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ABSTRACT 

We study the gravitational field of static scalar field configurations representing 
thick, planar and cylindrical domain walls and thick, global cosmic strings by 
means of a new class of exact solutions of Einstein’s equations for a scalar field 
with potential V(G) = I/ocos*@-“) (@/f(n)) (0 < n < 1) . The planar solution 
describes two static walls that are separated by a space time singularity. A 
particle horizon exists and the metric on the horizon becomes a static Kamer 
metric that also contains Minkowski space time. The cylindrical solutions may 
be interpreted either as a cylindrical wall or as a thick string. Both configurations 
have a particle horizon. A Minkowski space on the horizon is conical with a deficit 
angle of - ?r, which is negative for strings. Even for an energy scale f << npl the 
energy density per length Gp is of the order one. In general, the string solution 
possesses no singularity, whereas the cylindrical wall has a singularity on the 
central axis. 
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1. Introduction 

-4s a relic of a symmetry breaking phase transition in the universe, scalar 
fields might play a significant role in the formation of cosmic structure. Among 
all possible scalar field configurations strings and domain walls have attracted 
most attentionl’* . One can divide these objects in two classes: InCnitely 
thin strings and walls for which the thickness is small compared to some typical 
curvature radius and thick strings and walls with non-negligible thickness. Since 
the infinitely thin strings and walls are supposed to form as a result of a phase 
transition at a GUT scale very early in the universe, the strings and walls have 
a width small compared to their typical curvature radius. In this case one can 
examine the effects of strings and walls on the surrounding matter distribution 
under the assumption that the whole energy momentum is concentrated on a 
single line for strings and on a single two-dimensional plane for wall~~“‘~ . Since 
the dominant interaction of these infinitely thin strings and walls is gravitation, 
it is of utmost importance to study the gravitational effects created by scalar 
fields6 which differ considerably from the gravitational effects of ordinary matter. 
In particular, it is desirable to impose constraints on any scenario of structure 
formation that involves scalar fields by the gravitationally induced distortion of 
the cosmic background radiation7 

The gravitational field of infinitely thin strings is a conical flat space time3 
with a deficit angle determined by the mass per length of the string. The deflec- 
tion of light in such a space time is independent from the impact parameter of 
the photons and the distortion of the background radiation is of step like nature’ 

The gravitational field of an infinitely thin wall has the remarkable property 
that particles are repelled’ and that a particle horizon exists4 . Another feature 
of thin walls whose significance in the cosmological context has not been clarified 
yet, &that no static solutions to Einstein equations with reflection symmetry 
exist ’ It has been shown that the vacuum space times on both sides of these 

thin walls are different static Kasner metrics’ . Only if the metric is allowed 
to depend on a time coordinate, reflection symmetric solutions exist. The cos- 
mological significance ,of thin st:‘o”le;s and walls has been extensively explored by 
means of numerical simulations ’ In the present paper, however, we study 
thick walls and strings that might arise in a phase transition after recombination. 
Recently, such a model of structure formation was proposed’2 , where scalar field 
configurations with intrinsic length scales of the order of Mpc arise after recom- 
bination to provide the seeds of galaxy formation. In order to put constraints 
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on the parameters of this model one has to know the gravitational effect on the 
background ra,diation of various possible scalar field configurations for which the 
approximation of the energy momentum tensor by a b-function no longer holds. 
To study thick walls and strings in the context of this galaxy formation scenario 
is the foremost motivation of this paper. 

The gravitational field of thick domain walls was studied in13’14”5”6 and was 

shown to be repulsive far away from the wall. Inr5 it was shown that, similar 
to the case of thin walls, no reflection symmetric thick walls exist and that the 
vacuum space time must be the Minkowski vacuum on one side of the wall and 
the Taub vacuum on the other side, provided the metric has two commuting 
space-like Killing vectors and, in addition, a rotational symmetry about any axis 
perpendicular to the wall. In16 an exact solution for a thick wsll with this 
three dimensional symmetry group was derived. The wall solution in the present 
paper has no rotational symmetry, i.e. it admits only two commuting Killing 
vectors, which is the difference between the assumptions on which the present 
paper and16 is based. For a string with constant energy density matched to a 

vacuum solution it was shown r’~* that the metric is conical far away from the 
center of the string with a deficit angle similar to that derived for an infinitely 
thin string. 

In this paper we derive a class of static solutions with two commuting, space- 
like Killing vectors which csn be interpreted either as a solution for a planar 
configuration without rotational symmetry about the axis perpendicular to the 
symmetry plane or as a solution for a cylindrical wall or an infinite string. The 
different interpretations of the solution depend on whether a coordinate along the 
~integral curves of one of the Killing fields is periodic or not and on the choice of 
an integration constant. It turns out that the plane Jymmetric solution describes 
two static walls separated by a space time singularity. Such a singularity is 
to be expected because the attraction between the walls presumably excludes 
the existence of a smooth configuration of two static walls. The solution tends 
asymptotically to a Kasner metric which contains also Minkowski space time for a 
certain choice of the parameters. Each of the two walls is not reflection symmetric 
about the location of the maximum of the scalar field density, but the solution is in 
fact symmetric about the singular plane between the two walls. This double-wall 
solution has horizons whose distance from the center of each wall is 0: l/J- 

(P7TI.Z is the density in the center of the wall). The distance between the walls 
is exactly twice the horizon distance. If the parameters are chosen such that the 
metric becomes Minkowski space on the horizon, test particles can move over the 
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entire range between the horizon and the singular plane and they are attracted 
towards the singular plane. If the metric is Kasner on the horizon, bound states 
are possible for massive particles. However, a particle cannot cross the singular 
plane because velocity and acceleration are infinite at the singularity. 

Since cylindrical symmetry is also characterized by two commuting space- 
like Killing vectors it is possible, by means of a different interpretation of the 
coordinates, to obtain from the same solution a cylindrical wall configuration 
and an infinite string solution. The cylindrical wall has either a singularity on 
the central axis and tends to Minkowski space asymptotically or it is flat on the 
axis and tends to a singular Levi-Civita vacuum solution asymptotically. Similar 
to the planar case a particle horizon exists. The location of the maximum of the 
scalar field energy density is halfway between the central axis and the horizon. 

Choosing a different value of a certain integration constant in the cylindrical 
solution yields a solution which describes a thick string, where the maximum 
of the energy density and the unbroken vacuum of the scalar field lies on the 
central axis. If the parameters in the string solution are chosen such that the 
metric becomes Minkowski on the horizon the space time is without singularities. 
This seems to contradict the predictions in” but all these investigations are 
based on a quartic scalar potential and the as6umption that the derivatives of 
the metric tensor vanish on the string axis whereas in our case the potential is 
a power of cos(@) and the derivatives of the metric are not zero on the axis. 
For the cylindrical wall and the string, the Minkowski space on the horizon is a 
conical space with a very weak dependence of the angular deficit on the energy 
per length. 

In section 2 the Einstein equations for a static scalar field with two space- 
like Killing vectors are given. We derive a solution for a scalar field potential 
V(@) = V,cos2(‘-“1 (@/f(n)) by means of an ad-hoc ansatz, determine the 
asymptotic vacuum states and the singularity. In section 3, 4 snd 5 we discuss 
the specific properties of the solution pertaining to the interpretation as a planar 
wall, a cylindrical wall and a string, respectively. 
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2. A, class of planar and cylindrical solutions 

2.1 EINSTEIN EQUATIONS 

We are looking for solutions to Einstein equations 

G,, = Rpy - ; grvR = 8rGT,, (2.1) 

where the source of the gravitational field is described by the energy momentum 
tensor for a scalar field @ 

T,w = QZ@vQ - g,w [ ; SPQ apwJ@ - V(Q)] . (2.2) 

We denote the spatial coordinates by zr, x2, a? and the time coordinate by z”. 
Solutions describing planar walls and cylindrical configurations shall be static 
and they shall admit two commuting space-like Killing vectors 

a/a2 , a/as3 (2.3) 

The orbits of the symmetry group are either planes or cylinders, depending on 
whether both of the coordinates x2, z3 run from -co to $03 or one of these 
coordinates is periodic. Using the freedom to transform the z1 coordinate in an 
arbitrary way one can take the metric in the form 

da2 = ,Wzl) (dzo)2-e2B(z') (&l)2-eB-A (dx2)2 -&A+C(z') (dx3)2 (2.4) 

where A, B, C are functions of x1. For a scalar field cP(z’) the energy momentum 
tensor (2.2) is: 

Too = T22 = T33 = + ; ,-28 ar2 + V(Q) 52 p 
(2.5) 

Tll = -; ,-2B Qi'2+V(+), -p 

where ‘prime’ denotes d/dx’ The Einstein equations become 

Go0 = - e-2B [4B” - B12 - 2A’B’ - 4A” + 3A12 + 2C” + C” f C’(B’ - 3A')] /4 = 8,& p 

G1' = _ e-2B [,” + 2A’B’ - 3A’2 + C’(B’ + A’)] /4 = -87rG p 

Gz2 = - e-2B [ 
2B” - Bt2 - 2A’B’ + 2A" + 3A12 + 2C" + Cl2 /4 = &G p 1 

G33 = - e-2B 2B” - B” - 2A’B’ + 2A” + 3Af2 1 /4 = 8nG p 

(2.6) 
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Now, G2 2 = Gr3 yields an equation for C 

2C” + c’2 = 0 (2.7) 

which is solved by 

ec = (2 - 02 , ( = const (2.8) 

Any constant multiple of this solution solves also (2.7), but the constant factor 
can always be absorbed in a redefinition of the x3 coordinate. Note that the 
trivial solution of (2.7) C = const leads to a metric with an additional rotational 
symmetry about the x1-axis. A solution with such a three dimensional symmetry 
group has been derived in16 . The scalar field equation W’;,, - dV/d@ = 0 
simplifies with (2.8) to: 

e-2B 
[ @’ 1 dV(@) 

-7 = O . 

From (2.6) one immediately finds that 

A” + (x, i_ [)A’ = 

1 

-8xG GB V(@) (2.10) 

B” = 3.4” - (=’ ; c) (B’ - 3A’) (2.11) 

Eqs. (2.9) - (2.11) and (2.8) are equivalent to the Einstein equations (2.6) and 
are sufficient to determine the functions A, B and @ for a given V(Q) 

2.2 AN EXACT SOLUTION 

An ansatz for B(+‘) that leads to a reasonable potential V(a) and an energy 
momentum tensor that vanishes for jz’l -+ 03 is 

eB=& [,!“,iq’ (2.12) 

(n, c, p = con&). With B(z’) given by (2.12) , A(xl) and V(zl) csn be calculated 
by (2.11) and (2.10) , respectively. The scalar field equation (2.9) (or equivalently 
one of eqs. (2.6)) yields @(x1) and by eliminating x1 from @(x1) and V(z’) one 
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gets V as a function of @ Carrying out all these steps one t%mlly obtains the 
following solution to eqs. (2.9) - (2.11) : 

,2A = (d - ()2nc13+2k 

[(x’ - fp + 1]2”/3 

,2B = p2 (X1 - c)2c”-2 

[(z’ - ()2C + 112” 

ec = (2 - <)2 

Q - @O = f arcsin i:: I$ i : 
1 I 

V(@) = v, [; cos ((@ 7 mo)/f)]2c1-“) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

1 1 
l/2 fz n(1 -n) 

12xG 
, Vo&c 

6*GP2 ’ 
k2+ [$(n~)~-l] (2.18) 

p, n, c, C, @s are constants. 

O<n<l (2.19) 

We have already eliminated all integration constants 
that are associated with a mere resealing of the coordinates. (This leaves us with 
dimensionless coordinates.) The physically meaningful constants are then n,c 
and p n determines the energy scale f of the scalar field as well as the power 
of the cosine in the potential, c/p determines the amplitude of the potential and 
c the steepness of scalar field distribution. The energy density p , the pressure p 
along the z’-axis and V as a function of t1 are given by: 

p = (2 - ?I.) v, 
@’ - po-4 

[(x’ - C)2” + p”) 

(z’ - po-4 

p = -?-I h [(=I _ 02” + 1]2P-“) 

(2.20) 

(2.21) 
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v = v, 
(z’ - p”-“’ 

[($ - <)2C + 1]2(‘-“) 
(2.22) 

It is interesting to note that the solution (2.13) - (2.22) is invariant under several 
transformations. A change of the sign c + -c leaves the metric and p,p,V 
invariant and changes only the sign of ip : (a - ips) + -(@ - as). Since the 
sign of @ has no physical meaning the sign of c can be chosen arbitrarily. To be 
specific, we assume henceforth c > 0 . Another transformation 

I’-<- 
1 -, k-,-k, x2+z3, z3-+z2 

x1 - c 
(2.23) 

changes also only the sign of @ - Gs . Therefore, a transformation (2.23) together 
with c + -c leaves the solution completely invariant. (2.23) transforms the 
region z1 + 00 to the point z1 = C and vice versa. Since (2.23) , which does 
not alter the physical interpretation of the solution, involves a change of the sign 
of k, one can conclude that the space time at x1 + co and at z1 = < must be 
different once the sign of k is fixed. Since the matter variables p, p, V vanish at 
x1 + 00 and at z1 = C this implies that the vacuum space time at x1 + co and 
z1 = C must be different. 

Note that the scalar field energy density p , the pressure p along the xl-axis 
and V are all proportional to each other. Thus, the location of possible extrema 
of density, pressure and potential energy all coincide. p, V have two maxima at 
x1 = C + 1 and z1 = < - 1. Consequently, since the pressure p along the x1-axis 
is always negative, p(x’) has two minima at x1 = C Z!Z 1. All the matter variables 
p,psndVvanishatz’=~andat lzll -+ M, i.e. the energy momentum tensor 
vanishes at these points and we have a vacuum space time at x1 = C and at 
lx’1 + co. At z1 = C p,p,V are continuous but not all derivatives are &rite. 
Which of the derivatives become k&rite depends on the parameters n,c . For 
example, the first derivatives of p, p, V are zero at z1 = < only if 2c(l - n) > 1 , 
otherwise they diverge. The scalar field @ becomes ip = ‘PO f xf /2 for z1 -+ koo 
and vanishes at the extrema of the density and the potential at x1 = 6 f 1 
Note that the scalar field probes only a half-period of the cosine-potential, i.e. 
the cosine in (2.li) is positive for finite x1 and becomes zero for /x11 + 00 and 
at z1 = C . A more detailed discussion of the solution pertinent to the specific 
interpretations is left to sections 3, 4 and 5. Before we embark on this, we 
examine the asymptotic behavior of the solution and possible singularities. 



2.3 ASYMPTOT~CS AND SINGULARITIES 

Realistic scalar field configurations should have a gravitational field that is 
flat far away from the peak of the energy density. In order to determine for 
which combination of the parameters the solution becomes flat space in some 
asymptotic region we examine the solution at the points krll -+ M and z1 = C 
where the energy momentum tensor vanishes. The vacuum space time at lzl I + 
00 and z1 = C will be some general static vacuum metric with two commuting 
Killing vectors which becomes Minkowski space only for a particular choice of 
the parameters of our solution. The general vacuum mettic in the coordinate 
system (2.4) obtained from (2.6) in the limit p = p = V = 0, is: 

where the constants a, b satisfy 
(2.24) 

(2.25) 

The metric (2.24) is equivalent to the Kasner metric, since a coordinate trans- 
formation 2’ = (zl - C)* casts (2.24) into the well known form 20 

ds2 = (?1)2Pl(dzo)2 _ (&I)? _ (,1)2P~(&2)2 - (,1)2P3(&3)2 (2.26) 

with pr = a/b , p2 = (b - a - 1)/(2b) , p3 = (b - a + 1)/(2b) and pr + pz + ps = 
(PI)’ + (~2)’ + (~3)’ = 1 . The metric (2.24) is Minkowski space time for a = 0 
and b=il. 

Now, we determine the asymptotic form of our metric (2.13) - (2.15) at the 
points x1 = C and krl 1 + co and relate the constants o, b in the general vacuum 
metric (2.24) to the parameters in our solution. From that we can determine 
which choice of these parameters yields a flat space time. For 1~~1 -t co the 
metric (2.13) - (2.15) , (2.4), (2.8) becomes a vacuum space time of the form 
(2.24) with the parameters (note that n,c > 0): 

1 
a=-yc+k , b=-nc for [I’[ + co (2.27) 

and for x1 + C the solution is asymptotically of the form (2.24) with 

a=inc+k , b=nc for x1-+( (2.28) 

The parameters in the asymptotic form of the solution (2.27) and (2.28) satisfy 
the relation (2.25) if the definition of k (2.18) is taken into account. (2.27) and 
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(2.28) show that we have Minkowski space (o = 0, b = fl) either at a? or at 
Izi 1 + 03 for the following combinations of parameters: 

Minkowski at lzll+ co : nc = 1 , k = +i (2.29) 

Minkowski at z1 = C : nc = 1 , k = -$ (2.30) 

Once the sign of k is fixed it is not possible that the solution becomes flat space 
at lzrl --) co and at z1 = C simultaneously. For nc # 1 the vacuum space times 
at lzrl --) oi, and z1 = < are different Kamer metrics. 

Although the matter variables are finite in the whole coordinate range 
-ao < zr < +W some metric components become infinite or zero at s? = C 
or lzlj -) co, depending on the parameters. However, there is no combination 
of the parameters for which the metric tensor is completely free of singularities 
and zero points. In the remaining part of this section we examine whether these 
infinities are merely singularities induced by the coordinate system or real space 
time singularities. A true space time singularity occurs at Is? 1 -+ 00 or at z1 = C 
if some curvature invariant diverges. The Ricci scalar 

R = 2Vo(n - 3) 
(I’ - p-4 

[@l - 02” + 1]2(1-“) 

is fmite everywhere since n < I and clearly cannot be used as an indicator for 
a singularity at lzlj + M or x1 = C . In the following we use the square of the 
Remann tensor R,,“#J, as a means to probe the singular behavior at the points 
in question. For our solution this invariant is: 

R 
16 m RI’uflA = & - 1 

pvox 27p4 (=I _ ,34cn [(=I _ <)2c + ,]4(1-R) 

x{ (z’-<)~’ [(z’-[)“+2] K- [z (z’-c)z’+l] Kf12c3n (2n2-4n+3) (~‘-0”) 

(2.32) 

I< z (Al.2 - 3) &G-z f 2 (cm)3 (2.33) 

The upper signs in (2.32) and (2.33) hold for k > 0 and the lower ones for k < 0 . 
For k = 0 e (cn)’ = 3/4 the two expressions coincide. In the case nc # 1 , where 
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the metric is neither flat at jr1 / + 03 nor at z1 = 5, the invariant (2.32) diverges 
at z1 = C for any X: as 0: (r’ - C)-4”c and becomes zero for jzrl + 00 . In the 
more interesting case nc = 1, k = +1/3 where the space time is flat at Is?\ + co 
(see (2.29)) the invariant diverges at Z’ = C . Vice versa, for nc = 1, k = -l/3 
(see (2.30)) the invariant diverges at (I’( + 03 and is zero at z1 = < . Thus, for 
nc # 1 the point z1 = C is always singular and for nc = 1 the singularity is at 
z1 = C if k = +1/3 or at lzll ---) co if k = -l/3. 

To summarize this section, the solution we have found describes a scalar field 
configuration with two maxima of the energy density and the scalar potential at 
z1 = C f 1. The space time becomes a vacuum both at lz’l -$ co end t1 = C 
where the scalar field sits in the potential minimum. For nc # 1 these vacua 
are Kasner metrics and the point t1 = C is a space time singularity. For nc = 1 
and k = +I/3 the vacuum at 11’1 + co is Minkowski and z1 = C is singular, for 
nc = 1 and k = -l/3 the vacuum at z1 = C is Minkowski and the singularity 
is at lzll -) os . In the next three sections we discuss specific properties of the 
solution that are related to the different possible interpretations. 

3. Planar domain walls 

A metric with two space-like Killing vectors like (2.4) admits two different 
interpretations depending on the range of the coordinates. One has a planar 
space time if -oo < z1,x2,z3 < +oo and a cylindrical if the coordinates are 
bounded by 0 5 z1 < $03 , -cw < x2 < +oo and 0 < z3 5 2a . In this chapter 
we explore properties of the solution arising in the context of the interpretation 
as a planar domain wall configuration. For this purpose we rewrite the solution 
in coordinates z E x1 , I E x2 , y E z3 and t E z” , where the z coordinate 
runs perpendicular to the wall and I, y are coordinates parametrizing the planes 
parallel to the well. We also set the constant C = 0, since in the interpretation 
as a domain wall C is associated only with a translation of the entire wall along 
the z axis. Only in the cylindrical case < acquires a nontrivial meaning. Then 
the metric is 

ds2 = h2n/322k. &2 _ &2”z-2&2 _ p?h2”/3 [z-k-‘&2 + f-k+$,2} (3.1) 

h(z) = ” 
++ 1 ’ (3.2) 

the matter variables are 

V = p/(2 - n) = -p/n = V, h’(‘-“) (3.3) 
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and the scalar field is 

*2c - 1 
@-a0 = f arcsin zzc [ 1 . 

k, f, c, n, p are related according to (2.18) . The density p and V have two maxima 
at z = fl where the scalar field sits in the maximum of V(a) and they vanish at 
z = 0 and 1.~1 + co , where @ is in the minimum of the potential. Fig. 1 and Fig. 
2 are graphs of the matter variables and the scalar field where the proper distance 
along the z-axis has been used instead of the coordinate distance z. Note that 
although the coordinate position z = fl of the extrema is independent of the 
parameters in the solution the corresponding proper distances do depend on the 
parameters, as one would expect. Because of these two different extrema of the 
matter variables the solution (3.1) - (3.4) re p resents two static, planar domain 
walls for which the energy momentum tensor vanishes at IzI ---) co and at z = 0. 
As far as w;sknow this is the first time a double-wall solution has been found. The 
solution in represents only a single wall. According to section 2.3 the plane 
z = 0 between the walls is singular (because the square of the Riemann tensor 
(2.32) blows up) if nc # 1 and the vacuum at Irl + 00 and z = 0 is a Kasner 
metric. In the case nc = 1, k = +1/3 the metric (3.1) is Minkowski space time at 
IzI + 00, but still singular at .z = 0. For nc = 1 , k = -l/3 the vacuum at z = 0 
is flat space and a singular Kasner metric at 1.~1 -t co. Clearly, the physically 
most reasonable case is the one where the space time becomes flat outside the 
walls (nc = 1, k = +1/3). The singularity between the walls at .z = ,O in this case 
is not very surprising, because a smooth solution with two static walls seems 
very implausible on account of the gravitational attraction between the walls 
which renders any static configuration with more than one body impossible. One 
might speculate that this singularity arises from the collision of two moving walls. 
For some initial conditions the dynamical evolution of domain walls could lead 
asymptotically in time to a configuration described by the above static solution. 
However, in order to corroborate the statement that our static solution is some 
generic product of the evolution of domain walls one would have to prove the 
stability of this solution, which is presumably an intricate problem. 

It is not yet clear whether the region IzI + co really is at an infinite proper 
distance from the centers of the walls. The proper distance s between two points 
q and z2 measured along a space like curve perpendicular to the wall is given by 

I2 

s = p J z-‘/P’ dz (3.5) 

a 

12 



Therefore, the proper distance SH between z = 0 and z + +oo is 

sH = P (1+ n) 2-Rfi v + 42) 
cn W/2 + $4 

which is a finite quantity for 0 < R < 1 ( I’ is the usual r-function). This is an 
important result, because it means that any particle moving in the gravitational 
field of the walls can only travel a finite distance beyond the center of the walls 
(‘particle horizon’). Such a particle horizon has been shown to exist also for 
intkitely thin domain walls4 . It is also interesting to note that the proper 
distance between the vacuum at z = 0 and the center of the walls at z = fl 
is exactly sg/2 , i.e. the centers of the walls lie halfway between the horizons 
at z = fw and the vacuum at z = 0 (see Fig.1). Nevertheless, the walls are 
not symmetric about the planes z = fl , however, the solution is reflection 
symmetric about z = 0. By means of (3.3) and (2.18) one can relate the horizon 
size so to the maximum value of the scalar field density pmo+ = p(z = fl) 
= ve(2 - n) 4(+‘) 

sH=& (1+ n) &=m ry;;2+;;;;) (3.7) 

The fraction of r-functions y = r(l + n/2)/l-(3/2 + n/2) in (3.6) and (3.7) lies 
in the range fi/2 < y < 2/d for 0 < n < 1. Thus, the horizon distance and 
the distance between the two walls varies as 0: l/J-. Finally we want to 
relate the energy density per surface element e to the parameters of the solution. 
The definition of energy is always ambigious in General Relativity, especially if 
the space time is not asymptotically flat. But a plausible, coordinate invariant 
definition of o is provided by the integral of p over the element of proper length 
along the z-axis: 

m 

6E J ,, ~~~"z-~& = (2 -;' T-&c & '(;$;,r(l,-$ (3.8) 
0 

To get an impression how the gravitational field of the walls acts on sur- 
rounding matter, we briefly investigate the trajectories of test pa.rticles moving 
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perpendicular to the wall. The first integrals of the geodesic equations for a 
particle on a curve rfi = (l(r), z(r),O, 0) are 

i = E ,-2kqz)-2d3 (3.10) 

i2 = L z2h(z)-2” 82 
E2 f-2k+)-2”/3 _ p2 

I (3.11) 

‘dot’ denotes d/dr, E is a constant and p2 = I,0 for massive and massless 
particles, respectively. Particles can be in a bound state if a turning point i2 = o 
exists. For massless particles (p2 = 0) there is no turning point at finite t # 0. 
But the particles cannot cross the plane z = 0 if it is singular, as is the case for 
nc # 1 and nc = 1, k = +1/3. For massive particles, however, points 1.~~1 < 00 

E2 - (~~)~~(h(q))~“/~ = o (3.12) 

where i2 = 0 can exist, depending on the parameter combination TIC. In Fig. 3 
Ph( *y/3 is plotted for the three different cases where nc is larger smaller or 
equal to one. For nc > 1 every massive particle is in a bound state moving in 
the finite range 1.~1 5 12~1 which clearly corresponds to a finite proper distance 
from the wall. For nc = 1 bound states exist only for E2 < 1 and particles with 
E2 > 1 can move in the entire range of the horizon. The case RC < 1 is similar 
to the latter one, i.e. bound states exist only for E2 < 1. However, even if there 
are no turning points, the horizon is the maximal distance a particle can traverse 
in any case. No particle can cross the singular plane z = 0 since the velocity and 
the acceleration diverge at this point. 

4. Cylindrical domain walls 

If we identify one of the coordinates in the orbit of the symmetry group, say 
z3, at infinity, i.e. we assume that it is periodic, we get a cylindrical space time 
where I’ is the distance from the cylinder axis, z2 runs along the axis and z3 
is an azimuthal angle in the planes x2 = const. Setting the constant C = 0 will 
allow us to interpret the solution as a cylindrical domain wall. In more familiar 
notation adapted to the cylindrical symmetry 

r=xI ) ZEX2 , r$ z x3 

O<r<w ) -oo<r<+m ) 05551277 (4.1) 
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the solution is: 

ds2 = g(r) 2n/3,2kdt2 _ p2r-2g2ndr2 _ p2g2”/3r-k-1 [dz2 + ,.xdd2] (4.2) 

V = p/(2 - n) = -p/n = V, g2C1-“) 

rzc - 1 
@ - @PO = f arcsin r2~ [ 1 

The density, pressure and potential vanish both at r = 0 and r + 00 where the 
scalar field is in the minimum of the potential V(q). p and V attain its maximum 
at r = 1 whose proper distance s from the origin r = 0 is 

1 

s(r = 1) = p J r-lgn & = PC1 + n)2-n-l & ui + d2) 
cn r(3/2 + n/2) (4.6) 

0 

In Fig. 4 and Fig. 5 the density and the scalar field distribution is depicted as 
a function of the proper distance in the radial direction. This behavior of the 
scalar field and the density characterizes a domain wall. Again, there is a horizon 
(r + co) at a proper distance SH (see (3.6) ) from the central axis which is exactly 
twice the radius of the cylindrical wall. Thus, the location of the center of the 
wall is halfway between the origin r = 0 and the horizon r + 00. Note that sg 
is related to pmaz = p(r = 1) according to (3.7) For nc # 1 the space time on 
the axis r = 0 is singular since RpVO~ Rpyux diverges and becomes a Levi-Civita 

vacuum metric on the horizon. The Levi-Civita metric 
20 

is formally equivalent 
to the Kasner metric (2.24) , (2.25) if the coordinates are identified according to 
(4.1) . For nc = 1, k = +1/3 the space time on the horizon r + 00 is Minkowski 
and a singular Levi-Civita vacuum on the z-axis, whereas for nc = 1, k = -l/3 
the metric is singular on the horizon and flat space on the z-axis. 

Finally, we demonstrate an intriguing property of this geometry of a cylin- 
drical domain wall in the case nc = 1, k = l/3 (Minkowski space on the horizon 
r + co). This property is closely related to the typical features of a conical space 
of an infinitely thin string. Consider the circumference U of a circle with center 

15 



at r = 0 in a plane 2 = const as it varies with radius 

l/7=2x/3 
r213 

1 1 
43 

r2tR + 1 

(4.7) 

This is a monotonically growing function of r whose limit at the horizon r + co 
is 

2” I’(312 + n/2) 
u(+-tw)=2*P=2*s61 (1+n)6 r(l+n,2) (4.8) 

so (see (3.6) ) is equal to the proper radius of the circle on the horizon. Since 
the circumference U is smaller than the value 2~7.9~~ which one expects in a flat 
space, the Minkowski space on the horizon is a conical space similar to the conical 
space created by an infinitely thin string. The relative angular deficit 

A ~ 277s~ - u(r + 03) = 1 _ 2” r(3/2 + n/2) 
2mg (l+n)Jii ro+n/2) (4.9) 

is determined by n which in turn is given by the energy scale f of the scalar field 
(see (2.18)). Note that the angular deficit used in the literature3”“‘* is simply 
2n A. A varies between the limiting values 

A =0.5 for n -+ 0 

A =0.36 for 71 + 1 
(4.10) 

Note that for an energy scale f of the order of the Planck scale n is about l/2 
and for example for f x 1015GeV n x 10-s. Thus, for an energy scale f well 
below the Planck scale, the circumference of a circle with proper radius equal 
to the horizon distance is about half the circumference of a circle in flat space. 
For thin strings the angular deficit is determined by the energy per unit length 
of the string. Therefore we try to relate the deficit A to the energy density per 
unit length p along the cylinder axis. We define p as the integral of the density 
p over the proper surface element in the z = coast plane: 

2x m 

=[2On)nc r(l -n/3+(1 - k)/(4c)) r(l -n/3-(1 - k)/(4c)) 
(4.11) 

6G r(2 - 2n/3) 

P is the standard Gamma-function. For the case where the space time on the 
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horizon is Minkowski space, nc = 1, k = +1/3 , p becomes 

~ = (2 -n) r(l -n/6) r(l -n/2) 
6G r(2 - 2n/3) 

(4.12) 

Thus, n determines p as well as the angular deficit A uniquely. By eliminating n 
from (4.12) and (4.9) one gets A as a function of the energy density per length of 
the cylinder. Since 0.36 < A < 0.5 has no strong dependence on the parameter 
n the dependence on the energy per length is very weak. The energy density per 
length p (4.12) varies between the limits 

/.iG =; for 7240 

pG = 0.37 for n + 1 
(4.13) 

The parameter n determines the energy scale f of the scalar field. Thus, the 
energy per length of the cylinder PG is always of the order one and fairly inde- 
pendent of the energy scale f. 

5. Infinite string 

If the coordinate ranges are chosen as in the cylindrical wall solution (see 
(4.1)) and if the integration constant C = -1, the solution (2.13) - (2.22) repre- 
sents an infmite string along the z-axis where the energy density has a maximum 
at r = 0 and the scalar field sits in the maximum of V(Q). With the definitions 
(4.1) the string solution is 

ds2 = q2n/3(r+1)2kdt2-~2q2n(r+1)-2dr2-~2q2n/3(r+1)-k-1 [dz2+(r+1)2dd2] 

(5.1) 

(5.2) 

V = p/(2 - n) = -p/n = V, q2(‘-“) (5.3) 

@ - a0 = f &sin (r + lj2’ - l 
1 (r + 1)2c + 1 1 (5.4) 

Fig. 6 and Fig. 7 are plots of the density and the scalar field as a function of 
proper distance in the radial direction. Note that the first derivatives of ip and 
the metric are not zero at the origin r = 0. 



Since the string metric differs from the cylindrical wall metric merely by the 
choice of an integration constant, the string and the wall have some properties 
in common. There is also a horizon, i.e. the proper distance sg between the axis 
r = 0 and r + 00 is finite 

sg = J?; PC1 + n) 2-d r(l + n/2) = 

nC r(3/2+n/2) 

= 2~-&(l + n)m ry$2+T$i, 
ma 

(5.5) 

and half the horizon distance for a cylindrical wall. For the choice nc = 1, k = l/3 
the space time becomes flat space on the horizon r + 00 and all components of 
the metric tensor are fmite everywhere, i.e. the solution is singularity free. For 
nc = 1, k = -l/3 the space time becomes a singular Levi-Civita vacuum on 
the horizon. For all the other possibilities (nc # 1) the invariant (2.32) is finite 
everywhere, which does not imply that the solution has no singularities at r + 00 
since there might be other invariants which blow up. The absence of a singularity 
in the ca,se where the metric is flat on the horizon seems to contradict the proof 
in 

19 that any string solution must have a singularity. However, these statements 
are based on a quartic scaler field potential and the assumptions that the metric 
is Minkowski on the z-axis and that the first derivatives of the metric tensor 
vanish on the string axis. All these presuppositions required for the proof are 
not fulfilled by the present string solution which, we surmise, renders the proof 
in 

19 
not relevant to our solution. 

The circumference U of a circle in the L = cunst plane with center at r = 0 
increases with r as 

u=2np 
(r + 1)2/3 

[(r + l)2/n + I] “‘3 
(5.6) 

if the space time is flat on the horizon (nc = 1, k = +1/3). Note that U does not 
tend to zero if the radius of the circle goes to zero r -+ 0. This strange property 
may be due to the fact that the geometry on the string axis is not Minkowski 
space and that the derivatives of the metric at r = 0 are not zero. On the horizon 
r + cc the circumference U + 27rp. But, since for the string the proper radius 
of the circle on the horizon is only half the value of the corresponding value for 
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the cylindrica,l wall (compare (3.6) and (5.5) ) V(r -+ 03) now becomes 

p+1 

u(r + w) = 2?r sH (1 + n)J;; 
r(3,2 + n/2) 
r(l + n/2) (5.7) 

which is twice the value (4.8) . Consequently, the relative angular deficit, defined 
in (4.9) , becomes negative and varies between 

A =O for n -+ 0 

A = - 0.28 for n+l (5.8) 

A negative A means that the circumference is larger than the circumference of a 
circle with the same radius in ordinary flat space. This result seems quite strange 
especially since the gravitational field of the string (5.1) for r --t 00 is the same as 
the gravitational field of the cylindrical wall (4.2) . But, as mentioned above, the 
circumference U does not vanish at r = 0 in the string metric, which presumably 
leads to such oddities on the horizon. If one defines the ‘true’ radius of the circle 
such that the circumference vanishes on the axis, the deficit would clearly be the 
same as in the case of a cylindrical wall. Finally, we give the energy density per 
length of the string e defined as the integral of p over the proper surface element 
in the z = const plane between r = 0 and r -t 00 

(2 - 71) nc2 
’ = 4G(3c - nc + 3k - 3) 

22”/3 F(1, n/3+( I- k)/(2c), 2-n/3-(1 - k)/c;,;ii 

where F(a, b, c; .z) is the hypergeometric function. For the case nc = 1, k = +-l/3 
this becomes 

2 - R 
’ = 12G (1 - n.) 

22”/3 F(1,2n/3,2 - n, -1) 

Therefore, for an energy scale f well below the Planck mass , i.e. for n + 0, the 
energy per length becomes eG = l/6. 
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6. Summary and concluding remarks 

We have discussed a new solution of the Einstein equations for scalar fields 
describing thick, planar and cylindrical domain walls and infinite thick strings. 
All configurations possess a particle horizon. The planar solution represents 
two static walls divided by a plane where the space time becomes a singular 
Kasner metric in general. However, for one particular choice of the parameters 
(nc = 1, k = -l/3) the vacuum on this plane can be Minkowski space, whereby 
a singularity appears on the horizon. If the parameters are chosen such that the 
space time is flat on the horizon, a singularity between the walls is unavoidable. 
Similar to the planar walls, the cylindrical wall is singular on the axis if the 
metric is flat on the horizon. Again, for special parameters the space time is flat 
on the axis and becomes singular on the horizon. It was shown that a flat space 
on the horizon is conical with an angular deficit determined by n or f(n), the 
energy scale of the scalar field, which in turn is related to the energy density per 
length. The relative angular deficit depends very weakly on n and varies between 
0.36....0.5. This is very large compared to an infinitely thin string with typical 
deficit of the order of 10e6. The energy per length PG of the cylindrical wall is 
also determined by n and is for the entire range of n always of the order one. The 
metric for the thick string is quite similar to the cylindrical wall but seems to be 
more pathological, since for any choice of the parameters the fist derivatives of 
the metric and the scalar field do not vanish on the string axis. Consequently, 
the circumference of a circle with zero radius does not vanish and the angular 
deficit of a circle on the horizon becomes negative, i.e. the circumference of a 
circle is larger than the circumference in ordinary flat space. 

In order to get an impression of the possible length scales of the objects we are 
dis;ussing, we take the numerical values for the scalar field potential of the model 
in and plug them into our solutions. For f x 1015GeV and a neutrino mass 
m, = lo-“eV the parameter n becomes n = lo-‘. Note that the parameter c of 
our solution is determined by n, solely by demanding that the solution becomes 
flat space on the horizon (nc = 1, k = l/3). In the model Vo is determined by 
the neutrino mass Vo x mu4 and we get for the horizon size SH x lO*Mpc which 
is much larger than the horizon of the present universe. Thus, since so is also 
the typical distance between the two walls in the planar solution and the typical 
thickness of the walls and strings, already a single wall or string created by such 
a late-time phase transition proposed in 12 , would dominate the entire universe. 
Only a larger f and/or a larger my could reduce the typical length scales such 
tha,t a dominance of the whole universe is avoided. For example for f x 10”GeV 
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andm,% 1eV the horizon size becomes SH zlO*Mpc. 

Two other issues not addressed in this paper but relevant in a cosmological 
context, are the question of stability and the effect on the cosmic background 
radiation. According to Derrick’s theorem 21 one-dimensional static scalar fields 
in Minkowski space (‘kink’ solution) are stable, whereas static 3D configurations 
cannot be stable in flat space. Since one cannot expect that gravitational effects 
stabilize scalar fields, one would surmise that 3D self-gravitating scalar fields 
are in general unstable too. However, our solutions depend only on one spatial 
coordinate. Since the corresponding flat space configurations are stable, there is 
at least a chance that our solutions are stable. In general, this question requires 
a detailed perturbation analysis. However, for the application of these scalar 
fields in the context of a scenario for structure formation, the stability is not that 
important, because the domain walls and strings are supposed to provide only 
strong temporary gravitational seeds for baryon clustering. Such a scenario would 
work if the domain walls survive a certain period during which enough baryonic 
matter accretes onto the walls to account for the observed mssses of galaxies 
and clusters. The basic requirement for a viable scenario involving scalar fields 
after recombination is that the decay time of the domain walls is larger than the 
typical time scale of accretion. The question how these scalar fields effect the 
cosmic background is an important topic of future research which will enable us 
to put constraints on the model of a late time phase transition by comparing the 
gravitationally induced distortion with the observed isotropy. 
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FIGURE CAPTIONS 

1. Density vs. proper distance along the z-axis for two domain walls (n = 
0.5, c = 2.0, k = +1/3). The dashed lines are the horizons at distance sg. 

2. The scalar field ~9 vs. proper distance along the z-axis for two domain walls 
(n = 0.5, c = 2.0, k = +1/3). The dashed lines are the horizons. 

3. The 911 component of the metric (3.1) which determines the turning points 
for test particles for the planar walls according to (3.12). 

4. Density vs. proper distance perpendicular to the axis for a cylindrical 
domain wall (n = 0.5, c = 2.0, k = +1/3). The dashed line is the horizon. 

5. The scalar field vs. proper distance perpendicular to the axis for a cylin- 
drical domain wall (n = 0.5,~ = 2.0, k = +1/3). The dashed line is the 
horizon. 

6. Density vs. proper distance perpendicular to the axis for a thick string 
(n = 0.5, c = 2.0, k = +1/3). The dashed line is the horizon. 

7. The scalar field vs. proper distance perpendicular to the axis for a thick 
string (n = 0.5,~ = 2.0, k = +1/3). The dashed line is the horizon. 
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