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Abstract 

The static approximation, which is the zeroth order approximation in an expansion 
in the inverse of the mass of a heavy quark, has previously been formulated in 
terms of an effective field theory action. In this formulation, corrections to the 
approximation can be systematically included by the addition of higher dimensional 
operators to the action. We determine the coefficients to one loop of the dimension 
five operators incorporating the l/m corrections to the theory. 
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1. Introduction 

The static approximation is the zeroth order approximation in an expansion in the 

inverse of the mass of a heavy quark, termed the l/m expansion. The conceptually 

clearest and computationally most efficient way to formulate the approximation 

is in terms of an effective field theory action [1][2][3][4]. Computations using this 

action and the simple Feynman rules that result have recently been performed [4]. 

Once formulated in terms of an effective field theory action, it is clear [2][4] that the 

static effective theory is conceptually very similar to the nonrelativistic effective field 

theory already developed to an advanced state for QED by Caswell and Lepage [5]. 

The conjecture that the static effective field theory can reproduce the results of the 

full theory to all orders in (XS and to any fixed order in l/m has been demonstrated 

at zeroth order in l/m by Grinstein [6]. 

Many authors have contributed to the study of heavy quark dynamics in 

QCD. An interesting and pedagogical review has been written by Peskin [7]. The 

static potential in QCD was studied by Feinberg [8] and others [9], and applied to 

the definition and determination of the spin-dependent potential in heavy quark- 

antiquark bound states by Eichten and F&berg [lo]. The utility of the static 

approximation and the closely related nonrelativistic approximation for simplifying 

lattice calculations of matrix elements of heavy quarks was discussed by Eichten [I], 

and by Lepage and Thacker [2], and the perturbative corrections to the B meson 

decay constant measured on the lattice using the static approximation [ll] have been 

calculated [12]. Politzer and Wise [3] used the approximation to extract logarithms 

of heavy quark masses previously obtained in the full theory [13]. The symmetries 

of heavy quarks treated at lowest order in the l/m expansion have been discussed 

and applied to semileptonic B to D decays at the kinematic endpoint where the B 

and D have a common rest frame by Isgur and Wise [14]. They also generalized 

these symmetries to an arbitrary frame and used this to extend their results for 

B to D decays and relate other form factors [15]. The radiative corrections to 

these relations have been obtained very recently by Falk, Georgi, Grinstein and 

Wise j16] using a generalization of the static effective field theory to an arbitrary 

frame proposed by Georgi [17]. 

In the effective field theory formulation of the static approximation, corrections 
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can be systematically included by adding operators of dimension greater than four 

to the action. There are two dimension five operators which incorporate the l/m 

corrections to the static effective theory: the chromomagnetic moment operator 

and the nonrelativistic kinetic energy. The coefficients of the operators must be 

fixed by matching amplitudes in the effective theory to their counterparts in the 

full theory. These are the same operators that appear in the nonrelativistic effective 

field theory. 

The essential difference between the static and nonrelativistic theories is that in 

the latter, the nonrelativistic kinetic energy is incorporated at lowest order rather 

than perturbatively. Thus the propagators in the static effective theory and the 

nonrelativistic effective theory differ for momenta of order m. Since in divergent 

loop integrations there are contributions from loop momenta of this order, the 

counterterms in the two effective theories are not related. However the dependence 

on light scales must be the same. Within the framework of the nonrelativistic 

effective theory, Lepage and Ning [2] h avc determined the anomalous dimension 

of the chromomagnetic operator, and Lepage and Thacker [la] are studying the 

complete one loop corrections to the counterterms. While it is somewhat more 

difficult to perform the loop integrals needed to calculate these counterterms in the 

nonrelativistic effective theory, the approximation has the advantage that it can 

be used in processes where more than one heavy quark can appear in an easily 

accessible intermediate state [2][4]. 

In this paper we will determine the coefficients of the dimension five operators in 

the static effective field theory to order a~. In the following section we first describe 

the static effective field theory, and then display the dimension five operators and 

their tree level coefficients. In section three we perform the one loop computations 

needed to determine the coefficients of the dimension five operators to order a~. 

We conclude with a brief discussion of applications. 

2. The Static Effective Field Theory 

The static effective field theory is obtained by linearizing the dispersion law for 

a heavy quark about (m, 0). At lowest order in the l/m expansion, the result is 

that E = m, independent of the momentum of the heavy quark. The Lagrangian 
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embodying this dispersion law is 

L: = b+i& b. (2.1) 

The heavy quark mass does not appear, because it is convenient to measure the 

momenta of external and intermediate states relative to the momentum around 

which the the dispersion law has been linearized. The effective theory is only appli- 

cable for processes with an external heavy quark whose four-velocity is near (1,O) 

because the dispersion law in the effective theory must be a good approximation to 

the dispersion law in the full theory for easily accessible intermediate states.’ In 

(2.1), the field b is a two-component field which annihilates heavy quarks, and b+ is a 

two-component field that creates them. The fields do not also annihilate and create 

heavy antiquarks. There is no pair creation in the effective theory. Intermediate 

states with heavy quark-heavy antiquark pairs created will always have large energy 

denominators, so their elimination is a consistent part of the effective field theory 

treatment. 

The static effective field theory Lagrangian, including gauge interactions and 

order l/m corrections, is [5][2], 

L: = ZbtiVo b + ZZkin + zz 
Fb ViDib+i 2~btCij~ViVj~kb, (2.2) 

where iv,, = i& + gA,, is the gauge covariant derivative. We will perform our 

calculations using the background field gauge which has the property that the 

combination gA, is not renormalized. We have only included the terms in the 

Lagrangian which contain interactions of the heavy quark with the gauge fields. In 

particular, we have not included the mass renormalization counterterm. The two 

dimension five operators arc the leading corrections in the l/m expansion. Their 

coefficients have been chosen so that the the multiplicative renormalization factors 

are unity at tree level, as one can show by applying the Gordon decomposition to 

a tree-level amplitude with a gluon-heavy quark interaction. The wave function 

* The generalization valid for heavy quarks with four-velocity near an arbitrary 
four-velocity Up can be obtained by linearizing the dispersion law about mu’, 
yielding U’p,, = m. The effective Lagrangian embodying this dispersion law is 
L = b+UWl,,b, which is the heavy quark piece of the Lagrangian (8) of reference [17]. 
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renormalization, 2, is included in each factor. These definitions of Zkin and Zmag, 

which do not depend on the normalization of the heavy quark field, are the ones 

relevant for physical applications. In the next section we will determine ZE;,, and 

Z mog at one loop order. 

3. Calculation 

The heavy quark propagator obtained from the Lagrangian (2.1) is [4] 

In Feynman diagrams, the heavy quark propagator will be denoted with a double 

line. The vertices coming from the kinetic term will be denoted with a box (see 

figure l), and the vertices coming from the chromomagnetic moment operator will 

be denoted with a triangle (see figure 2). 

The coefficients of the operators in the static effective field theory are de- 

termined by matching amplitudes in the effective theory to their full theory 

counterparts. We find that using the background field method (see reference [19] 

for a review) and matching the part of the background field generating functional 

that is first order in the background field and has two external fermion lines is a 

calculationally convenient way to determine the coefficients of the dimension five 

operators. This is analogous to the procedure followed by ‘t Hooft [20] and Dashen 

and Gross [21] in their determinations of the counterterms in theories defined using 

two different regularizations. In both cases the theories being matched only differ 

at high energies. 

The graphs in the full theory needed to determine this amplitude are depicted 

in figure 3. The external fermions are on shell and we calculate the amplitude at 

k* = 0, where k is the momentum transfer from the background field, but keep terms 

linear in k. The infrared divergences encountered from calculating at this point, 

as well as the usual ultraviolet divergences, will be regulated using dimensional 

regularization. Because the effective theory has the same low energy behavior as 

the full theory, the infrared divergences in corresponding graphs will exactly cancel 

the infrared divergences in the full theory graphs when the matching conditions 

are properly formulated. One expects that the results will thus be independent of 
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the choice of infrared regulator. Indeed we are free to apply MS to the poles that 

appear as a result of infrared divergences so long as we use the same procedure on 

the poles that appear in the effective theory. 

We write the amplitude for any of the graphs in figure 3 as 

igA&-k)tiI”Tau. (3.2) 

The tree graph’s contribution to P so defined is simply 7”. The QED-like one loop 

graph gives a contribution to I?‘ of 

2 - 
1679 

cf- ipdj y’-$-[r’# , 1 (3.3) 

while the nonabelian graph gives 

(3.4) 

where Cf = ZZ.T,‘T,f and Cadj = &T.“djT,“dj are 413 and 3 in SU(3), respectively. 

The background field gauge Ward identities or direct calculation show that the con- 

tribution of the heavy quark wave function renormalization counterterm determined 

from the one loop heavy quark self energy is, 

&Cf (,lng+4) yp. 

The effect of this is simply to eliminate the contributions proportional to -ye’ in 

the previous two equations. So the complete one loop result from the full theory, 

including the counterterm graph is: 

r’ zz Cf-~~‘dj+~Codj(In~+3)]. (3.6) 

The corresponding graphs in the static effective field theory involving the 

dimension five operator kinetic energy operator are depicted in figure 4, and the 

graphs involving the chromomagnetic moment operator are depicted in figure 5. 

The graph in figure 4 denoted with a “(2)” comes from the order g2 kinetic energy 

counterterm. The graph has a factor (ZZki,)(‘) = Z(‘)+Z~~~. Similarly, the one 

loop counterterm graph for the chromomagnetic moment operator has a factor 
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(22,.,)(2) = Z(a)+Z$. Since the heavy quark propagator in the static effective 

field theory does not involve the heavy quark mass, and since we are evaluating these 

diagrams at k* = 0, there is no scale in any of these integrals. Using dimensional 

regularization to regulate the infrared as well as the ultraviolet divergences, results 

in the great simplification that all of the diagrams vanish. This is also true for the 

self energy diagrams determining 2 in the effective theory. Thus we can directly 

obtain the one loop contributions to Zkin and Z,,, from the full theory calculation. 

There is no need to apply the Gordon decomposition since the full theory result, 

equation (3.6), does not have a piece proportional to 7”. The conclusion is that 

Z!f!, = 0 and 

The coefficient of the logarithm is in agreement with the anomalous dimension 

calculated by Lepage and Ning [2] using the nonrelativistic effective theory. 

The expectation that the results are independent of the infrared regularization 

scheme has been checked for the QED-like diagrams by using the scheme where 

the gluon propagators are given a small mass, and the results are in agreement 

for this part of the contributions to 2~~~ and .Z$&,. In addition, one can use 

the differentiated Ward identity to relate the total contribution to &I!, to the order 

l/m one loop correction to the heavy quark self energy. The latter diagram is QED- 

like, and so regulating its infrared divergences with a small mass, and combining 

this with the differentiated Ward identity, we are able to confirm the dimensional 

regularization determination of 2$. 

4. Conclusions 

We have calculated the full order a~ contributions to the coefficients of the 

dimension five operators in the static effective field theory. These operators give 

the leading corrections to the properties of heavy-light mesons. For example, 

the expectation value of the chromomagnetic operator between B or B’ states 

determines their mass splitting. At present these matrix elements can only be 

evaluated using lattice gauge theory. This lattice calculation requires a choice 

of discretixation of the chromomagnetic operator. The perturbative corrections 
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to the matrix element measured on the lattice can be determined by matching a 

matrix element of the chromomagnetic operator in the lattice regularized effective 

theory to the matrix element of the chromomagnetic operator in the dimensionally 

regularized effective theory, whose coefficient we have just determined. This will 

provide a quantitative prediction of this splitting and a test of this approach for 

the determination of properties of heavy-light systems [I]. The approach is already 

being used to determine other phenomenologically important parameters such as 

the B meson decay constant [ll]. 

We expect that l/m corrections are of practical importance in D and B 

meson systems and that inclusion of these terms should make possible improved 

phenomenological relationships, in the spirit of those derived by Isgur and Wise [14]. 

We also expect that the determination of the dimension six operators in the 

static effective field theory which appear in order l/m’ will be tractable using 

the techniques employed here. 
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Figure Captions 

Fig. 1: Vertices originating from the dimension five kinetic energy operator. 

Fig. 2: Vertices originating from the chromomagnetic moment operator. 

Fig. 3: Full theory graphs. 

Fig. 4: Effective theory graphs involving the kinetic energy operator. 

Fig. 5: Effective theory graphs involving the chromomagnetic moment operator. 












