarks in strange matter[l4]. In particular, ETC gauge bosons, which couple ordinary 

fermions (f) to technifermions (F), mediate processes like Ff’ tt F’f as well as four- 

technifermion interactions. Therefore, we can assign a unique chemical potential Jo. = p to 

all species a of technifermions confined inside the nugget. 

The picture above must be modified if technifermions carry extra conserved quantum 

numbers ari&g from accidental global symmetries of the model. In that case, there is an 

independent chemical potential corresponding to each conserved quantum number. A nugget 

is then specified by the total value of each of the conserved quantum numbers, in addition 

to its total TB number. In the following, we will not consider this possibility, and focus 

instead on the simplest case of a single chemical potential corresponding to TB number. 

We note that, in the “one-family” model, the total TB number is sufficient to specify the 

system, even if ETC conserves baryon and lepton number. For this model, because of the 

interactions with quarks and leptons, baryon and lepton number can flow out of the nugget, 

and chemical equilibrium among all species of technifermions is maintained. 

If all technifermions are massless and carry the same chemical potential IL, the anomaly- 

free condition on the hypercharge (TTY = 0) g uarantees that the total electric charge of 

the nugget is zero. Therefore, we can neglect the effect of Coulomb energy in our treatment 

of the bulk techni-matter. (For finite nuggets, the charge may play an important role 

astrophysically and experimentally; see Sec. VI.) 
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At zero temperature, the thermodynamic potential to first order in QQ-C is given by [15]: 

(3.1) 

The sum in eqn(3.1) runs over all species of massless technifermions. Here, D., is the 

dimension of the technicolor fermion representation (Da = N), pG is the technifermion 

chemical potential of species a, and C is the quadratic Casimir in the adjoint representation, 

C = $$. The energy density is given by 

e=cl+ c pana + B , (3.2) 
a 

where B is the vacuum energy density (the technicolor bag constant) which describes the 

confining properties of technicolor interactions. In eqn.(3.2), 7~. is the number density of 

each species: 
an 

71,=--. 
ah 

(3.3) 

For technifermions in the fundamental representation, the TB number density is given by: 

TQ-B = - ;-&. 

n 

(3.4) 

The technifermion chemical potential p can be computed by minimizing the energy per TB 

number: 
a E 

acl ( > 
- =o. 
nTB 

(3.5) 

Substituting the value of p found from eqn.(3.5) into eqns.(3.2), (3.4) we obtain the energy 

per TB number of the nugget: 

12irZN3 

1 - w,TC 
(34 

where n is the number of technifermion flavors. 

~To determine whether nuggets have lower energy per TB number than technibaryons, 

eqn.(3.6) must be compared with the mass of the LTB. We therefore now compute the mass 

of LTB as a function of B and CYTC, using the MIT bag model [12]. 
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In the MIT bag model, the energy of the (techni)baryon is expressed as a function of 

the bag radius R as 

E(R) = +?R3 + G + 2 - TW. (3.7) 

The first term in eqn.(3.7) corresponds to the volume energy of the bag and mimics the 

confining potential of technic&r. The second term is the kinetic energy of the N constituent 

technifermions. For massless technifermions in the fundamental cavity mode, + = 2.04 [12]. 

The third term (Zo) represents the zero-point energy; in QCD bag models, it is usually taken 

as a free parameter, determined by fitting the known hadron mass spectrum. The reason for 

this is that, when computed for a spherical bag, Z, is found to be divergent [16], and the 

necessary renormalization makes it completely arbitrary. For now we assume that Z, can 

be neglected, and will return later to this question. Finally, the last term in eqn.(3.7) gives 

the technichromo- electrostatic and magnetostatic energy due to one-technigluon exchange. 

This represents a short-distance effect and can be computed perturbatively in arc, because 

of the asymptotic freedom of technic&r theories. In appendix A, we evaluate this term and 

find, for the LTB: 

W = 0.176 
( > 

1 + $ [3N - 4s(s + l)] , (3.8) 

where 3 is the spin of the LTB (s=O if N is even, s=1/2 if N is odd) 

The mass of the technibaryon is determined by minimizing E(R) as a function of R, with 

the result: 

MLTB = 4 [+N + Z, - aTC bv] va (4?rB)‘/4 (3.9) 

In fig.1, we plot (solid lines) the difference between n/fr,~~ [eqn.(3.9)] and E/~TB [eqn.(3.6)] 

in units of MLTB, for the case Zo = 0. This ratio is independent of B and also independent of 

N to leading order in the l/N expansion; it grows with n, i.e., for large flavor symmetries. In 

Fig.1 we have set n = 8 (“one-family” model) and show results for several phenomenologically 

plausible values of (YTC (inside the bag). For consistency with the l/N expansion, we define 

~~~ = a,v/N and keep QN fixed as N varies. To get a refined estimate, in Appendix B 

we calculate the “center of mass” corrections [17] to MLTB; using these corrections yields 

the results given by the dashed lines in fig.1. In the case of QCD (N = 3), as discussed in 

Appendix B, this correction corresponds to taking an effective value of Z. which is roughly 

compatible with the one derived from fitting the hadronic mass spectrum. 

To get an idea of the uncertainties involved in neglecting Z, in eqn.(3.9), we can use the 
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expression for the regularized zero-point energy of a spherical cavity derived by Milton [16], 

1 , (3.10) 

In this case, since MZO is positive and grows like N2, the nuggets are further energetically 

favored for large N. 

Using the estimate of nJr,TO from the l/N expansion given in eqn.(2.2), in fig.2 we plot 

the energy difference fifLTs - E/nTB as a function of N, again for 1z = 8. As above, we show 

results both with (dashed curves) and without (solid curves) the “center of mass” corrections, 

assuming Z0 = 0. 

If we apply these estimates to QCD (N = 3), we find the encouraging result that, for 

(x, > 0.7 (Zo = 0) or cam > 0.8 (Z. = nrZo), the lightest baryons are stable with respect 

to two-flavor quark matter (n = 2), but strange matter (n = 3) is energetically favored in 

the massless strange quark limit. In technic&r, the (approximate) large flavor symmetry 

generally present in semi-realistic models tends to favor the stability of technifermion nuggets 

with respect to technihadrons. 

The results shown in figs. 1, 2 suggest that, for a plausible range of parameters, techni- 

nuggets rather than technibaryons constitute the true ground state of technic&r. Although 

these estimates contain large uncertainties, the qualitative trend is clear, and we are suffi- 

ciently encouraged to consider the fate of nuggets at finite temperature in the early universe. 

IV. Nugget Formation: the Techni-confinement Transition 

In this section, we discuss the transition from the technifermion-gluon plasma to confined 

technihadrons in the early Universe, using the bag model developed above. During and soon 

after this transition, stable techni-nuggets may have formed and possibly survive as relics 

today. 

Investigations of lattice QCD indicate that the color confinement and/or chiral symmetry 

breaking transition is first-order, although the issue is not firmly settledll. In addition, 

analytic arguments (see, e.g., ref.[20]) suggest that, in absence of fermions, the W(N) 

transition is first order for all N 2 3, and we will therefore assume the technic&r phase 

IfFor a recent discussion, see ref.[19] and references therein. 
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transition is first order as well. We make this assumption primarily for simplicity, and 

because it provides a framework for the discussion of nugget formation via the “separation 

of cosmic phases” scenario discussed by Witten for strange matter [IO]. We can, however, 

easily envision scenarios in which nuggets form in a second order phase transition instead. 

The order of the transition also has little impact on the subsequent evolution of nuggets once 

they are born. 

Our picture of the transition epoch is the following. At high temperatures in the early 

Universe (T > 100 GeV, t < 10-r’ set), technic&r is unconfined. In this phase, technic&r 

is carried by a thermal plasma of relativistic technifermions and technigluons. As the Uni- 

verse expands, the temperature drops through the coexistence temperature, T., below which 

the confined hadron phase is thermodynamically preferred. In a first order transition, the 

Universe initially remains in the unconfined phase, supercooling below T, until the probabil- 

ity to nucleate technihadron bubbles becomes large. Once the nucleation rate is appreciable, 

the latent heat released by the first bubbles reheats the Universe to the coexistence tem- 

perature, whence further nucleation is suppressed. At T,, the fermion-gluon plasma exists 

in pressure and possibly chemical equilibrium with the confined phase. In this coexistence 

epoch, the hadron bubbles grow into the unconfined phase; although the Universe is expand- 

ing, the temperature is fixed at T, by the continuing release of latent heat by the growing 

bubbles. Eventually the hadron regions coalesce and percolate, and the unconfined phase 

regions shrink away. When the volume of remaining unconfined phase becomes small, the 

latent heat release is no longer sufficient to keep the Universe at T,, and it begins to cool 

once again. 

Whether and how technic&r nuggets arise depends upon the details of transport pro- 

cesses during the coexistence epoch. In this era, in chemical equilibrium the relative tech- 

nibaryon number density will be higher in the unconfined phase than in the hadron phase, 

because TB number is carried by lighter species there (nearly massless fermions as opposed 

to heavy technibaryons). If the transport of TB number across the phase boundary sepa- 

rating confined and unconfined regions is not fast enough to maintain chemical equilibrium, 

the TB number density excess in the fermion-gluon plasma will grow as these regions shrink. 

As a result, the chemical potential p in the unconfined phase builds up to a value of order 

T,. Once this occurs, the fermion-gluon regions have become a relatively ‘cold’, low-entropy 

phase. From this point onward, the degeneracy pressure of the fermions becomes dynamically 

important and eventually stabilizes the shrinking bubbles against further demise. Qualita- 

tively, as p/T increases in the unconfined phase, the effective coexistence temperature drops 
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to zero [IO]. Unfortunately, as with QCD, our understanding of technibaryon number trans- 

port across the phase boundary, and of the dynamics of bubble nucleation and growth, 

is insufficient to make firm predictions about the spectrum of nuggets produced. Instead 

we shall make approximate estimates which demonstrate the plausibility of forming large 

nuggets. In the next section we discuss under what conditions nuggets are expected to 

survive. 

To study the dynamics of the confinement transition in more detail, we first need to 

calculate the coexistence temperature T,. For the fermion-gluon phase, the thermodynamic 

potential can be written 

Rf, = - c & gT4 + 29p:T’ + p; 
> 

- ;(NY - 1)T4 , (4.1) 
D 

where the second term is the gluon contribution. For simplicity, we have made the ideal gas 

approximation, ignoring O(oTc) corrections; we shall similarly neglect interactions in the 

confined phase below. This expression then reduces to Eqn(3.1) in the limit T -t 0. In 

this section, we will be primarily interested in the opposite limit, pa/T < 1. In Eqn.(4.1), 

we have ignored the contribution from ordinary, technicolor-blind particles (e.g., photons 

and leptons), because they contribute equally to both phases. In terms of R, the pressure, 

entropy density, and energy density are given by: 

, ‘Is = -pfs + Tsfs + c pans , (4.2) 
P m 

where n, is defined by Eqn.(3.3). Here, BT is the energy density of the unconfined phase at 

finite temperature, and may differ from the eero temperature bag constant B. In numerical 

estimates below, we shall assume ET = B, but we use this notation to make clear how things 

depend on the different variables. 

In the confined techni-hadron phase, the dominant contribution to the thermodynamic 

potential comes from the light techni-meson degrees of freedom. Analogously to chiral- 

symmetric &CD, there are n2 - 4 pseudo-Nambu-Goldstone modes; although they will get 

small masses, we assume these satisfy m 5 T,. In addition, there will be a contribution from 

the technibaryon multiplets, but this is exponentially suppressed for ikf~~n > T,; since this 

condition is satisfied, as we show below, we can ignore the technibaryon contribution to $2 

to good approximation. In addition, we can assume p < T in the confined phase, so the 
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thermodynamic potential and pressure in this case are simply 

2 
%I = -ph = ---(“2 _ 4)T4 I 

The coexistence temperature is defined implicitly by pf,(T.) = p,,(T,). Using Eqns.(4.1- 

4.3), we find 

180& 

> 

114 
T, = 

n2[4 + (4N - n)(N + 2n)] 

As an example, for n = 8, as N increases from 3 to 15, Tc/B;‘4 drops from about 0.69 to 

0.33. To get a numerical estimate for T,, as before we fix the bag constant ET = B by fitting 

the bag model estimate for ~WLTB, Eqn.(3.9), to the l/N estimate of Eqn.(2.2). The result 

is shown in Fig.3, which shows the coexistence temperature in GeV as a function of N, for 

different values of a~; as in Figs.1 and 2, we have set 2, = 0, and show results both with 

(dashed curves) and without (solid curves) the “center of mass” correction. If we instead set 

Z0 = MZ,, using Eqn.(3.10), the curves in Fig.3 changes almost imperceptibly. 

To qualitatively verify the self-consistency of not including the technibaryons in a,,, in 

Fig.4 we show the ratio MLTB/T~ as a function of N. Since this ratio varies roughly between 

15 and 100, the Boltzmann factor exp(-M LTB/T~) strongly suppresses the technibaryon 

contribution, even if the lightest technibaryon state is highly degenerate. 

For nuggets to form, and in order for most of the technibaryon number of the Universe 

to be carried by nuggets, the TB number must become concentrated in the unconfined 

plasma phase during the coexistence epoch. An estimate of this concentration is found by 

assuming chemical equilibrium between the two phases; this corresponds to the case of rapid 

TB number transport across the phase boundary. From Eqns.(3.3), (3.4), and (4.1), the 

technibaryon number density in the unconfined phase is, to lowest order in p/T, 

n&J* = fT3 (y) (;) , (4.5) 

where we have used the fact that the technifermion and technibaryon chemical potentials 

are related by pL. = ~TB/N. ‘In the, hadron phase, the TB number density is 

312 h 7lTB = A !!??,(WhdT) 
T 

Here, the coefficient A counts the number of ‘light’ technibaryons times their degrees of 

freedom. If we neglect mass splittings due to the other interactions besides technicolor and 
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due to technifermion current masses, the lightest technibaryon state belongs to a degenerate 

flavor SV(n) multiplet, with 

A= z(n+$-l)!(n+f-2)! 

(n-l)!(n-z)!($)!(;+l)! (Neven) 

8 (n + V)! (n + V)! 
A = (n - lyyn - 2)! (!y)! (2+)! CN Odd) 

(4.7a) 

(4.7b) 

The equilibrium technibaryon number density ratio in the two phases is then given by 

In Fig.5, we plot R(T,) for the case n = 8. Since the coexistence temperature T, falls 

roughly like N-s/’ for large N, the ratio R(T,) rises exponentially with N. This dramatic 

increase occurs despit.e the fact that the number of light technibaryon degrees of freedom 

A rises sharply with N. Consequently, even for moderate values of N, the technibaryon 

number of the Universe may be highly concentrated in the unconfined plasma phase during 

the coexistence epoch. Thus, if the shrinking plasma bubbles decouple and reach Fermi 

degeneracy before they disappear, a very high fraction of the TB number may end up in 

nuggets. By comparison, the baryon number contrast contemplated in the QCD transition 

is rather modest, &CD 5 few 100; this is consistent with Eqx(4.8) evaluated for N = 3 

and n = 2 or 3. 

In actuality, the assumption of chemical equilibrium above yields a lower limit on the TB 

number contrast R between the unconfined and confined phases. If TB number transport 

across the phase boundary is inhibited, so that chemical equilibrium is not maintained, 

then the technibaryon number will be trapped in the unconfined phase as the moving phase 

boundary sweeps it into the shrinking plasma regions. In this case, the contrast R will be 

increased over Eqn.(4.8) by the ratio of TB chemical potentials in the two phases, ~i~/&~. 

We can estimate an upper bound on the TB transport rate from the unconfined to the 

confined phase, using the phase space argument of Fuller, Mathews, and Alcock [21]. 

~The total rate of technifermion recombination into both technibaryons and antibaryons 

at the phase boundary is 

A = ~TFG-F, (4.9) 
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where fTF is the net flux of technifermions and C TF is the probability of combining N 

technifermions at the boundary into a technicolor singlet. We can write &F = PN&~, 

where C,, 5 1 is the technifermion transmission probability through the phase boundary, 

and PN is the probability of finding N technifermions (of the right quantum numbers to make 

a singlet technibaryon) in a volume equal to the size of the LTB. By Poisson statistics, the 

probability of finding one technifermion in such a volume is just Nbt = Q~VLTB, where 

the average technifermion density (for each species) is ntf = ; = ‘qT:, ((3) = 1.202..., and 

V,,TB is the volume of the LTD. From the discussion of Section III, we easily find MLTB = 

$rRs(4B), so that the LTB volume is just VLTB = IWLTB/~B. Thus, the recombination rate 

is &F = n$&f, or using Eqn.(4.4), 

: 

N 1 
3N/4 

CTF = (0.86)” 
4 + (4N - n)(N + 2n) Et’ (4.10) 

In Eqn.(4.10), for simplicity we have set a=~ = 20 = 0 in expression (3.9) for the LTB mass. 

Using &F from Eqx(4.10) and the technifermion flux f=~ N F in Eqn.(4.8) yields the 

total recombination rate A. 

The net TB number transport rate across the boundary (the TB number per unit time 

per unit area passed by the wall) is 

ATB = M(C) , (4.11) 

where t ‘v /LTB/T is the fractional excess of technifermions over antifermions in the uncon- 

fined phase. This is to be compared to the rate at which the wall encounters TB number as 

it moves into the unconfined region, 

(4.12) 

where ngB is given by Eqn.(4.5) and upb is the speed of the phase boundary. The fraction 

of TB number filtered through the boundary as it moves past a given volume of unconfined 

phase is then 
ATB FE-.- 
k-B 

N 7. 10-aNZ C!f’F -. 
%b 

(4.13) 

If the filter factor F < 1, then the TB transport across the boundary is suppressed, and 

the TB concentration in the unconfined phase is expected to be large. From Eqns.(4.10) 

and (4.13), we see that F depends upon the technifermion transmission probability C,, and 



-14- FERMILAB-Pub-90/95-T 

the phase boundary speed up*. In addition, F drops steeply with increasing N, since the 

probability of finding the large number of technifermions required to make a technibaryon 

in a small enough volume is phase-space suppressed. Thus, at large IV, TB transport is 

inefficient even if the transmission probability Ctf is of order unity. For example, for n = 8 

and ~r=b = 0.1, we find F/C,, N 2 x 10M3, 9 x 10s5, 3 x lo-s, 1 x lo-‘, 9 x IO-‘I, and 6 x lo-l4 

for N = 3,4,5,6,8, and 10. Furthermore, since nuggets are stable at low temperature, the 

transmission probability C,, should be suppressed by a factor of order T,/( ML~B - c/~TB); 

that is, the thermal energy of the technifermions must be comparable to the energy gap for 

them to pass through the boundary. From Fig.4, this leads to a further decrease in F by an 

order of magnitude or two. 

From the preceding discussion, we conclude that, even for moderate values of N, the TB 

number of the Universe is essentially completely trapped inside the shrinking unconfined 

regions at the coexistence epoch. We therefore assume that techni-nugget formation takes 

place. Although we cannot predict in detail the size or mass distribution of the nuggets 

produced, we can get a rough estimate of the characteristic expected nugget size from the 

following argument ** . 

At the end of the initial nucleation phase, when the Universe has been reheated to T,, the 

technihadron bubbles have a characteristic mean separation T. Subsequently, these bubbles 

expand and, soon after they percolate, the Universe will contain finite fermion-gluon bubbles 

with approximately the same characteristic separation. From this ‘duality’ argument, we find 

the expected size (and separation) of the proto-nugget regions to be [21] 

(4.14) 

Here, (T is the surface tension of the phase boundary, t is the cosmic time, and L = 4Br 

is the latent heat of the transition. In the absence of experimental data on the spectrum 

of technihadron excitations, the surface tension of the bag is largely unconstrained. On 

dimensional grounds, we expect &I3 - B'14. Defining r0 E c~/~/B~/~, we have 

where the second factor on the right hand side, given by Eqn.(4.4), is between 1.2 and 1.7 

(for n = 8 and 3 5 N 5 15). The characteristic size 1‘ depends sensitively on the unknown 

“We thank Charles Alcock for pointing out this estimate. 
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surface tension. If there are no small parameters in the theory, we expect +yc 2 0.1, in which 

case we obtain ~/t > 10e6; we will use this as a rough lower bound on the proto-nugget size. 

In &CD, typical recent estimates of the surface tension are in the range [14,25] u113 N 50-70 

MeV, corresponding to ye z $ - i. (An independent argument that y. is not much smaller 

than unity comes from lattice simulations: if r0 < 1, the bubble nucleation probability is so 

large that the phase transition is effectively second order (with no supercooling), in contrast 

with the numerical results for QCD.) 

We expect a proto-nugget region to have a typical TB number NGB - n=~(T,)r~ when 

it begins to shrink; here, n~8 is the mean TB density at the coexistence epoch, given by 

Eqn.(4.5). The TB number will be effectively trapped inside if Fij(At/~) < 1, where F 

is the filter factor of Eqn.(4.13), v is a typical thermal technifermion speed of order unity, 

and At is the duration of the phase transition. We expect At w t,, the Hubble time at the 

coexistence temperature. From the estimates of F and the lower bound on r/t given above, 

this inequality is satisfied for N > 4. Consequently, the proto-nugget retains its initial TB 

number, 

N;* cz 3 x (4.16) 

where &-B is the fraction of critical density contributed by technibaryons. We expect the 

distribution of nugget TB numbers to be peaked about this value. From Fig.3, for moderate 

values of N we find typically T, z 50 GeV, so that ct, 2 3 cm; from the lower bound on r/t 

above, this yields T 2 3 x 10m5 cm and NGB > 6 x 10”. Thus the characteristic nugget mass 

is M ,,YBBct 2 100 gm. In the next section, we consider the evolution of condensed nuggets 

subsequent to the coexistence epoch. 

V. Cosmic Evolution of Technicolor Nuggets 

Armed with our heuristic understanding of techni-nugget formation, we now ask whether 

nuggets formed at the confinement transition could have survived to the present. Indeed, 

in the case of strange quark matter, it has been shown that all causally formed lumps 

would rapidly evaporate [22] or boil 1231 away. Although stable at zero temperature, strange 

nuggets are not thermodynamically preferred at temperatures comparable to T,, because 

they are states of low entropy (and thus high free energy). In quantitative terms, strange 

nuggets disappear because their binding energy per baryon number is less than (or at most 

comparable to) the critical temperature Z’.. On the other hand, the relative binding energy 
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of technimatter nuggets can be quite large; comparison of Figs. 2 and 5 shows the binding 

energy is generally much larger than Z’,, especially for large N. 

Our task is to find under what conditions technicolor nuggets survive. Once a nugget 

is formed, its fate is determined by the competition between accretion and evaporation of 

technibaryons. [22,24] (It is easy to show that nugget-nugget interactions are unimportant, 

i.e., much slower than the expansion rate, for nuggets with TB number larger than a few 

thousand.) For a nugget of total TB number NT~, the cross-section for absorption of a 

technibaryon can be written, 

6, = ~K~TBR(NTB)’ = ‘hfT8 (5.1) 

Here, fTB(s 1) is the technibaryon absorption efficiency, which we expect to be of order 

unity, and R(NT~) is the nugget radius. The parameter p is also of order unity, and is given 

by 

P= 3M&(l - A) 

167rB 

where 

A? 
MLTB - +TB 

MLTW 
(5.3) 

is the nugget binding energy per TB number plotted in Fig.1. For example, for n = 8, 

fl(N = 3) ranges between 4.6 and 6.5 as the value of a~ is varied. As N increases, 8 shows 

a slow monotonic rise, reaching a value of about 31 for N = 15. 

From detailed balance arguments, the net evolution rate for a lump of TB number N=n 

is 

dNTB -= 
dt 

where the first term is due to absorption and the second is from evaporation. In writing (5.4), 

we have assumed the lump is kept in good thermal contact (temperature equilibrium) with 

the environment; we have also assumed the immediate exterior of the lump is sufficiently 

dilute that the flow of technibaryons into or out of the nugget is not inhibited. 

We now define j as the fraction of the total TB number of the Universe in the nugget 

phase, so the number density of light technibaryons is 

WTB(T) = (1 - j)VT@$ . (5.5) 
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Here, ~TB is the net technibaryon asymmetry (technibaryon to photon ratio), and n? = 

2.4T3/7rZ is the photon number density. If nugget formation is very efficient, as envisioned 

in Section IV, then j can be very close to 1 (j % 1 - R-l, where R is shown in Fig.5). It 

is convenient to introduce a dimensionless temperature (or time) variable, z c MLTB/T, in 

terms of which the nugget evolution equation can be written 

- = -‘N;‘,” [l.g%JTB(l - ‘j)d’ - ,-‘=I . (5.6) 

Here, we have used the temperature-time relationship for a radiation-dominated Universe, 

and 9. is the effective number of relativistic degrees of freedom. 

In the evolution of a lump, there are generally three important epochs: a) the formation 

epoch, 5, = MLTB/T~; b) the ‘turn-around’ era, zt = iM LTB/T~, which marks the transition 

from an early evaporation to a later accretion phase, and is defined by (dNTB/dz),, = 0; 

and c) the freeze-out epoch, ZF = 111 LTB/TF, when the nugget evolution rate falls below the 

expansion rate H = l/2, i.e., (~I?TBI/NTBH),, = 1. Only lumps large enough to survive 

up to IF or zt are present today. The formation parameter I, was shown in Fig.4, while the 

turn-around epoch is defined implicitly by 

ln[1.92vTB(l - j)] = 1.51nz, - AZ, (5.7) 

For~~~(l-j) = lo-“, which corresponds approximately to QLTB~* = 1 ifj is not extremely 

close to 1, we find that zt varies between about 90 (for A = 0.3) and 60 (for A = 0.54). 

As one would expect, nuggets with larger binding energy (larger A) evaporate for a shorter 

time. Moreover, since the formation parameter 5, increases with N, for sufficiently large 

N we find that z, > zt. In this case, nuggets formed at the coexistence epoch undergo no 

evaporation at all, and either accrete immediately or are born ‘frozen out.’ For simplicity, 

first consider the case UN = 0 with no “center of mass” correction; in this case, Fig.1 shows 

that A = 0.54, independent of N. From above, we then have zI 21 60, and comparison with 

Fig.4 shows that z, > z1 for N > 10. With OIN and “center of mass” corrections included, 

the critical value N,;, above which evaporation is quenched will be slightly larger than this, 

but quite generally N,;, 5 13. Thus, for N 2 13, all lumps born in the coexistence phase 

should survive. In principle, such nuggets could actually grow by accretion before they freeze 

out. However, for these large values of N, we recall that R(T,) (Fig.5) is extremely large, of 

order 102” or more. Thus, if TB number transport is even slightly suppressed, we expect the 

fraction j of TB number initially trapped inside nuggets to be very close to one. As a result, 
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there are very few technibaryons around to absorb. (Of course, for j very close to 1, the 

value of zt increases: the evaporation phase lasts longer if there are very few technibaryons 

to accrete.) 

For N < N=;t, and generally for j very close to 1, lumps ate born evaporating or frozen- 

out. Approximately integrating Eqn.(5.6) d uring the evaporation phase (i.e., neglecting the 

accretion term), we find that the smallest nugget which survives has net TB number 

N$w(zc) N 3.6 x 10” (%y‘ (,;;“d,‘;;;J 

As advertised at the beginning of this section, N+, depends primarily on A+. = (Mars - 

E/~L=B)/Z’~, the ratio of the nugget binding energy per TB number to the coexistence tem- 

perature. In Fig.6, we plot this parameter as a function of N. With increasing N, Ax< grows 

and therefore N+B drops precipitously: for larger N, smaller nuggets can survive evapora- 

tion. For N = 3, we find NcB is between 9 x 103* and 3 x 10 40, depending on the value of (ZN 

(clearly, N+B increases with a~, since Ax, falls). For N = 6, N$B has fallen to between 10zO 

and 103”. As N approaches N,;, from below, NGB falls rapidly to zero: for N 2 10 - 12, all 

nuggets are born frozen-out and therefore survive. These numbers should be compared to 

the largest nugget which can be causally formed at T.; this is just the TB number contained 

in the particle horizon at that time, which is 

N,H,(r,) = 1.2 x lo 
38GwhZZ: 

w 
___ 

98 
(5.9) 

For N 2 4, we find N;, < NTHB, so the largest causally formed nuggets can survive. Of more 

physical interest, we can compare N.$B with NGB, the characteristic nugget charge given by 

Eqn.(4.16). Using the lower bound 7/t 2 10m5, we find N$B < NGB for N > 5 -8 (the range 
in N here again corresponds to varying CYN). 

As N increases, then, we have the following rough sequence (assuming 7~ = 8): i) for 

N i 4, all lumps smaller than the horizon evaporate away; ii) for N 2 5 - 8, small lumps (if 

formed) still disappear, but nuggets of the expected characteristic size are born frozen-out; 

iii).for N 2 10 - 12, all lumps are born frozen-out. We thus expect the majority of lumps 

to survive for N 2 5 - 8. Furthermore, if the initial nugget size distribution is peaked about 

the characteristic size [Eqn.(4.16)], these surviving lumps will carry essentially all of the TB 

number of the Universe. 
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So far, we have assumed surface evaporation is the dominant decay mode for techni- 

nuggets at finite temperature. In addition, however, a techni-lump may boil away by catas- 

trophic nucleation of technihadron bubbles throughout its interior [23]. The probability of 

bubble nucleation is very sensitive to the surface tension of the bubble wall, CT. Generally, 

if CY is greater than a critical value bC,it, then the free energy associated with the bub- 

bles is sufficiently large that boiling is unimportant. From Section VI of ref.[24], we find 

cr&zc)/Mb=~ < lOA2 for all N > 3. Therefore, if yC = u1/3/B1/4 2 10-l, we always have 

c > ~rrit, and boiling may be safely ignored. 

In the preceding discussion, the technibaryon number of the forming and evolving nuggets 

was a function of the cosmic Z’B number asymmetry 73~~. For ~TB cz lo-“, the mass density 

of technibaryons (either free or in lumps) is comparable to the critical density for a spatially 

flat Universe. What happens if there is no TB asymmetry, or if it is much smaller than IO-“? 

The discussion of TB number transport given in Section IV would go through essentially 

unchanged, because the chemical potential drops out of the filter factor F [Eqn.(4.13)]. 

Thus, we expect to form proto-nugget regions of the same characteristic size T, given by 

Eqn.(4.14), and they will trap the enclosed TB number. In this case, however, the net TB 

number in a contracting proto-nugget arises from random Poisson fluctuations instead of a 

cosmic asymmetry: 

fiGw z N;/‘(r) N (ntf~3)1’2 , (5.10) 

where ntf w 2’2 is the technifermion density. Since the proto-nugget number density is of 

order ILL N l/rs, the energy density in lumps is 

fir. N_ N&nLMLTB w l’z/2M~~p-3’= . (5.11) 

Using our previous estimates of T, N_ 50 GeV, M LTB 2 1 TeV, and T 2 10-s& N lo-’ 

cm, we find that these lumps contribute at most fin = 10-s to the energy density of the 

Universe today. Thus, nuggets formed from TB number fluctuations, as opposed to a cosmic 

asymmetry, are not cosmologically interesting. (Nuggets formed from fluctuations could close 

the Universe if the proto-nugget size distribution is relatively flat down to a scale of order 

lo-% N 10-9t,. However, they would have a rather small TB number, NTB N 10”; they 

would only survive if N 2 8 - 9, and would possibly contravene observational constraints 

(Sec. VI) if they carry electric charge.) 
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VI. Astrophysical and Experimental Constraints 

What are the observable consequences of technicolor nuggets? The phenomenology of 

techni-lumps depends primarily on two factors: their electric charge and their size (or mass) 

distribution. In general, the technifermion density in a nugget will not be the same for 

all species. Consequently, nuggets smaller than the Compton wavelength of the electron or 

proton may be charged; by analogy with strange matter 1141, we expect the charge to scale 

with the TB number of the nugget as Q N N$ for large NTBtt. Unlike nuclei, here the 

Coulomb energy becomes less important as NTB increases, &/NTB N Q*/RNT~ N N;i'3, 

and large nuggets are stable against fission. Although structurally irrelevant, the electric 

charge strongly boosts the interaction rate of a nugget with ordinary matter. 

As with baryons, the lightest technibaryon is likely to be charged [6]. Charged particles 

with masses of order a few TeV are strongly excluded on experimental and astrophysical 

grounds as the dominant component of the galactic halo [6,26]. Obviously, similar arguments 

rule out charged nuggets with small TB number (although, as shown in the previous sections, 

very small nuggets are unlikely either to have formed or to have survived the early Universe). 

If the dark matter is to be made of technicolor particles, it must be hidden in relatively large 

lumps. Such a scenario is perfectly natural from the considerations of the preceding sections: 

for N 2 5 - 8, we found that, to 1 part in R(T,)-' ( see Fig.5), the entire TB number of 

the Universe would be concentrated in lumps of characteristic size NGB [Eqn.(4.16)]. We 

therefore assume that no isolated technibaryons are present today and place lower bounds 

on the mass (or TB number) of nuggets, assuming they form the dark matter in the galactic 

halo. 

We first consider techni-nuggets carrying positive electric charge (in the absence of elec- 

trons to neutralize them). As far as their interactions with ordinary matter are concerned, 

there are two regimes to distinguish: nuggets smaller than or larger than the Bohr ra- 

dius, z-6 = l/m.a N 5 x lo-* cm, corresonding to lump TB number smaller or larger than 

N$B N IO*‘. Hereafter, we distinguish these two classes by the technical terms ‘smalI’ and 

‘large’ nuggets. A large nugget, with NTB > NkB, is neutralized by an electron cloud spread 

throughout its interior. Its interaction cross-section with matter is roughly geometric, i.e., 

“By a simple energetics argument, the chemical potentials of the different technifermion 

species always adjust so that the nugget charge grows no faster than Q m &?. If this limit 
is saturated, the Coulomb energy may reduce the binding energy of bulk technimatter 
somewhat. 
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just its effective cross-sectional area 6, N xR~(NTB), given by Eqn.(5.1) with fTB = 1. 

From the discussion following Eqn.(4.16), we note that NC, 2 N;B, so that nuggets of 

the characteristic size produced at the confinement transition are ‘large’ and approximately 

neutral. 

A large nugget with speed zr loses energy at a rate [27] 

dE 

xi-= 
-u,pv2 : 

where p is the density of the scattering medium. The characteristic stopping distance of 

a lump of mass ML = NTB(~/~TB) w NT~MLTD is then pL. = ML/CT= Y MiTBN;g N 

lO”N$ gm/cm* for a iump with NT~ 2 lo’* (hf, > 20 gm). Since the column density 

of the Earth is only 10” gm/cm’, such large lumps pass freely through our planet. For 

neutron stars, the column density is of order 2p ,,uc&. N 5 x 10” gm/cm’, so nuggets with 

TB number NTB 5 lo*’ (or mass ilf~ 5 2 x lo5 gm) will be stopped inside them. Since 

NGB N 5 x IO= - 6 x 103’ (for 1O-5 < (T/&) < I), it is possible that nuggets of the 

characteristic size are captured by neutron stars. Nowever, as we show below, for nuggets 

this massive, the total nugget mass condensed with the protostellar cloud that eventually 

forms a neutron star is negligible. In addition, the total mass captured from the galaxy halo 

over the lifetime of an old neutron star is only of order 10” gm, independent of NTB. As a 

result, neutron stars and other astrophysical bodies are not in danger of disruption by large 

nuggets. As will be clear from the discussion below, large nuggets also easily evade current 

limits from terrestrial and spaceborne detectors, so we turn now to consider small lumps. 

Small nuggets, with TB number NTB << NkB and size R < ~b, are surrounded by an 

electron cloud much like ordinary atomic nuclei. In this case, the extent of the electron shells 

(of order Tb) determines the interaction cross-section, which is therefore much larger than the 

geometric cross-section of the nugget itself. Nuggets with charge Q ( 100 (corresponding 

roughly to NOB 2 lo3 - 10’) resemble superheavy isotopes of known nuclei. Those with 

supercritical charge, Q 2 137, break down the vacuum, creating electron-positron pairs 

which screen the Coulomb field. In this case, the effective charge is of order Q.~J N- 137, the 

radius of the innermost electron shell is 7. N l/m,Q,ffa N l/me N 4 x IO-” cm, and the 

outermost orbits have radii of order the Bohr radius, ~5. For small nuggets, the energy loss 

rate due to Coulomb scattering off atomic electrons and nuclei is [28] 

1dE 1 7r2 ZQ 87~ ZQ - 
P ds Am+. e(ZV3 + QV3)1/2 + a (P/3 + QG)W > ’ (6.2) 
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where 2, A are the nuclear charge and atomic number of the scattering atom. For the 

Earth’s atmosphere, the dominant component is N14; scaling from the results of 1271, the 

range of a small nugget in the atmosphere is roughly pL, N 10e3NrsQ$:/3 gm/cm’. Note 

that this is within roughly an order of magnitude of the naive estimate obtained using the 

area of the electron cloud, aa N 4nri. The atmosphere’s column density of 10s gm/cm* stops 

lumps with NTB 5 lOs, while nuggets with NOB 5 lOi are stopped in the Earth. 

We can now, mutatis mutandis, run through the host of constraints on charged dark 

matter particles previously discussed in refs.[6,26,27,29]. For charged halo particles, the 

strongest constraints come from gamma ray and cosmic ray detectors, from galactic halo 

infall, and from the survival of neutron stars. For small nuggets, the characteristicinteraction 

cross-section with ordinary matter [Eqn.(6.2)] is approximately atomic, cr m gs N lo-is cm”. 

From the solid state cosmic ray detector aboard Pioneer 11 and plastic track detectors, a 

halo particle with this cross-section must have a mass larger than ML 2 10s - 10” GeV, 

or NOB > IO* - 10’. Lumps smaller than this are excluded from having a mass density 

comparable to the halo. 

Charged lumps in the halo lose energy by collisions as they traverse the disk of the galaxy 

and eventually fall into it. Requiring that lumps remain in the halo for a Hubble time yields 

a lower bound on the cross-section, gint 5 5 x lO-ri(M~/ TeV) cm’. For small nugget 

cross-section o N lo-is cm’, this implies that halo nuggets must have NOB 2 2 x 10s. A 

nearly identical bound arises from requiring that lumps do not collisionally ionize neutral 

molecular clouds 1301. 

An additional bound on Nrn arises from the survival of neutron stars ;26]. A protostellar 

cloud of mass M,, the progenitor of a neutron star, captures a total mass M, in nuggets 

given by [26] 

(6.3) 

where ML is the nugget mass. For a cloud of mass bfc = lo,!&, the captured mass in nuggets 

is 

r/4 N;;B MO (6.4) 

If the nuggets become self-gravitating in the core of the star, and if the captured mass 

M. is larger than the Chandrasekhar mass IMC~ for techni-matter, the neutron star will be 

swallowed up by the black hole which forms at its center. The equation of state of techni- 

matter is identical in form to that of quark matter, p = (p - 4B)/3, so the Chandrasekhar 
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mass can be found by scaling from the results for strange stars [31], 

~%/a = 2 ((145n4.,,4) -I” MO . (6.5) 

For a bag constant in the range B’14 = 80 - 160 GeV, we find 

Mch N (2 - 7) x lo-sMO (6.6) 

Comparing Eqns.(6.4) and (G.7), we find M, < MC,, for NTB > 104; neutron stars are safe 

for nuggets larger than this bound. 

Negatively charged nuggets will bind protons and? after nucleosynthesis, light nuclei. For 

nuggets with negative charge, we can repeat the arguments above, replacing the electron 

mass everywhere with the proton mass, mp. The transition from small to large nuggets now 

occurs at NTB N IO”. Small nuggets have a characteristic strong interaction cross-section, 

c N 10mz3 cm2. In this cross-section range, the strongest experimental bounds come from 

balloon-borne and underground searches for particle dark matter [29]. Roughly, one finds 

the constraint NTE > 10’ for nuggets in the halo. The astrophysical limits are less severe. 

Summarizing the experimental and astrophysical constraints, we find that positive (neg- 

ative) charged nuggets with TB number larger than lo7 (log) are observationally consistent 

candidates for the dark matter in galactic ha,los. Even taking into account the uncertainties 

involved, this lower bound is many orders of magnitude below the expected nugget size NGB. 

VII. Conclusion 

We have investigated the ground state of technicolor at finite baryon number using a 

resealed version of the iMIT bag model. Given the large number of flavors present in popular 

models, we have found that the lowest energy state is likely to be techni-matter, the analogue 

of strange quark matter, rather than individual technibaryons. We have also studied the for- 

mation of techni-nuggets in the technicolor confinement transition as well as their subsequent 

evolution. For technicolor group SU(N)T~ with N 2 5 - 8, large nuggets survive the early 

Universe and are expected to contain virtually all the TB number. Nuggets produced in the 

coexistence epoch are natural candidates for the dark matter in galaxy halos. Unless the 

nugget size distribution has a tail down to extremely small TB number, halo nuggets are 

consistent with all known experimental and astrophysical constraints. 
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Appendix A 

In this appendix, we derive expressions for the technichromo- electrostatic and magneto- 

static energy inside the bag arising from one-technigluon exchange. Following ref. [12], we 

write the exchange energy contribution as: 

AE = 2xwc cc la, d3z [@(.z) i;(z) - i;(z). i;(z)] , 
a i,j 

(A.11 

where 2: and &’ (u = 1, . . . . N2 - 1) are the technichromo- electric and magnetic fields 

generated by the ith constituent technifermion. 2: and @ are computed by solving the 

Maxwell equations in t,he presence of the technifermion currents, using appropriate boundary 

conditions on the surface of the bag. 

For massless technifermions, the total electric field L?” E xi J?F is proportional to the 

technic&r generator T” [12] and therefore vanishes for technibaryons, since they are techni- 

color singlets. Thus, the net electrostatic energy in eqn.(A.l) is zero. (We will neglect small 

contributions due to nondegeneracy of technifermion masses.) 

In the computation of the magnetostatic energy, we follow the usual prescription of 

dropping the self-energy terms (i = j), which are partly absorbed in the renormalization of 

the fermion propagator*l. In this approximation, the magnetostatic energy becomes: 

AE = -20: TC$ F 2 T,PCi. TpZj 7 (A.21 

where p is an integral over cavity wavefunctions and, for massless fermions in the fundamental 

mode, p = 0.176 (121. Tp and ?;;/2 are the technic&r and spin generators of the ith 

technifermion. 

We now want to evaluate the sum in eqn.(A.Z). S’ mce the technibaryon is a technic&r 

singlet, the technic&x wavefunction is antisymmetric and thus 

pTCpS = -ps ‘I ‘I ‘I ) (A.31 

*iFor a discussion of the magnetostatic self-energy, see ref. [18]. 
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for each pair of technifermions i, j. In eqn. (A.3), Pz”, P$ are respectively the technicolor 

and spin permutation operators: 

With the help of eqns.(A.4) and (A.5), eqn.(A.3) becomes: 

-CTp~;‘Tp~j = ~ (1+~) (l+~~.~j)+CT~T~ 
a (1 

(-4.4) 

(-4.5) 

Summing eqn.(A.F) over N constituent technifermions under the condition of technicolor 

neutrality (CiTt = 0) and substituting the result, into eqn.(A.Z), we get the one-gluon 

exchange contribution to the energy of a technibrrryon with spin s, eqn.(3.8). 

In the presence of only technicolor interactions, the theory has an exact SU(n) flavor 

symmetry and a multiplet of states is degenerate with the LTB. Color, electroweak and 

ETC interactions break the flavor symmetry and lift the degeneracy. In our estimates, we 

have neglected t.he mass splittings inside flavor multiplets. 

Appendix B 

In this appendix we compute the “center of mass” corrections (171 to the technihadron 

mass formula in the bag model. 

The expression for the energy of the bag, eqn.(3.7), is related to the physical mass of the 

bound state by 

E = ((Ma + P”):) N_ (M” + (I’“))+ , (B.1) 

where the average is taken over the appropriate bag wave packet. Therefore, if momentum 

fluctuations (P’)“’ are nonvanishing, they must be subtracted from eqn.(3.7) in order to 

derive the correct value of the physical mass. The contribution to momentum fluctuations 

from N constituent technifermions is estimated to be 1171: 

where, for massless technifermions in the fundamental cavity mode, z = 2.04. The physical 
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mass is now obtained by minimizing 

M(R) = (E(R)’ - (P’)); (B.3) 

as a function of R. Using the expression for E given in eqn.(3.7), we obtain: 

A4 = ; (2d - 4xB 

~zF?ii-a (B.4) 

where 

a 5 xN + 2, - CUTCW , bzz=N. (B-5) 

Note that, for b + 0, eqn.(B.4) reduces to eqn.(3.9). 

To first order in (P*)l”, the corrections given by eqn.(B.3) correspond to introducing an 

effective contribution to 2, of the form: 

62, z -;z 
( 
1+pz$Y>-‘, 

(B.6) 

Fits of the hadronic mass spectrum, where B, a, and 2, are treated as free parameters, are 

optimized for a, = 0.55, Z,J = -1.84 [12]. For QCD (N = 3) with CI, = 0.55, eqn.(B.G) 

gives SZo = -0.88 for 20 = 0 and SZ, = -0.84 for 2, = ~2~. Therefore, in QCD bags, 

the ‘<center of mass” correction provides an estimate for the phenomenological value of Z,,. 

Note that, for large N, the “center of mass” contribution to eqn.(B.4) becomes negligible. 
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Figure Captions 

Fig.1 -The fractional techni-matter binding energy per unit TB number, (&ft=B-c/nr~)/M&TB 

as a function of N, for 7~ = 8 and ty~ e NATO = O,l, 2. We have set the zero-point energy 

2, = 0. For the dashed curves, the “center of mass” corrections (Appendix B) are taken 

into account. 

Fig.2 - The techni-matter binding energy per unit TB number, (M~,TB - E/~TB)/ML,TB, in 

TeV. The conventions are the same as in Fig.1. 

Fig.3 - The techni-confinement coexistence temperature T, as a function of N, with conven- 

tions as in Fig.1. Progressing from lower to upper curves, ON = 0, 1, 2. 

Fig.4 - The ratio ML~B/T, as a function of N, with conventions as in Fig.1. Progressing 

from upper to lower curves, a~ = 0, 1, 2. 
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Fig.5 - The technibaryon number density ratio R(T,) m chemical equilibrium between un- 

confined and confined phases, as a function of N. Going from the upper to the lower curves, 

the coupling constant a,~ increases as above. 

Fig.6 - The factor AZ. = (~WLTB - c/n~~)lT~ YS. N, with the same conventions as before. 

The coupling CYN increases moving downward through the figure. 
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