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ABSTRACT 

We derive several results pertaining to anyonic superconductivity BS described 
by a Chern-Simons field theory. (1) The renormalized Chern-Simons term at 
finite density is shown to vanish when the renormalized coefficient at zero den- 
sity takes values Nea/2r. This is the field theoretical requirement to have a 
massless pole in the current-current correlator. We can then show t%at in the 
Chern-Simons description a system of charged anyons at zero temperature is a 
superconductor. This result is shown to hold to all orders in perturbatiori theory 

by generalizing a nonrenormalization theorem of the zero density case. (2) At 
finite temperature the renormalized Chern-Simons term does not vanish at the 
one-loop perturbative level. We compute the mass of this apparent “pseudo- 
Goldstone mode”. We also exhibit evidence of critical behavior, for this same 
system, at a nonzero T,. We discuss the possible implications of these pertur- 
bative results. (3) A low energy effective action for an any&c superconductor 
is derived directly from Chern-Simons field theory. Several P and T violating 

effects occur. 
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1. Introduction 

It was first suggested by Laughlin”“’ that a plasma of anyon~‘~’ (particles with 

fractional statistics in two spatial dimensions) may exhibit superconductivity. 

Laughlin and others 11IINl~--L*l have developed this idea as a possible model for 

high Z’, copper oxide superconductors. However it is important to separate the 

physics of any&c superconductivity per se from its applications to quasi-two- 

dimensional condensed matter systems. In this spirit one can regard anyons as 

fundamental particles (in 2 + 1 dimensions) and study their general properties 

just as one does a system of bosons or fermions. 

A variety of different approaches have been used to describe anyons!“-1’1 It is 

not obvious that they are all equivalent; in fact the precise relationship between 

these descriptions involves subtle issues which have been largely unexplored. We 

will skirt such questions in this paper by anchoring our results to a particu- 

lar theoretical framework: that of Chern-Simons (CS) field theory?-“] More 

precisely, we will examine a three-dimensional Euclidean field theory consist- 

ing of an abelian Chern-Simons gauge field coupled to fermions (the case of a 

Chern-Simons field coupled to bosons has been discussed extensively by Wen and 

ZeeL”l’*l”). According to the results of [23], [24], and [25], this provides a field- 

theoretic description of free anyons. We will assume this to be true, in order to 

intrepret our Chern-Simons results in the language of anyons. It should be kept 

in mind, however, that this connection involves some unresolved P6.W subtleties. 

Our object in this paper is to verify and extend the work of Fetter, Hanna and 

Laughlin~” and of Chen, Halperin, Wilceek, and Witten!‘g’ These authors showed 

that in the random phase approximation a free gas of rayons with statistics 

parameter 7 = ~(1 - $) where N is a large integer, has a massless pole in the 

current-current correlation at zero temperature which is related to superfluidity. 

This then implies that B charged gas of anyons would be superconducting at zero 

temperature. Chen et al”srargued on general grounds that this result, i.e., the 

existence of a massless collective mode, should survive improvements on their 
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approximation. We will demonstrate explicitly that this is indeed the case. 

Banks and Lykken”” studied the field theoretic realization of an anyonic 

system in which charged fermions in 2+1 dimensions are coupled to ordinary 

photons plus an additional “statistics” gauge field possessing a Chern-Simons 

term. They argued that superconductivity (at zero temperature) occurs if and 

only if the renormalized CS term of the statistics gauge field vanishes - i.e. if the 

quantum corrections to the bare CS term precisely cancel it. 

In this paper we follow the approach of ref.[30]. We rederive in section 5 the 

field-theoretic criterion for anyon superconductivity by extracting the low energy 

effective action and by analyzing directly the condition for a massless pole in the 

current-current correlator. The main part of the work is described in section 2 

where we calculate the renormalieed CS coefficient for a relativistic finite density 

field theory of Chern-Simons plus fermions. The relativistic formalism (apart 

from the chemical potential term which, obviously, is not a Lorentz scalar) is for 

convenience only; our results have a well-defined nonrelativistic limit. The frame- 

work of our analysis is perturbation theory. Non-perturbative corrections to the 

renormalized CS term”” as well as possible topological excitations in the form 

of vortices are beyond the scope of this work!““*’ We present a detailed analysis 

showing that the renormaliaed Chern-Simons term at finite density vanishes if 

and only if the zero density renormalized Chern-Simons coefficient 2nB~/e’ is a 

positive integer, N. This indicates that this system of anyons is a superfluid at 

zero temperature, and is a superconductor when coupled to electromagnetism. 

We then show in section 3 that, at zero temperature, this result extends to 

all orders in perturbation theory and thus does not depend on the mean field 

approximation, nor on the large N limit. We do this by showing that the non- 

renormalization theorem of Coleman and Hill[“] can be extended to the Chern- 

Simons theory at finite density. We also provide topological arguments leading 

to the same conclusion. The physical picture is quite similar to the quantum Hall 
WI system, where an analogous topological quantization is known to occur. 
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In section 4 we give the finite temperature extension of our analysis. We find 

that for T>O the Chern-Simons term does not cancel, to one-loop order in pertur- 

bation theory. The resulting CS mass vanishes exponentially as T-0. Thus the 

superfluid appears to develop a thermally-activated dispersion consistent with 

a zero temperature phase transition. We shall discuss the implications of this 

in detail. On the other hand, we also find in our results indications of critical 

behavior at a finite temperature. 

Section 6 is devoted to the analysis of the P and T violating Landau-Ginsburg 

(LG) low-energy effective action description of the anyonic superconductor. We 

derive the complete LG effective action (in the London limit) directly from Chern- 

Simons theory. Surprisingly, a phenomenologically important term of the LG 

theory arises from an “irrelevant” operator in the CS theory. This peculiar feature 

occurs due to the presence of CS terms, which are first order in derivatives. Our 

effective action contains several P and T violating terms obtained previously by 

other authors using different methods!‘3’1”2e’J0’ 

The main results of this paper were summarized in a previous letter!‘] We 

note that Randjbar-Daemi et al”” have recently discussed finite temperature 

effects using the approach of ref.[17]. We h ave also received new papers by Frad- 

kint”” and by Panigrahi et al!‘] where very similar results to ours are obtained 

using different methods. 

2. The renormalized Chern-Simons term 

We consider a system of anyons described by a single two-component massive 

fermion field coupled to a CS fictitious gauge field q,. We introduce some finite, 

nonzero density of anyons by adding a chemical potential term to the action. The 

Euclidean path integral expression at zero temperature (T=O) for the partition 

function of the Chern-Simons theory at finite chemical potential p is given by: 

,?? = J Z)T+b~@hpe+p( -SE) (2.1) 
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with 

?2;(P (2.2) 

where D, = a,,-iea,. We shall work throughout with a nonegative chemical 

potential p. We choose to work in Coulomb gauge (&a’=O). We proceed by 

integrating out the ao field, which simply gives the Gauss law constraint J(B - 

iJIt$). This delta function now allows us to do the integral over al and a2 by 

setting 

a; = -;eij$+‘+ 

This leads to the following effective 4-fermi theory: 

(2.3) 

J V+V$ ezp[- d3z J ( 4(P - m - Pro)4 + $(47%) g(&‘$))] (2.4) 

We use the g-a matrices yl=c~l, yz=az, and ^/o=Q where ri are the Pauli spin 

matrices. Notice that the effect of the chemical potential is simply to replace 80 

by 80-p. We thus define & to be equal to 8, unless v=O in which case & = 00-p. 

Our goal is to show that this theory exhibits superfluidity. More generally we 

would like to show that a system of charged anyons is a superconductor. In the 

spirit of ref. [29] we shall show that for a system of neutral anyons, t!;e current- 

current correlation function has a massless pole. As discussed in ref. [30] and 

as will be expanded upon in section 5, a sufficient condition for such a massless 

pole is that the Tenormalired Chern-Simons term for this theory vanishes. In 

other words if the quantum corrections to the Chern-Simons coefficient precisely 

cancel the coefficient in the Lagrangian, we are assured that a pole is present in 

the current-current correlation function. 

We begin by studying the fermion propagator S(r,z’) for this theory. The 

bare fermion propagator SO(E, 2’) is simply l/( 3 - m). Perturbative corrections 

to this propagator will be computed from the Feynman rules which arise from the 

path integral expression above. The vertices for this theory arc 4.point fermion 
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vertices which connect a current J; to a density Jo. Each such vertex carries a 

factor -;$(eijH/V’). This vertex is shown in Figure la. It is often convenient 

to represent this vertex via the diagram of Figure lb in which the standard QED 

vertex with a value +iey, is used and in which a Chern-Simons propagator is 

explicitly shown. This propagator (in Coulomb gauge) is nonzero only when 

connecting a 7; vertex with a yo vertex and then has a value $(e;i8j/V2). 

Our first observation when evaluating perturbative corrections to the fermion 

propagator is that, in the presence of a nonzero chemical potential p#O, the tad- 

pole graphs such as those of Figure 2 do not vanish. These tadpoles are nonvan- 

ishing since < Jo >= po is nonzero when Jo is nonsero. Note that the amputated 

tadpole is precisely equal to the mean density ~0. We can thus compute the en- 

tire contribution of a single tadpole to the propagator as a function of the mean 

density po. Using the Feynman rules described above we find that each tadpole 

contributes an amount 

to the fermion propagator. This single tadpole contribution can be written in 

the suggestive form i&R where 

Notice that 4 is precisely the gauge potential one would obtain from a constant 

fictitious magnetic field B = gpo. 

We can now compute the contribution of all the tadpoles to the Fermion 

propagator by summing the geometric series of Figure 2. We call the resulting 

object the tadpole-corrected propagator and we denote it by ST. The result of 

the calculation is 

ST = (s,’ - iey’A;)-’ = [r’(c?, - ied,) -m - /LY’]-] (2.7) 

where we have made the definition & = 0. This leads us to the important con- 

clusion that the tadpole-corrected propagator ST is precisely the Green’s function 



for a free fermion in a constant magnetic field B = ipo and with chemical po- 

tential ~1. We shall thus reorganize our perturbation expansion as follows. All 

propagators will be fully tadpole-corrected propagators. The vertices will be the 

same vertices as those for the basic theory, and, of course, no additional propa- 

gators are included. We shall call th is “tadpole-corrected perturbation theory”. 

We shall be able to use this reorganized expansion to prove some very powerful 

results about the Chern-Simons theory. In fact for many quantities of interest 

only one-loop effects will contribute. 

To evaluate the fermion Green’s function in a constant magnetic field 23 it 

is necessary to choose from among the many possible gauge potentials which 

are consistent with coulomb gauge. We choose to work in an asymmetric gauge 

in which d&?z, &=O, &=O. We h ave done the calculation in two ways. 

The first method which involves a direct evaluation of the fermion propagator is 

outlined below. An alternate approach using Schwinger’s proper time method is 

described in Appendix A. We find the fermion propagator ST by inverting the 

operator a,-rn where 8,, = &ied,. This is done by observing that 

sT = [$-ml-’ = (3 +m)[(@ _ m)(j$ +m)y-’ 

= @ + m)[E2 - m2 + ea2JJ]-’ 
(2.8) 

The propagator is thus found in two steps. We first invert the operator Q = [fi2- 

m2 + eg313] by finding its eigenvalues and eigenfunctions. We then apply the op- 

erator @+m to the resulting expression to obtain the propagator. 

The eigenfunctions + for the operator Q, which are 2-component spinors, are 

found by four& transforming in y and t: 

+P(GY,t) = e -~~:e--iPIYqz,py,W) (2.9) 

The operator Q when acting on this eigenfunction gives 

-[(w - +)a - a,” + 2B2(z + $,” + 72 - eEo3] (2.10) 

The functions & arc thus eigenfunctions of a harmonic oscillator with unit mass 



and frequency eB. More precisely for each normalized eigenfunction @‘n of the 

harmonic oscillator there arc two eigenfunctions of Q given by 

e-iwle-ipry *n(z + 3) 

> 
and ,-iwt,-ip.u 0 

0 *AZ + 37, > 
(2.11) 

with eigenvalues 

-[(w - ip)2 + (27~ + 1)eB T ,231 (2.12) 

respectively, where n is a nonnegative integer. If we set 

d, = [(w - ip)’ + 2nef3 + m2] (2.13) 

Then these eigenvalues are simply equal to -d, and -d,,+l respectively. 

Having found the eigenvalues we can now express the inverse of Q as 

1 1 -= 
Q $2 - 771~ + eqB] 

(2.14) 

The tadpole-corrected propagator ST is then given by 

sT = [@ -ml-’ = (jj +m)Q-~ (2.15) 

Recall the definition of B as B = gpo. We have thus evaluated the prop- 

agator as a function of both po and p. Now the density po depends itself on 

p.. Thus our next step will be to find the relationship between po and p. We 

shall do this in perturbation theory, but using the tadpole-corrected propagator 

ST. We begin by computing the lowest order contribution to the mean density 



po via the diagram of Figure 31 We shall see later in the paper that due to a 

nonrenormalization theorem the result of this lowest order calculation is, in fact, 

an exact result. Our strategy is to first compute po for fixed p and B. Having 

done this we then use the fact that B itself depends on po to find po as a function 

of p. (It turns out that although this last step is very illuminating, it does not 

play a role in the discussion of superfluidity.) 

The calculation of ~0 proceeds as follows: 

PO = < lI)$-)'b(T) > = -T+OST(~,~)] 

= 5 J g J $I&(~ + $j)l” [-i(w - +I( & + $ I-4 & - $ )I 
n=O 

(2.16) 

The integral over p, can now be done since the functions ‘I!” are normalized 

eigenfunctions for the harmonic oscillator. This integral simply yields a factor 

eB. Thus 

PO = ~~~~[(--i~)(~+~)-im(~-~)I (2.17) 
27r 

The integrals over w are now done using contour integral techniques. The integral 

s du{-&} is standard, and is performed by closing the contour along a semicircle I 
of very large radius in the complex plane either above or below the relzl axis. 

The integral s dw{ 9) can be done using a cutoff regulator. It is convergent 

despite initial appearances. It is evaluated by shifting the contour from the real 

axis to the line --m + ig < w < M + ip. The vertical parts of the contour 

at infinity vanish, and the resulting integral over the new contour vanishes by 

antisymmetry. All that remains are possible poles in the region 0 < Im(w) < I”. 

1 The self energy corrections to the bare fermion propagator will be taken into account sep- 
arately and will be higher order in our expansion. They will be shown, in the next section, 
to be irrelevant in computing the density and the renormalized Chern-Simons term. 
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The results are 

m 

-oD (w -ii~)~ ~neB+ma = J 7r J 2net3 + m2 
O(&iizGz- IpI) 

m (2.18) 

Using these results we find that 

po = gfi 2 O( IpI - J2nea+mz) + @(l/4 - &zjzTz 

“43 1 1 
(2.19) 

where Int stands for the integer part of its argument. 

Note that po does not vanish when p=O. This is an artifact of our regu- 

larization of the operator product 4’(v)+( T using an ultraviolet cutoff. It is a ) 

consequence of the spectral asymmetry of our parity non-invariant theory and it is 

closely related to a similar ambiguity in the renormalization of the Chern-Simons 

term for this theory”sl. (It would not occur, for example, with Pauli-Villars regu- 

larieation.) Nonetheless it is clearly this po which is related to B via the relation 

B = gpo. However, in order to get a physical picture of what is going on, it 

is useful to consider the “physical” density pph = p&L) - po(p=O). (pph is the 

expectation value of the properly renormalized density operator.) 

pph is plotted versus /A for fixed (positive) Bt when the mass m > 0 in Figure 

4. We emphasize that this is a plot of p as a function of p for fized B. We have 

j Although WC have assumed implicitly that eE is positive, it is straightforward to show that, 
in general, the first term in eqn. (2.19) is proportional to let? whereas the second term is 
proportional to eZ?. Thus for negative eB the plot in Figure 4 is shifted to the left by an 
amount 21eEj. 
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not yet imposed the self consistency condition which is required by the definition 

of B in terms of po. When the density is not an integer multiple of eB/2n the 

density can increase with no cost in chemical potential. Thus a new particle 

can be added to the system at no cost in energy. This corresponds to the fdling 

of a Landau level. When the density reaches an integer multiple of eB/27r, the 

level is filled and a discrete jump in chemical potential is required before the 

next level can be filled. The asymmetry between positive and negative ~1 reflects 

the spectral asymmetry of the theory. Evidently the two signs of p correspond 

to having particles with opposite spin. We see from Figure 4 that for p>O one 

requires a chemical potential pz=m2+2eB to begin filling the first Landau level. 

For p<O the spins point in the opposite direction. The interaction energy of the 

spin with the magnetic field B precisely cancels its orbital energy in the first 

Landau level leading to a zero energy mode. Thus one begins to fill the first 

Landau level at p = --m. 

We are now ready to use the definition of B = $po to find po as a function of 

p for a given value of B which is assumed positive. If, as we shall assume, e, B 

and B are positive, then po will also be positive. Let us consider the case m>O 

in which case po = /+J, + eB/47r. Suppose po is fixed at some physical value (say 

by fixing pPh). We see from Figure 4 that it is useful to write po as eB/47r plus 

an integer number of steps of magnitude eB/2~ plus some remainder. 

PO= $N+f+r]; O<r<l 

where N is an integer. Now po is also equal to :B. Thus 

2d - 
e2 

=N+;+r (2.21) 

Note that 7 is determined entirely by e/e 2. Thus fixing the Chern-Simons co- 

eficient simply tells us how many Landau levels are filled and what fraction of 

the first unfdled level is occupied. The values of N and 7 are determined entirely 

from the values of e and 0. 
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The resulting value of p can now be determined from Figure 4. When -y # 0 

(i.e. when there is an unfilled Landau level) the value of p is uniquely determined 

to be 

,u2 = m2 + 2(N + 1) 2xpo 2aP,h 

N+;+y 
=~n’+2(N+l)~ (2.22) 

or 

ph=~2-m2N+~ 
P 457 N+l 

(2.23) 

when 7 # Ot. On the other hand, when y=O and we have a filled Landau level 

then the value of p is ambiguous with 

(2.24) 

We would expect that all physical quantities will turn out to be independent of 

which value of p is chosen in this range. 

Notice that the condition of having precisely N filled Landau levels occurs 

when 2rrp,h/eB = N. This then implies that (2xB/e2) - i = N. Naively we 

might have expected the ‘i’ to be missing. The reason for the presence of this 

term is that there is a renormalization of the Chern-Simons coefficient in this 

theory at zem density which occurs in one-loop and which is not renormalized by 

higher loops (see refs.[32], [19]). Th e renormalized Chern-Simons term at zero 

density has been calculated in the literature w,w and it will be calculated later 

in this section. It is given by OR = &(rn/lml)(e2/4n) when cutoff regularization 

is used. Although this relationship is regularization dependent, it is only the 

renormalized CS term which is physical. It is in fact this renmmalited Chern- 

Simons term at zero density which determines the statistics of the anyons. Our 

condition for having N filled levels now becomes (for m>O) 

(2.25) 

which corresponds to a statistics parameter ?r(l-l/N) where N is an integer. 

t Note that this differs only slightly from the result for fermions for which p = (p’ - m*)/4s. 
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Such a statistics parameter corresponds to the horizontal parts of Figure 4 

whereas a non-integer N corresponds to its vertical parts. 

We now turn our attention to the calculation of the current-current correla- 

tion < J,,(T)J,(~‘) > in this theory, where JP = e~$y,$~. We begin by considering 

the (one-particle-irreducible) vacuum polarization II,,. As discussed in the pre- 

vious section in this parity non-invariant theory in three dimensions, II,, can be 

split up into an even and an odd part: 

%4”(q) = q”(q) + QwAnA’IIoad(q) 

where IIe is symmetric under interchange of p and V. Note that gauge invariance 

requires the odd part of II to have the above covariant form even at finite density 

for which case Lorents invariance is lost. Our goal is to show that the full 
current-current correlation has a massless pole if and only if 2+/e’ is an integer. 

As discussed previously the existence of such a pole depends entirely on the value 

of IIodd. It will exist if lI,,&q=O)=6’. This will be discussed in detail in section 5. 

The main point is that a massless pole exists in the current-current correlation 

if and only if there is a massless excitation in this theory which couples to it. 

If the renormalized CS term B-&dd(q=O) vanishes then the effective action for 

this theory has a massless mode corresponding to the statistical photon. 

We thus want to show that &,dd(q=O)d i.e. that the renormalized Chern- 

Simons term at finite density vauishes?t We do the calculation in the tadpole- 

improved perturbation theory described above. The idea is that in intermediate 

stages of the calculation we keep both p and B = (e/Q0 as variables and only 

at the end we insert the appropriate value for p which was derived above eqn. 

t Note: we are defining the current as the charge current whereas the density was previously 
defined as the particle number density. 

tt This is of course not true at zero density”“. The eero density limit of this theory is 
extremely singular since for any finite density there me a fixed number of occupied Landau 
levels. This number depends only on 0 but not on the density. At precisely zero density 
there are of cowse no levels occupied. 
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(2.24). Our first step is to evaluate the one-loop value of IIodd. We shall then 

use a non-renormalization theorem to show that the result holds to all orders in 

tadpole-improved perturbation theory. 

Before describing the explicit calculation of II&q=O) we give a general ar- 

gument which shows that it is equal to 0 as claimed above. We show that at 

any order in tadpole-improved perturbation theory there is a general relation 

between the diagrams which contribute to &,dd(q=O) and those which contribute 

to po. We begin by considering an arbitrary diagram which contributes to pa. We 

now take 6168 at fixed p of any such diagram. This has the effect of removing 

precisely one tadpole insertion and replacing it by iey’e;jaj/V’ which is applied 

to the graph and the result is evaluated at q=O. This is shown pictorially in 

Figure 5. The resulting graph is one-particle-irreducible in terms of tadpole- 

corrected lines since clearly all diagrams for po are one-particle-irreducible. It is 

thus related to the vacuum polarization IIoj. In fact 

(2.26) 

Now the odd part of II goes to zero linearly with q as q goes to zero whereas the 

even part of II vanishes quadratically. Thus 

(2.27) 

Thus in order to evahmte &,d,j at q=O all we must do is differentiate po with 

respect to B at fixed p. We can do this either via eqn. (2.19) or more simply 

from Figure 4. Note that on the vertical sections (i.e. when (/A’ - m2)/2eB is an 

integer) the above derivative is divergent. It is only convergent on the horizontal 

sections which correspond to case of completely filled Landau levels. In this case 

PO/B is independent of B . Thus 6po/SB = PO/B. But pa is related to B via the 
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tadpole relation po = fB. Thus 

nI,dd(q = 0) = g = e (2.28) 

This is the result which was claimed above. It implies that the one loop (tadpole- 

improved) renormalized Chern-Simons term vanishes, and thus there is pole in 

the current-current correlation for this theory. It occurs if and only if the zem 

density renormalized CS coefficient OR is such that some integer number N of 

Landau levels are precisely filled. As discussed above eqn. (2.25) this occurs (for 

m>O) when 2+/e2=N. We also have here a hint of a possible pathology in the 

anyonic system when 2&&e’ is not an integer since &dd diverges in this case. 

This might play a role in understanding the behaviour of anyouic systems in the 

presence of real magnetic fields. 

In the next section we shall show that these results hold to all orders in 

perturbation theory. We shsll do this by extending previous nonrenormalization 

theorems at zero density to the case of finite density. It can be seen from the 

above discussion that proving a nonrenormalization theorem for po is sufficient 

since the corresponding result for no&j can be derived as a its consequence. 

The previous result is powerful enough to be used to evaluate the renormal- 

ized Chern-Simons term at p=O for fixed B. It must be emphasized that in the 

CaSe p=o, &,dd(q=o) is ckdy not equal to e since a typical value of 0 requires a 

filling of some Landau levels which, in general cannot occur at p=O. The result 

of eqn. (2.28) that &dd(Q=O) = e6po/bB can be used together with (2.19) to 

see that &&&=O,q=O) = e2/4n. This is a well-known result and it was used 

earlier in this section. 

We have augmented the general result above by an explicit calculation of 

I&d(q=O). We have done this using both the direct method and the Schwinger 

proper time method. The latter calculation appears in the Appendix. Here we 

summarize the calculation in the direct method. 
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The one-loop expression for II,, is given by 

WZ,Y) = -e2~~[7~sT(2,Y)7”sT(Y,“)1 (2.29) 

To evaluate Dodd we extract the term in eqn. (2.29) which is proportiomd to 

eijlco. The basic idea is to evaluate eqn. (2.29) using equations (2.14) and (2.15). 

Using these equations we can write the fermion propagator as follows: 

sT(zr”‘) = c J E J $cr. + K)e-iw('-")e-iP1('-Y')~"(~ _ 3J$;(zI _ Z) 
” 

(2.30) 

where 

w-ip-iim w-ip+im - 
d n+l & > 

LO = + ‘( 
w-ip-iim 

+ 
w-ipfim 

&+I & > 
(2.31) 

where a and at are the raising and lowering operators for the harmonic oscillator 

w*ve functions 4n. Equation (2.29) can now be evaluated using the standard 

trace identities for the Pauli matrices. The term of interest is proportional to 

Cpy~. we cm extract &,dd by calculating, for example, II12 and extracting the 

odd part. The result is: 

ng, =e2 c J g J $! J g J ~,-i(:-:~)(~-u’),-i(y-yl)(p,-p~) 

n,r 

(2 32) 

2i(KL; - K’Lo)~~(+ - z)$;(z’ - $)++’ - $:(z - 2) 

where no superscript and the superscript ’ on K and L refer to whether they 

apply to (w,n) or to (w’,T). 
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The method for extracting &,dd involves first integrating over (y-y’) to force 

the external y-momentum to vanish. This yields 6(p, - pk). After doing the pb 

integral, one can do the x integral which forces the external x-momentum to 

vanish and then yields c&. The p, integral can then be done and simply yields 

a factor eB. Note that what remains is the four& transform of II12 with respect 

to an external frequency qo = w - w’. The resulting expression is linear in 40 for 

smd 40 and its coefficient is no&j. we find: 

x12 - 
odd-z;ez~~~/~[‘& 

Z(w - ip + im)(w - ip) (w - ip - im) 

*=a 
d; ] &+I 

(2.33) 

After some manipulations we can write &dd as 

II odd = -&El ~{b’+& - $, ++ -+)(i + -&I 

(w - iPI 

(2.34) 

- i4neB 
[(w - ip)2 + A+)2]2) 

where Mu = 2neB+m2. 

This is the same result which we obtain using Schwinger’s method in Ap- 

pendix A. 

We now compare this expression for &,dd to the previous expression for po. 

The term in the first line of (2.34) is identical to the similar term in po (divided 

by B/e). For the term in the second line of eqn. (2.34) we perform the w 

integration which results in an expression which is proportional to a(~-M(n)). 

This term vanishes whenever w # integer. Therefore for any p such that 
2 n? % # integer, i.e. for the fIlled levels, we confirm explicitly the relation 

between n&d and @.J given in eqn. (2.28). 
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3. Nonrenormalization theorem 

We will now show that p, II,,(O), and thus eqn. (2.28), are unafkted by 

higher order radiative corrections in tadpole-corrected perturbation theory. We 

do this by extending the nonrenormalization theorem of Coleman and Hill, which 

applies to If,,,(O) in the zero density case, to the case of finite density. 

Before attempting to extend the Coleman-Hill theorem, let us briefly review 

it. Consider the Euclidean n-photon effective vertex, at zero density, given by 

summing all graphs consisting of a single fermion loop with n external photons 

attached. We denote this by: 

rl:!.., . (kl . . . k,) 

All diagrams in vacuum perturbation theory which contribute to II,&O) can 

be constructed from the r(“)‘s, by sewing together photon lines (see ref.[32] for 

details). One set of contributions is obtained by sewing together all but two 

photon lines of a I-‘(“), and finding the piece of the resulting two-point function 

which is linear in the external momentum and antisymmetric in the vector indices. 

The remaining contributions are obtained by sewing together, in all possible one- 

photon-irreducible ways, two different r(“)‘s, such that one external photon line 

remains on each. These two types of contributions have the following form: 

a tmoc - 
+ ‘“‘i3kX J 

dk3 dk,rl”?,,,,,,* k; -ki k3;. . ; -$kt) ~Cxa...x,(ks...;kn) 

a 
- lim +A ak, 

k-0 J dkz . . . dlz rl”,!,,(k; kz; . . .)rz!,,(-k&z;. . .)&...x...(kkz;. . .) 

(3.2) 

Now for any I?(“) gauge invariance implies 

k??l:!. = 0 (3.3) 
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Differentiating this expression gives 

rl:!. + kE’ (B/ok”) r(?. = 0 P 

Provided that l?cn) is analytic as k + 0 this implies 

I’(“)(O; kz; ks;. .) = 0 

(3.4) 

Furthermore, if n > 2, so that kl and kz are independent variables, then 

I’(“)(kl; k2;. . .) = 0(k1k2) (3.6) 

as k1, kz + 0. These relations imply that all contributions to II,,,(O) of two-loop 

and higher order vanish. This is the Coleman-Hill nonrenormalization theorem. 

We now want to extend these arguments to the case of finite fermion density. 

We thus define a finite density Euclidean n-photon effective vertex, given by 

summing all graphs consisting of a single tadpole-corrected fermion loop with 

n external photons attached. Order by order in tadpole-corrected perturbation 

theory, the structure of the graphs which contribute to l&&O) is identical to the 

zero-density case. Furthermore, we can apply the same construction to obtain 

all the graphs contributing to p. These are obtained by sewing together all but 

one external photon line of II r(“), and have the form: 

J dkz . . dk,rjl;!,,,X, 0; ka; . . . ; - $kl> K: A,...A,(kz; . . . ; kn) (3.7) 

Thus, to prove the desired nonrenormakktion theorem for p and II,,,(O), it 

suffices to show that, for kl,kz 4 0: 

l-!Tf’(kl . . .) = O(kl), ?I.>1 

r!:) (h, kz,. . .) = O(klkz)r 
(3.8) 

n>2 

By gauge invariance and the argument presented above, these relations are true 

provided that k + 0 is in the region of analyticity of the l?cn). 
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We prove the nonrenormalization theorem therefore by demonstrating the 

analyticity of the rcn) as k2 + 0 in the Euclidean region. This is obvious for 

the zero density system, since the physical (Minkowski) threshold for fermion- 

antifermion pairs begins at k2 = 4~72~. At finite density, however, one must 

also worry about the production of fermion-hole pairs. In our case, since the 

l?cn) are defined in tadpole-corrected perturbation theory, this corresponds to a 

(Minkowski) photon being absorbed by a fermion in a Landau level, causing a 

transition to an unoccupied state. The Landau levels allow continuous values 

of momentum but are discretely spaced in energy (with spacing eB/m in the 

non-relativistic limit). Th ere ore, f when we have N completely f&d Landau 

levels, physical singularities are absent for (Minkowski) ko < eB/m. Thus as 

we approach ka -+ 0 from the Euclidean region the l?cn) are analytic, and the 

nonrenormalization theorem holds precisely for 0 = Ne2/27r. 

Note that for other values of 0 we obtain no definite conclusions; this is similar 

to the m = 0 case of the zerc~ density system. For self-consistency, we should also 

note that the Goldstone pole, which is the end result of this analysis, does not 

appear in the individual 1PI diagrams of the I’cn). 

To understand why the nonrenormalization theorem works, it is useful to 

study the topological properties of p (and, by extension, IIo&O)). By topolog- 

ical we mean dependent only on the asymptotic behavior of the effective back- 

ground gauge field. The physical content of the finite density nonrenormalization 

theorem is that the spatially averaged mean density p is insensitive to local per- 

turbations of the background mean field. We would like to understand in detail 

why this is true. 

The first step is to relate p to quantities which measure the spectra of oper- 

ators in a noncondmt background field. Recall that p is defined as 

I’ = --T+'OST(% 211 

= -7% [yo(S,’ - ieqd$y 
(3.9) 

Let us, for simplicity, assume static gauge fields with arbitrary spatial variation. 
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Then we can write: 

P=-j$TT[Yo(m -m,-I] 
--oD 

where 

p = -irO(W - i/L) + y’(ai - it?A;) 

(3.10) 

(3.11) 

Applying eq.(2.8), we get 

mdu p=- J %TT [w@’ + m)[D’ - m2 + eByo]-‘1 (3.12) 

--oo 

Since the riDi part of the integrand will not survive the trace, we can rewrite 

this as 
m 

p=i 
I 

$TT [ro[D2 - m2 + eByo]-‘[yo(w - i@) + im]] (3.13) 

Although D2 and B do not commute for nonconstant B, one can easily derive the 

following identity: 

[D2 - m2 + eByo]-’ = [l - GeBGeB]-‘(1 - GeByo)G (3.14) 

where 

G = (D2 - m2)-’ 

This identity allows us to perform the gamma matrix traces in our expression for 

p. The result is: 

p = 2i 
mdw J GT~ [[I - GeBGeB]-‘[(w - ip) - imGeB]G] (3.15) 

--m 
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With a few additional manipulations, one finds that this is equivalent to 

p=iT&Tr[(w-ip)($+&)+i-(&-$-)I c3.16) 

--oo 

where 

Of course, for constant B, this expression immediately reduces to eqn. (2.17). 

To see the topological nature of p let us first consider the p+O case. In 

this limit only the second term of our expression -the one proportional to m- 

survives. Define 

H’=-D;F~B 

E=w2+m2 
(3.17) 

Then we can write 

a0 m 
P=G J 1 1 

H++E-H-+-E 1 (3.18) 

d 

Provided that B goes to a nonzero constant value at spatial infinity, the spectrum 

of H* consists entirely of discrete bound eigenvalues with no continuum. The 

analytic behavior of the (regulated) trace as CL function of complex E consists of 

simple poles on the negative real axis. In addition the integrand has a branch 

cut, which we take to lie on the real axis to the right of the branch point E=m’. 

Since the trace is analytic at E=m*, and since the integrand is O(Ep3/*) as 

lE( --t co, we can rewrite eqn. (3.18) as a contour integral: 

m 
P=z 

1 1 
H++z-H-fz 1 (3.19) 

where the contour encloses the entire complex plane except for the branch cut 

and an infinitesimal disk around the branch point z = m2. Now note that H* 
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are related to the two-dimensional massless Euclidean Dirac operator. Writing: 

(3.20) 

we have: 

H- = LL’, H+ = LtL (3.21) 

Thus the nonaero eigenvalues of H* are paired, and their residues cancel in the 

evaluation of the contour integral. We are left with the zero mode contribution: 

A = dim Ker(L+L) - dim Ker(LLt) 

= dim Ke$L) - dim Ker(L+) 

(3.22) 

(3.23) 

Thus we have found that p is proportional to the indez of the operator L. 

Returning now to the general case of finite density, we must consider the 

contribution to p horn the first term in eqn. (3.16). This is given by 

1 1 

H++z 
+ 

H-+2 1 
C’ 

where we have changed variables: 

(w - ip)’ + ma -+ * 

The closed contour C’ crosses the real a& at +m and at -(pa-mz). We ob- 

serve that, for any B field configuration which goes asymptotically to a nonzero 

constant, the spectra of H* are purely discrete in z. Furthermore the integrand 

contains no branch cuts. The contour integral picks up the residues of discretely 

spaced poles. This discrete spacing is determined by the asymptotic behavior 

of the bound state eigenfunctions; thus the evaluation of the contour integral is 

insensitive to local perturbations in the background field. 
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Analogous results for I.L>O apply to the second term of (3.16). It should be 

noted that our analysis of the contour integrals in eqns.(3.19) and (3.24) assumes 

m2>0 and that z = -(pL2-m2) does not coincide with any poles. These are, of 

course, the same restrictions that appeared in our discussion of the Coleman-Hill 

theorem. 

4. Finite temperature behaviour 

So far we discussed the anyonic system at zero temperature. The more inter- 

esting question is, obviously, the behaviour of the system at a finite temperature 

T. The passage to finite temperature does not alter the fact that the condition for 

the massless mode in the current-current correlator is the vanishing of oR. Hence, 

we have to repeat the calculation of the p and II,,dd, which are now also function 

of the temperature, and check whether we still have II,,& = z. We shall only 

be calculate the one-loop contributions to these quantities (in tadpole-improved 

perturbation theory). Our proofs of the nonrenormalization theorem do not ex- 

tend to the &it= temperature case and it is nearly certain that the theorem fails 

to hold. 

Technically, the standard procedure to pass to the finite temperature calcu- 

lation in Eulidean space involves the compactification of the (Euclidean) time 

direction into the range 0 5 t 5 p = $ and the imposition of antiperiodic 

boundary conditions (in time) for fermions and periodic boundary conditions for 

bosom. For our calculation this implies replacing the integral over frequencies w 

with a sum over discrete ‘Matsubara’ frequencies w1 = %(I + i), 1 being an inte- 

ger. In particular we can evaluate the mean density po at finite temperature by 

using equation (2.17) but, instead of integrating over w, we sum over the discrete 

frequencies. This results in the expression: 

PO = ~~l=km ‘(w’ - +)( dnil(l) + &j )-im( d,:l(l) - & )I c4.1) 
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where 

d”(l) = (WI - i/~)~ + A@(n) = (WI - ip)’ + 2neB + m2 

The frequency sums C G(1) can be done exactly by evaluating contour integrals 

of the form 

1 
- 
2xi 

%!?G@) 
sinm (4.2) 

where the integral is over B contour which surrounds the real axis. When evalu- 

ating po we get the following answers for the sums: 

:qi&= [ -& tdd;(~ - WI - tgh[;(p + M)]] 

F T (yd;(;;) = ; [ t&r;(@ - M)] + tgfi[$ + iv)]] 
(4.3) 

Inserting these results into the expression (4.1) for po we get the following ex- 

pression for the density at finite temperature: 

po = g{“co [tgh[$ + M(n))1 + kh[‘& - Wn))l] - f$d& - l-1)1]) 

(4.4) 

Note that in the limit ,6’+cc this expression reduces to the zero temperature 

result given in eqn.(2.19). At nonzero temperature the density is no longer a 

step function as the chemical potential is varied. The steps are smoothed out 

as is shown for specific values of the parameters in Figure 6. This result is, of 

course well known from the theory of the Quantum Hall Effect. 

We now compute the renormaliaed CS term at finite temperature. The sim- 

plest way to do this is to use eqn.(2.28) which is valid at finite temperature. Recall 

that the renormaliaed Chern-Simons term is proportional to d(p/B)/d(B). In the 

zerca temperature case p WFLS (piecewise) proportional to eB and thus the reno- 

malieed Chern-Simons term vanished. At finite temperature we see from eqn. 

(4.4) that this is no longer the case. In fact p/eB is a monotonic function of eB. 
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The relation IIodd = epo/B is thus never valid, and the renormalized CS term is 

nonzero for any finite temperature. In fact by differentiating eqnJ4.4) we find: 

BR(P, T) = - =Ef= 
z4Pl4 

d(&) 

= -%g &) [tse$ + Wn))l - w+r - MW)l] 

(4.5) 

where (x=e2/47r. Note that the term inside the sum is positive for all values of 

n as long as @ is nonzero. Thus 6~ is nonzero for any nonzero value of p. Note 

that it is not necessary to use eqn.(2.28) t o evaluated the renormalieed Chern- 

Simons term. We have, in fact, evaluated it explicitly as a further check on the 

calculation. The steps leading to eqn. (2.34) can be repeated and one obtains 

precisely the same equation but with the integral over w replaced with the sum 

over ~1. Recall that the cancellation of the bare and one-loop CS term was a 

result of the vanishing of the term in the second line of eqn.(2.34) for the filled 

Landau levels -i.e., $$ # integer. It is straightforward to see that at finite 

temperature this term does not vanish. 

It is important to emphasize that this result, namely the presence of a nonzero 

renormalized Chern-Simons term at finite temperature, has only been demon- 

strated in the one-loop approximation. Although it is difficult to imagine that 

higher order perturbative effects would force the mass of this mode to vanish, it 

is, in principle, possible. More reasonably, nonperturbative effects may generate 

a massless mode in the current-current correlation even at finite temperature. It 

is well known that although long range order is not possible at finite temperature 

in 2+1 dimensions it is still possible for a massless mode to be present as occurs 

[“’ for a Kosterlita-Thouless transition. These ideas have been used quite widely 
[K-l in analyzing the finite temperature behaviour of anyonic systems. . We can 

certainly not rule out such behaviour but we must point out that in perturbation 

theory a mass is present and superfluidity is lost. 

In order to obtain an estimate of the size of the renormalized Chern-Simons 

26 



term and of the resulting mass of the “pseudo-Goldstone mode” we evaluate OR 

in the low temperature limit. (The p recise limit will be described below.) We 

shall specialize to the case of most interest for which the T=O, p=O Chern-Simons 

coefficient is an integer, N, i.e. for which N Landau levels are filled. We assume 

a density p of anyons. Keeping in mind the distinction between P~J,,,# and ps 

which was discussed in section 2, we then require a field eB=2xp/N. If we then 

assume that the temperature is sufficiently low so that p(M~-kf~-r)) >> 1 

(recall that M& = 2NeB + nz’) we can compute the sums in both eqn. (4.4) 

and eqn. (4.5) since only one term in each sum contributes significantly. We can 

express the result in terms of the renormalised value of N, Nren=2&~/e2 as 

N ren = (4.6) 

In the non-relativistic limit p << m2 this becomes 

N - 2Rp ,.e,, - --&(2N - l)e+p (4.7) 

We see that for integer N and for small temperature, the renormalised Chern- 

Simons term is exponentially suppressed compared to its unrenormalised value. 

The mass of the “pseudo-Goldstone” mode is given by: 

~PG = 2 = ($)( -3’(2N - 1)ezp (5) 

where for II, we have used the estimate derived in section 6. We can get a 

rough idea of the order of magnitude of this mass by putting in some possible 

numbers for the mass and density such as may occur in high Tc superconductors. 

Choosing the density p to be lO’*~rn-~ and the mass m to be the electron mass 

and a temperature 2’ of 100°K we find that mp~ is approximately 5 x lo@ ev. 

This corresponds to a distance scale of roughly 5 cm. This estimate is of course 

extremely crude since there are large uncertainties in the exponent. 
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The value of N,,, for non integer values of N (which is simply defined as 

2&/e’ with 0 the T=n=O value of the Chern-Simons term) also displays some 

interesting behaviour. At zero temperature it is infinite as can be seen from equa- 

tions (2.19) and (2.28). At finite temperature it is finite, though much larger than 

the value for integer N (at small temperatures.) We plot N,., as a function of N 

for various values of ,f3 and p in Figure 7. The exponential supression of Nr,, for 

integer N is evident in the figures. What is perhaps most interesting from these 

figures is that even at the one loop level there is critical behaviour of NIen as 

a function of temperature. Note that for any small temperature, at some point 

near any integer value of N, dN,,,/dN vanishes. For any such integer value of 

N there is a critical temperature T,(N) a b eve which this derivative is nonsero. 

It is plausible that even if there were some nonperturbative mechanism which 

would restore the massless mode at finite temperature or restore superconduc- 

tivity through coupling between layers, the above critical behaviour may signal 

an end to such behaviour and might thus be related to the phase transition to a 

normal state. 

In summarizing this section we once again point out that since we have no 

control of nonperturbative effects, we cannot argue convincingly that superfluid- 

ity is lost at any finite temperature. What we have, however, shown is that one 

of the main steps in the argument for superfluidity at zero temperature, namely 

the presence in the RPA approximation of a massless pole in the current-current 

correlation, is lost at finite temperature. 
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5. The criterion for anyonic superconductivity 

The field-theoretic criterion for superconductivity of a system of charged any- 

ons at zero temperature was derived by Banks and Lykken%sing an effective low 

energy approach. Here, following the same approach, we rederive this criterion in 

more detail and argue that it applies also to systems with non-zero temperature. 

We also show that the same criterion emerges by analyzing diagramatically the 

condition for a massless pole in the current-current correlator. 

We begin again with a single two-component massive fermion field coupled 

to the fictitious CS gauge field a,, now in a Minkowski space-time. 

L. = +w - m)* + pa&& 

By integrating over the fermionic degrees of freedom and those of the fictitious 

gauge field above a certain cutoff one gets for the low energy effective action 

&,ff = -~&f’Yfp, + ~&&=%Z,&~~ (5.2) 

where Ii,=II,(lc2=O) and lIO=II~(~z=O) are the parity even and odd parts of the 

vacuum polarization 

II,,, = II,(ka)(k,k, - grvka) - &(k2)EpvxkX (5.3) 

at zero four momentum, and &=&-& is the renormalieed CS coefficient. The 

quantum system which corresponds to (5.2) is equivalent’lslto that of one polar- 

ization of a massive (m = $) boson with spin fi for the case of 6’~#0, and to 

that of a massless scalar for &=O. Due to the equation of motion J’=6VYAEIyaA, 

a massless fictitious gauge field implies a massless pole in the current-current 

correlator. Thus a suficient condition for Ihe ezistence of a madesa pole is the 

vanishing of OR. 
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The next stage is to examine whether the system admits superconductivity 

when coupled to photons. Electromagnetism is introduced to the system via the 

Lagrangian 

1 
L = 13. - -F F’” - eaJ,A” 

4 pv (5.4) 

with J,, = -$yr$ the fermionic current, and A,,, eA the electromagnetic gauge 

field and coupling constant. The corresponding low energy effective action is 

given now by[‘O’: 

+ +eR@ a,,&*, - gLf'"f$w 

- $I,FfiUfCI" - $I.cpYX(A&a~ + a&AA) 

(5.5) 

In the case of interest, when &=O, we can rewrite this effective action in a 

Landau-Ginsburg (LG) form by considering the path integral 

2= 
J 

Va,DA,,eic*~~ (5.6) 

and changing variables from ax to the dual off,,“, ‘fX=’ 2= PYafpy. This should be 

accompanied by imposing the Bianchi identity on * fA via EL Lagrange multiplier 

$5: 

2= 
I 

-ZJ l fA~$~A,e’[ht(&v ‘fd+db ‘f”1 (5.7) 

Gaussian integration over * fA leads to the LG effective Lagrangian 

Lff(A,,~) = & (%@++A, fn. *Fm)'= ;(L&p+CA,+a *Fm)' 
e 

(5.8) 

where ‘P = * (assuming that II, does not vanish) , C = &, e=fl and *F . . 
is the dual to F. 
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Obviously one has to add to (5.8) the first line of eqn. (5.5). This effective 

action, which is invariant under ‘p-p - CA, A,+A,+~,h, is the Stuckelberg 

form of the Higgs mechanism. We thus see that a massless fictitious gauge field 

indeed leads to a photon mass term as well as to a (P,T violating) supercurrent. 

A discussion of the low energy action and the associated current is presented in 

section 6. 

To incorporate a fixed non-zero density of anyons one has to add a chemical 

potential term p$t4 to the Euclidean version of the Lagrangian given in eqn. 

(5.2). By introducing a chemical potential term we break Lorents invariance. 

This system is described in the low energy region by an effective action which is 

required to be invariant under the group of rotations rather then the full Lorents 

group. Hence, instead of eqn. (5.2) one gets 

Lff = -intfijf’j - ilI:fojf’j + ;eRCpvAapauaA (5.9) 

where IIf and II:, the coefficients of the magnetic and electric terms, are related 

to the non-relativistic parity-even vacuum polarization 

II;” = II.(k’)(k,k, - gpvkz) + lI:(k2)(kiki - 6’@6;6; (5.10) 

via lTf=II.(~=O, k’=O), lI~=II,(~=O, k’=O) + II:(s=O, k’=O). (We shall see 

in section 6 that this expression is not quite complete and that another tensor 

structure constructed out of the dual of k is also possible.) Notice, however, 

that there is no difference between the form of the CS term here and the one in 

the relativistic p=O case. There is no gauge invariant way to split the CS term. 

This is an an outcome of the fact that the CS term is a topological ( metric 

independent) term. It is straightforward to show that the same proof of the 

equivalence at OR=0 to the theory of a massless scalar applies also in the non- 

relativistic case. Another explicit derivation of this result is given in the appendix 

of ref. 1301. Turning on the electromagnetic interactions and following the same 
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steps that led to eqn. (5.8) we now get for OR=9 

‘kf(A,>v) =;(&v + CA$ - ;(+ + CAi)2 

f a(aO~ + CAO) *F” + b(ai(p + CA;) ‘F’ 

(5.11) 

where now v = 
d- 

q c=B 
n. ’ Jii? 

a=m and b=a. Notice, however, that this 

effective action is not the most general gauge and rotation invariant action of a 

non-relativistic real scalar coupled to an abelian gauge field in 2+1 dimensions. 

The most general case allows a#b as was found in ref. [29] where, for particular 

coefficients C,v,a and b, this LG action reproduced the current-current corre- 

lation function derived from the RPA method. In section 6 we show how this 

splitting may occur in the present formulation, and we relate, at the one-loop 

level, the even part of the zero-momentum vacuum-polarization to the corre- 

sponding parameters of the action. 

Finally, we will naturally be interested in considering the anyonic system at 

finite temperature. Technically, as was shown in section 4, the passage to non-zero 

temperature in the system is achieved by taking a compactified imaginary time 

direction with radius of p = 4 which, in momentum space, involves a summation 

over the Matsubara frequencies. These changes do not affect the criterion for 

superconductivity. 

As an alternate to the above discussion we investigate the condition for a 

massless pole in the current-current correlator < J,,(r)J,(r’) > diagramatically. 

We denote by K,,” the fourier transform of the correlator and express it in the 

perturbation expansion shown in Figure 8. It is clear that K is related to II by 

summing * geometric series: 

K = II &I 1 1 
where C represents the Chern-Simons propagator, which was discussed in Section 

2. The condition for the presence of a massless pole in K is that the deterrn- 
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nant det(l-CII) vanishes when the momentum k vanishes. Using the expres- 

sion (5.lO)for II:” near k = 0 we can now explicitly evaluate the determinant 

det(l-CD). The result is 

&(I - Cl-I)(k = 0) cc (1 - $@)’ (5.12) 

We thus see explicitly that a massless pole is present only if II,&k=O)=e. This is 

precisely the condition that the renormalized Chern-Simons term at finite density 

vanish. 

When coupled to electromagnetism this system is a superconductor. This 

can be easily seen diagramatically by treating the current-current correlation K 

evaluated above, as the leading order one-particle-irreducible vacuum polariza- 

tion for the electromagnetic photon. The photon propagator is then estimated by 

summing the geometric series shown in Figure 9. In Feynman gauge the photon 

propagator is given by (k’-l?-’ where I? is the coefficient of g,,” in K. Clearly 

if K has a massless pole and thus 2 N l/k2 as ka-+O, the photon propagator 

will have no massless pole, and will in fact have a pole at a nonzero value of k2. 

This leads to the Meissner effect. 

A similar argument for the duality between the fictitious and electromagnetic 

gauge fields was presented by Wen and Zee[“‘. For 0~ # 0 the Green’s function 

of a,, behaves ( in a relativistic formulation) as < aP(k >- ‘“$$#l 

where m is given by &&-I,. This two point function induces a current-current 

correlator which in the k+O limit behaves like < J,,(k)J,(-k) >- (gp”.t>~k”E”). 

When coupled to photons this leads to an effective Maxwell term for the photon 

without a mass term. This argument completes the picture of dual behaviour 

between the fictitious and electromagnetic gauge fields. 
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6. Low energy effective action 

The low energy effective action of a system of charged anyons was derived in 

the last section. For the finite density, non-relativistic case one has: 

Leff(A,, ip) = - ~F~~F~~ - i@A,8p~A 

i(30~ + CAo)’ - g(&p + CAi)’ 

+ a(809 + CAO) *F” + b(&p + CA;) l Fi 

(6.1) 

where the parameters ‘u, C a and b are functions of the magnetic and electric even 

parts of the vacuum-polarization as follows: v = @,C=-&,a=aand 

b=a. Note the presence of the electromagnetic Chern-Simons term which is ab- 

sent in ref.[29]. To generate a splitting between a and b one has to go back to equa- 

tion (5.9) and add to it an additional B&E’-like term, namely: ~IINc’jf;j&fo~. 

11~ is the coefficient”“’ of q’(c’“& + ei’p’)g” in the non-relativistic expression for 

II’j. In spite of the fact that this gauge and rotational invariant term is higher 

in derivatives it conspires with the mixed CS term to give a contribution to the 

term whose coefficient is a in (6.1). With such a term, and its mixed f with F 

analog, one gets: a = m[l + #J$-] and b = d%. 

Eqn. (6.1) is a description of the low lying collective excitations exhibiting 

the Stuckelberg form of the Riggs mechanism. This action was discussed in refs. 

[29] and [42]. In the absence of an electromagnetic field it describes a sound 

wave which turns into the longitudinal component of the massive photon. The 

“anyonic” origin of this action appears via the P and T violating terms which 

are proportional to a and b. If we set aside the F2 term then the current and the 

density are given by: 

Ji =-ZTf = -V2C(E4p + CAi) + aeij@(&v + CAO) - bcij&($p + CA’) 
I 

Jo =% = C(a0(0 + CAo) + iaCeijFij 

(6.2) 
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The first term of the current is the standard London supercurrent and the addi- 

tional terms emerge from the P and T violating terms of the action”“‘. 

We can estimate the values of the parameters IJ, C, a, and b by a one-loop 

dimensional analysis. This gives: 

IIB &s-$ 

b=~,?!?. 
J;;E 

(9.3) 

We can compute these parameters at the one-loop level from the even part of 

the vacuum polarization. (These calculations will be presented in a future pub- 

lication.) Note that, for the even part of the vacuum polarization, the nonrenor- 

malization theorem does not apply and there are higher loop corrections. 

It is interesting to compare our effective action to those of refs.[l3], (121, [29], 

and [30]. We obtain all of the P and T violating terms discussed in these papers. 

Unlike ref.[29] we find that the coefficient of ATFi is nonaero: it equals 8/2. It 

will be important to resolve this discrepancy since this term has experimental 

consequences which are potentially observable!“’ 

7. Summary and discussion 

In this work we have presented a field theoretical analysis of anyonic super- 

conductivity in the framework of CS gauge theory. By developing a tadpole- 

improved perturbation theory, in which fermions propagate in a constant back- 

ground magnetic field, we obtain a simple physical picture of the anyon gas 

analogous to the Integer Quantum Hall (IQH) system. A crucial difference, how- 

ever, is that the quantum constraints of CS theory relate the fermion density to 

the “statistics” mean field. This allows the fermi gas with exactly filled Landau 

levels to be compressible, resulting in a Goldstone mode and superfluidity!“lWe 

have seen that the dynamics of this phenomenon are entirely determined by a 
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one-loop CS graph, with no higher order corrections (at zero temperature). This 

is, a priori, a remarkable result. It becomes rather intuitive, however, in the 

IQH mean field picture with the Landau gap and purely discrete spectrum. It 

is amusing to note that the we&known insensitivity of the IQH quantization to 

impurities ““may be considered an “experimental confirmation” of our extended 

Coleman-Hill theorem! 

Our results, extending those of Fetter et al and of Chen et al, show rather 

conclusively that zero temperature anyonic superconductivity doea eziJt in a rig- 

orous theoretical framework. 

There remain the open questions of whether anyons provide a mechanism 

for high !Z’, superconductivity, and whether CuO superconductors utilize such a 

mechanism. Our CS formalism is not w&adapted to addressing these questions. 

As we have seen, our finite temperature perturbative results give indications both 

of a zero temperature phase transition (giving a pseudo-Goldstone mass) and of 

critical behavior at a finite T,-&3/m. Previous results and arguments ,II.Lt.,II, [la, 

indicate that the true behavior is of Kosterlitz-Thouless type; however, since 

we exhibit neither vortices nor a local order parameter we have not addressed 

this possibility directly. The less attractive scenario of a zero temperature phase 

transition should be considered seriously, even though our evidence for it is less 

than compelling. It is quite possible that the resolution of this issue will involve 

subtleties of the relationship between our CS description and other descriptions 

of the anyon gas. 
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APPENDIX A 

Fermion propagator, density and II, using 

Schwinger’s proper time integral 

The tadpole-corrected fermion propagator was shown in section 2 to be equiv- 

alent to that of a fermion in a constant fictitious magnetic field which is defined 

via the density: B=ep/B. We now calculate this propagator using Schwinger’s 

proper time integral: 

00 

ST(Z,Z’) =< ZI 
J 

de-=‘@ + m)lz’ > (A.11 
0 

where H=-(J3 J?I )=D2 + eZ3ua. We differ from the original calculation 1411 . m 

using a Euclidean metric and working in three dimensions. The matrix element 

of the operator V(s) = emHa is thus given”“by 

< zlU(s)l+’ > = c(Zt 2’) ,-L(-ia),-* 
SW 

x ,-t(z-.‘),[.Fcot(cF.)]“(t-z’). 
(A.21 

Where c(~ - zf) = &ei~~dY&W and e--L(--ia) = et% 
iziqizq’ Expanding the 

various factors in (A.2) we get the following expression for the tadpole-corrected 

fermion propagator 

co 

&.(+,d) = -..&ei~~dtpAJ&) 
J 

& 
e-m’, -& 

0 
s’/%nh(eBs)e ” (A.3) 

x ,-fescoc(es.)(z-Z’)i(Z--Z’)i x [cl + ~~~~ + Gini; 

where GI, Go and G’ are given by 

GI = mcoah(eBs) + &(t - t’)sinh(eBs) 

Go = -msinh(eBs) - $-(t - t’)cosh(eBs) 

Gi = _ tyi - Ifi) 

2sznh(eBs) 

(A.4) 
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Note that here we supressed the chemical potential. In the following compu- 

tations before integrating over the frequency we first analytically continue w+ 

w - ip. 

The next task is to calculate the fermion density. This is achieved by substi- 

tuting ST(Z--z’) from (A.4) into 

PO = -W-ro.%(q z)] (A.5) 

We have to integrate over d’(~-~‘)6(~;-~:) and then over d(t-l’)6(t-1’). The 

last delta function is written as 6(t-t’)=j_” $iw(t-t’). After the first integra- 

tion we find 

~jd(t-t’)Jm~eiu(t-t.)jda~ 
p = -&$/2 

-cw 

x e=+y?n - $(t - t’)(coth(ens)] 

2.93 =d4d zz- 
I 

-e-+‘+w~)[m + iwcolh(eBs)] 
47r= 2T 

-ca 

If we now write 

coth(eBs) = ; ; $:=-: = (1 + e--2y 2 e--2”=Ed 
l&=0 

(-4.6) 

tA.V, 

substitute it into (A.6) and replace w with w--ip we find exactly the same ex- 

pression (2.17) as found using the method described in section 2. 

The third step is to calculate the odd part of the vacuum polarization II,. 

We substitute (A.3) into eqn. (2.29) and just as in section 2 we extract the term 
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proportional to eijw The resulting term is: 

2ie2( eB)Z 
Ial) = 83.rr6 eij J,pP JdsE Jd’,‘pCl+~~-~)i.I~~~ 

0 

p’(d:+d:) -P -9 

x sinh(eB.Tl)ainh(eBsz) 
e,,1 e ,,1 x ,[-~eE[coth(eE~,)z’+coth(eEal)z~]] 

[( & - m2)sinh[eB(sl - Q)] - m(& - &)coah[eB(sl - Q)]]. 

(A.8) 

Now doing the z and I’ integration, and then the p integration, substituting 

k’ki = 0 We get: 

mo, QO) = 
2ie2( eB) 

18R3 e;j Jw Jdt Jdt~e~~~+~~-~w[~~$ 

0 

p’(r:+s:) ;tt 2 

x sinh(eBsl)sinh(eBJz) 
e *a, e 4.2 

N & - 7+7Lh[.d(3~ - 841 - ,7l(& - &)COSh[d+~ - q)]]. 

(A.91 

After integrating over t and t’ this reduces to 

ieyeq 
~~(O,clo) = 4Ta eij J&/$/s 

0 

em’(d+8i) 

x ainh(eBs~)sinh(eBs~) 
e-w’rle-(w-qo)‘r2 

[[-(w(w - qo) - m2)sinh[ef3(s, - s2)] - imqocosh[eB(sl - sz)]] . 
(A.10) 

Replacing hyperbolic trignometric functions with sums and integrating over the 

proper time variables ~1 and .Q one gets the same result as given in eqn. (2.34). 
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Figure Captions 

Fig 1: Two representations of the Feynman diagrams for the Chern-Simons 

theory. 

Fig 2: Tadpole contributions to the fermion propagator. SF represents the 

full fermion propagator. 

Fig 3: One loop diagram for the density pc in tadpole-improved perturbation 

theory. 

Fig 4: The physical density pPh = p(p) -p(O) is plotted versus pL2 x sign(p) 

at fixed B. Here sign(p) is the sign of p. 

Fig 5: Diagramatic representation of the result that 6epc/681, = fI,,,(q = 0). 

Only the simplest class of diagrams are shown. 

Fig 6: Numerical results for the physical density as a function of p for various 

values of the inverse temperature p. 

Fig 7: The renormalised Chern-Simons coefficient N,., = 27r9ren/e2 is plot- 

ted versus its unrenormalized value (by which we mean its eero density renor- 

mrdised value) for various temperatures and densities. 

Fig 8: Diagramatic expansion for the full current-current correlator for the 

pure Chern-Simons theory in terms of the one-particle- irreducible graphs. 

Fig 9: Diagramatic expansion for the electromagnetic photon propagator 

in terms of the current-current correlator K of the pure Chern-Simons theory. 

Electromagnetic corrections to the vacuum polarization are not shown. 
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