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Abstract 

We study the cosmology resulting from two coupled scalar fields, one which is either 
a new inflation or chaotic type in&ton and the other which has an exponentially 
decaying potential. Such a potential may appear in the conformally transformed frame 
of generalized Weinstein theories like the Jordan-Brans-Dicke theory. The constraints 
necessary for successful inflation are examined. We find conventional GUT models 
such as SU(5) are compatible with new inflation, while restrictions on the self-coupling 
constant are significantly loosened for chaotic inflation. 
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The inflationary cosmologyjl] purports to solve many longstanding cosmological prob- 

lems, and has been the subject of much investigation during the previous decade[2]. However, 

there is no fully satisfactory model for the source of inflation yet. In this letter, we consider 

a matter content described by two coupled scalar fields, one of which has a decaying poten- 

tial and the other which serves as the inflaton driving the expansion. In this theory, the 

constraints placed upon previous models are considerably loosened. 

Inflation with two scalar fields has been considered before, with effects such as consequent[3] 

and double(41 inflation arising. The extended inflationary scenario[5] uses the Jordan-Brans- 

Dicke (JBD) scalar[6] to achieve expansion which is slower than exponential. Applied to the 

original old inflationary scenario, a successful completion of the inflationary phase may be 

possible. The chaotic inflation model in the JBD theory has also been investigated[‘i]. 

The potential which will be discussed here arises in the following two cases: (i) Some 

supergravity or superstring models produce an exponential potential coupled to other scalar 

fields [S]. (ii) In the generalized Einstein theories, which are conformally equivalent to stan- 

dard Einstein gravity with a scalar field, the potential of a standard scalar field is modified 

to obtain such coupling in the conformal frame[9]. The generalized Einstein theories include 

the JBD theory, induced gravity[lO], any theory with non-minimal coupling, the curvature 

squared theory and effective four-dimensional theories arising from a higher-dimensional uni- 

fied theory. In such cases we should also discuss what happens in the original physical frame. 

Decaying potentials have recently been considered by Peebles and Batra[ll] to account for 

the dark matter in the universe. 

The decaying exponential potential in our model produces the same effect as the JBD 

scalar in the extended inflation scenario, to reduce the rate of expansion. As the inflaton rolls 

down a flat plateau, the other scalar field evolves on the exponential potential, resulting in 

power-law inflation[l2,13]. Although we find weaker inflation than in the conventional new 

and chaotic models, we obtain a longer period of inflation due to this coupling and the much 
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smaller potential energy at the end of inflation. Naively speaking, since the energy scale at 

the period of horizon crossing is related to density perturbations. we expect much weaker 

constraints on the parameters of inflation. When the inflaton is of new inflation type, the fine 

tuning of initial conditions is lessened and density perturbations are suppressed. For a chaotic 

type field, the restrictions placed upon the coupling parameter by density perturbations are 

reduced considerably. We will investigate whether the Coleman-Weinberg potential in the 

standard GUT model yields successful new inflation and what restrictions on the coupling 

X are necessary for successful chaotic inflation. 

We use as our action 

S = jd%&j [&R - ;(V$)’ - ;(v$)r - e-J”~v(+)] , 

where K’ = 8*G, V($) is the inflaton potential and P is a dimensionless coupling constant, 

which must be smaller than fi to guarantee power-law inflation. Although presently known 

supergravity models yield p 2 4, we may realize power-law inflation with the help of vis- 

cosity due to particle production[l3]. Furthermore, it is possible in the generalized Einstein 

theories to have small enough B, e.g. p E 2(w + 3/2)- ‘1’ for the JBD theory, with the JBD 

parameter w > l/2 [9]. 

Working in the spatially flat Friedmann-Robertson-Walker metric with cosmic scale factor 

a(t), we find from the field equations: 

4 + 3H4 - @dK’V(qb) = I), (2) 

li, + 3H4 + V’($)e+~ = 0, (3) 

HZ = ; [ 32 + $2 + v(+-OR”] , 

where H = o/a is the Hubble parameter, an overdot denotes time derivation, and a prime 

denotes differentiation with respect to the argument of the function. 

Inflation occurs as $ slowly rolls down the potential V($) with its amplitude further 

decreasing as e-sR*. During this period, 4 and G2/2 can be neglected in (3) and (4), 
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respectively. If $* < 6, this ansatz is true until $ rolls down into the field-oscillation region. 

We then find a unique attractor of the power-law inflationary solution [13]: 

nb .= 64, + iln(f/K), (5) 

a = a&/tp+, (6) 

Ati,) = f(h) - (1 - P2/6) Wa/a0), (7) 

where 
B’n4V(G) exp[hLl = 12c1 _ pz,s~~ f(G) = *2j&;, 

and the subscript 0 denotes the value at tn when the universe enters the inflationary phase, 

While the initial value of o may be arbitrary, the spacetime evolves into the above power-law 

inflationary phase in a few expansion times, since the above solution is the unique attractor. 

Thus, any value of o approaches Qo E 4, + 2(/7n)-’ ln(ts/k) at ts. 

We consider the three constraints imposed by the horizon problem, density perturba- 

tions and the reheating temperature, both with a new inflation type Coleman-Weinberg 

potential[l4], and a chaotic type potential. The former may be approximated for small IJI 

421 

V(lL) = v, - ;ti4> (9) 

where Vo is the GUT scale and X * l/2 for the SU(5) model, although X depends weakly on 

V, as well. For the latter we consider 

V(ti) = ;w (10) 
with n an even integer and X, arbitrary for now. A main problem of ordinary chaotic inflation 

is the fine-tuned small value of the coupling parameter imposed by density perturbations[l], 

in particular X&lO-rr for the quartic’case. 

When the scalar field li, evolves into the oscillation phase, inflation will end. Hence the 

condition 112;/3Hdj, N 1, or equivalently ](ln V)“l , N 3n*( 1 - P2/6)-‘, fixes the value of $1, 
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where a subscript f denotes the value at the end of inflation. Then we find 

f(G) = K~V~/~X$? and n$j = [K”V~/X(~ - p’/6)]“’ for new inflation (11) 

f(7)) = &!J2/2n and n$, = [n(l - /?2/6)/3]“* for chaotic inflation (12) 

The horizon problem will be solved if[l2] 

where mp~ is the Planck mass and TRH,~~ is the maximal possible reheating temperature, 

given by Hj = tc2r2g.T~H,max 190, with g.(T) - 100 the effective number of particle species. 

Another constraint comes from density perturbations. In particular, results from the . 

cosmic microwave background radiation imply that 6p/p < lo-“, where 6p is the perturbation 

in the density p. Generalizing the result of Lucchin and Matarrese[l2], the amplitude of 

density fluctuations of an arbitrary scale at the epoch when that scale re-enters the Hubble 

horizon may be calculated as follows: 

6P -N H2maxt144~1411 

1 { 

s2Ho &I, (1 - 9*/s)-’ (ah/as)-@‘* for ]rj]h > ]&]h 

P i2+ $2 * - nHo/FL (ah/ao)-4z’2 for l1llh c I& 
(14) 

where a value with subscript h is evaluated at the time the perturbation originally left the 

horizon, and o//h E In(a,/oh) is - 50 - 70 for scales currently entering the horizon. Because 

of the factor (q,/as)-@‘12 in (14), we expect much smaller density perturbations than those 

in the conventional model, loosening the parameter constraints. 

If we account for the observed baryon asymmetry in terms of the standard baryogenesis 

mechanism[l5] through heavy Higgs bosons, the reheating temperature should be larger than 

lOi GeV[lG]. For efficient reheating, we find 

-L%o/r ar ( > 
-@I4 

TRW- = TRH.-~" e 
a0 

where TRH,~~“” E (30V(ti~)/*2g.)“4 is the maximum reheating temperature possible in the 
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corresponding conventional model. We expect a lower reheating temperature than in the 

conventional model, although this depends on the detail of each reheat,ing mechanism. 

The threeconstraints, (13),(14) and (15), restrict the initial values & and os, the coupling 

parameter @, and parameters in the potential V($). W e next examine the permitted values 

for both new and chaotic inflationary potentials. 

(i) New inflation type 

From the above constraints, we obtain three conditions for the initial value $0: 

& < tiJ,,H E 0.16H0~-‘~Ze0’“Q0/* [l + 0.017 ln (V”4/10’sGeV)]-“z 

(horizon problem) 

&, > $,,nH E 0.19HsX-‘~2/KeP”“0~2 [l + 0.094 ln (Vei’4/1015GeV)]-“2 (reheating) 

T+$, < $cr,D s 0.15HoX-‘~2(a,,~/70)-1’ze~~~a~2 

x (1 - 0.20~-*(a,~,+/70)-’ [I + 0.14lnB - 0.29ln (&i”/10’sGeV)]}-“2 

(density perturbations) 

Note that l$lh > li-lh unless ~~10~‘“X~‘~2(Cr,~~/70)~3~2(Vb/4/1015GeV)z. Imposing 

min{tiCT,H,tiC,,o} > tiCr,nH, we find that p < 0.79((r,,,,/70)-‘/*. If the condition X~0.02e4*ti 

is satisfied, the natural initial condition of &~H,, is allowed. These values are around the 

natural ones of unity, without need for fine-tuning. The constraints on X and Vi are plotted 

together in figure 1 for p = O.l,& = Ho and o. = 10mp~. There is a significant region in 

X - V, space where all the constraints are satisfied. The SU(5) model with Vb” = IO’sGeV 

and X N l/2 is inside the allowed region. With this scenario, the slower expansion rate 

during inflation allows for the suppression of density fluctuations, which had been the main 

drawback of the regular new inflationary model. 
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(ii) Chaotic inflation type 

Assuming the initial energy scale is the Planck one, we obtain the constraints: 

tie > G),,H E 2.3rr~~~ni/~ (horizon problem) 

$0 < &,R,, E 2.6mp~n”‘P-’ (reheating) 

” ’ ‘c+‘D E 1 

1.5mp~n’/~~-‘[l t 2.5/?2(a,,h/70)]“2 for p < (n/2~,,,,)*/~ 

1.4mp~n’/~~-‘[l t 2.9~2(oj,,+/70)]‘/2 for @ > (~/2a,j~)i/~ 

(density perturbations) 

where p 2 (n/2c~,,h)i/~ corresponds to ]& 2 ]$I h, respectively. Just as in the new inflation 

model, we find /3 < 0.9(a~~~/70)-‘/2. M OS significantly, much lower values of tie than in t 

the standard case are now possible, leading to considerably larger and hence less fine-tuned 

values of the coupling constant X,. For example, X4 < 5.8 x 10-sp4ei7~~ for the quartic case 

and Xs < 0.15m~,B * e O’Q% for the massive scalar field, so we find a natural coupling constant 

X, is possible. A different mechanism to obtain a similar constraint on A4 has been discussed 

by use of a non-minimal coupling term with 4 c -2 x lo4 [17]. 

If our model is derived from the generalized Einstein theories via a conformal transfor- 

mation, we must transform back to the original system. We present the JBD model as one 

example. The JBD scalar field @ Ann is related to our .$ via the conformal transformation 

gpy = ,!3*WgJBD 
“” as 

~4 = (w + 3/2)“2 h(@JeDG) t dprcsenb (16) 

with 8 = 2(w t 3/2)-“‘[9]. Since the JBD parameter w is constrained by observations to 

be larger than 500[18], p is smaller than 0.09 in this model. The cosmic time ~JBD and the 

scale factor CZJBD are given by dtJBD = e-flnQ14dt and CZJBD = e-pn6~40. Hence we obtain the 

formula[l9]: 

(aj/a~bD - e-wf-~v4(,,/ao) - (a)/ao)'-y v,/V,)'I' 07) 

2 _ 3JP 

p JBD zp 
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TJBD 
RH.m.x - e4n”4T~,max - TRH,~.,~” (19) 

Therefore, in the original system, the constraints from the horizon problem and density 

perturbations do not change much, while the reheating temperature is the same as in the 

conventional model, where we have assumed instantaneous reheating. Hence the constraint 

from successful reheating is loosened in the JBD theory (see Fig.1). 

We have presented a scenario in which an inflaton potential coupled to an exponentially 

decaying potential leads to a less rapidly expanding inflationary stage. Hence, the problem 

of excessive density perturbations in the new inflationary model is removed and fine-tuning 

in the chaotic model is lessened. In addition, the less rapid expansion of the present model 

may allow successful old inflation, just as with extended inflation. 

Finally, we mention that if the inflaton potential V is nonzero at the termination of in- 

flation, then a decaying cosmological constant will exist. Though primordial nucleosynthesis 

sets a stringent bound on the vacuum energy at that epoch [20], it may still be possible that 

the relic vacuum energy contributes significantly enough to the present total energy density 

to close the universe. Work on this possibility is in progress. 
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Figure Caption 

Fig.1 The constraints from the horizon problem, reheating temperature (TRH > 10” 
GeV) and density perturbations (6p/p < 10d4) for @ = 0.1, $s = ffs and 
4s = 10mp~. The shaded region is permitted. The curves RH and D are the 
constraints from the reheating temperature and density perturbations, respec- 
tively. The point + corresponds to the SU(5) model with Vi/4 = 1Or5 GeV and 
x - l/2. The dotted line RHJ~~ shows the reheating constraint for the JBD 
theory with w - 500. 
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