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ABSTRACT 

We carefully re-analyse a lattice model of oriented closed bosonic strings in light 

cone gauge due to Klebanov and Susskind, completing the procedure suggested by 

these authors for solving for the spectrum. Our results enable us to relate the concept 

of minimum distance in bosonic string theory in un-compactified space to the phase 

structure of strings on tori, and in particular their duality symmetry. Generalisations 

to a theory of arbitrary dimension are given. 
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I. Introduction 

In the realm of bosonic and superstring theories, many of the questions of physical 

principle seem as difficult as they ever were. To name but one example, the tachyon 

which forced the construction of’superstring theories originally, reappears unbidden 

in the canonical partition function of finite temperature superstring theories [I,z]. 

Inevitably one is led to consider the possibility of phase transition to a new vacuum 

at the appearance of such tachyons. In order to study such phenomena it is neces- 

sary to have a non-perturbative framework for string theory. This requires both a 

second quantized formulation and a non-perturbative regularization, in conventional 

language. A possible basis for such a framework in fact appears in an ingenious pa- 

per by Klebanov and Susskind [3], where they study a light-cone lattice hamiltonian 

originally proposed for investigating lattice gauge theory. It is a matrix model on 

a D - 2 dimensional transverse lattice, in which string excitations arise for a broad 

range of parameters. 

In fact lattice regularization of transverse space in the light cone formulation of 

bosonic string theory is a key to revealing the wild spatial properties of strings and 

their lack of short distance structure. It is these properties that we concentrate upon 

in this paper. In the following section 2 we give a short review of the curious spatial 

properties of the bosonic string. In sections 3 and 4 we shall study a version of 

the light cone hamiltonian proposed in ref.[3], which in a certain limit describes free 

strings without the necessity of tuning a spatial lattice spacing to zero. The spectrum 

given in ref.[3] in fact appears to be double that of free string theory. By imposing 

hitherto neglected Hilbert space constraints we will see that the spectrum is indeed 

that of a free string. In section 5 we go on to discuss the phase structure of the 

lattice model to the extent that this is possible for the unrealistic free theory. It 

is found that the spectrum in un-compactified space is unchanged when one varies 

the lattice spacing between zero and rRor where El. = l/v?! is the self dual radius 

of circle compactification. At these limits there exist phenomena corresponding to 

‘deconfinement’ and ‘(de)roughening’ transitions, respectively. We view the space- 

time approach to critical behaviour in this paper as complimentary to the regularized 

random surface approach. 

For convenience, we will start in one transverse dimension (i.e. a linear lattice) as 

in ref.[3]. A lattice scheme for more transverse dimensions is given in section 6. 



-2- FERMILAB-Pub-90/30-T 

II. Spatial Properties of Strings 

The 2-dimensional scalar fields X‘ giving the string worldsheet location in space- 

time are not well defined fields. They are not Wightman fields. They have un- 

removable IR divergences associated with them. Of course, one could regard this 

behaviour as merely a nuisance and construct formal procedures for taming it. We 

prefer to regard it as an important clue to the understanding of string theory. Such is 

the unruly nature of Xv that it is probably impossible to give any sensible definition 

of a local physical quantity in string theory, except through the trivial procedure of 

calculating a global quantity and dividing the answer by the volume of space. The 

spectrum, S matrices and vacuum energy are classic results. They are global results. 

When one tries to localize the string, for example in calculating the vacuum energy 

in a finite box [4], the result is nonsensical. In this case one is breaking confor- 

mal invariance explicitly. The lack of UV divergences in the standard calculation of 

the total vacuum energy is a consequence of modular invariance, which cannot be 

maintained in the localization procedure. 

The physical, gauge-invariant modes of the string are most easily analysed in 

transverse space of the light cone system. Free string oscillations in each independent 

direction are equivalent to an infinite tower of harmonic oscillators. Zero-point motion 

of these oscillators causes delocalisation of the string, in transverse space, so that the 

wavefunctional ‘I’ of ground and finite excited states describes strings with divergent 

length expectation [5]: 

< 8(X(o)) I /dfl I &TX I I qqb)) > = 00 (2.1) 

These strings till transverse space many times over (having infinite ntive Hausdorf 

dimension). A sensible regularization of this behaviour, which one might regard as 

an IR property, involves UV regularization on the string. For example one could 

discretize the string into a line of ‘partons’ or links. According to the particular 

method involved, there might be a concomitant UV regular&ration of space. In the 

model discussed in this paper, this is the case, with the result [3] that as the continuum 

limit on the string is taken the UV space regularization remains, intact. 
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III. Light Cone Lattice Strings 

Consider D-dimensional space-time in light cone co-ordinates (X’, X- , Xi) where 

i labels D - 2 transverse directions. Replace transverse space by a lattice. For 

simplicity, if we work in D = 3 then we have a linear lattice L. On each directed link 

il of the lattice L there are general N, x N. complex matrices A&(X+,X-, I) which 

satisfy 

M&(x+,x-,Z) = M&(X+,X-,-I) (3.1) 

Explicit reference to X+,X- in the argument will be dropped. Following ref.[3] we 

consider the following light cone hamiltonian, where X+ is regarded as ‘time’, 

P- = $-&ix-F Tr(pM(I)Mt(Z) - XM(I)Mt(Z)M(Z)Mt(Z) 

-M(I)M’(l)M(I + l)M’(I + 1)) (3.2) 

which can be derived from a Lagrangian with kinetic term 2(8M/aX+)(BM/BX-). 

Here Q is the lattice spacing while a,/.~, A are dimensionless constants (in general 

dependent upon a), and throughout this paper we set the string theory a’ = l/2. The 

three terms in P- shown in Fig1 basically correspond to traces around all possible 

loops of length 2 or 4. Upon quantization equation (3.1) translates into 

Mak(q = @J-I) (3.3) 

where the dagger symbol here does not act on indices but has,, a purely quantum 

meaning. Link fields may be decomposed into creation and annihilation operators 

- dk+(Aab(k+)e-i*+X- + &+&+)&k+X-) (3.4) 

which obey commutation relations 

[A&+),-&z+)] = [&&+),&(q+)] = &Jd(k+ -q+) (3.5) 

Each link is assigned a direction and Ab,(k+) creates a string bit which carries longi- 

tudinal momentum k+ and points from index a to index b along the link’s direction. 

Similarly, Bi,,(k+) creates a bit pointing from b to a and opposite to the assigned di- 

rection. An oriented closed string state is defined as the trace over creation operators 
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around a loop, acting on the vacuum, such that the sum of momenta k+ carried by 

the bits is the total longitudinal momentum of the string P+: 

Tr(Product of A’ and B’ operators) / 0 > . (3.6) 

These are loops invariant under a local U(N) symmetry of the hamiltonian analogous 

to lattice gauge theory. The collection of all such oriented loops on the lattice L forms 

the Hilbert space. For the NC = M case to be studied here the theory is free i.e. the 

hamiltonian iropagates loops on the lattice without splitting or joining them. 

In order to reproduce the expected characteristics of bosonic strings in transverse 

space, namely divergent length, a sufficiently negative value of p is taken. That this 

gives the desired instability can be seen by looking at the term in P-: 

< p / dx- 7 Tr (W)@(4) > - P>$ $ 

where the expectation value is taken in a state of total N links. For /.J sufficiently 

negative it is favourable to have a large number of links, each carrying a small frac- 

tion of the total longitudinal momentum. In light cone formalism the longitudinal 

momentum between two points on the string is proportional to the amount of g-space 

between these points. For p sufficiently negative each string bit carries an infinites- 

simal portion of o-space2 and we have a continuum limit on the string. The spatial 

lattice spacing a remains untouched. The spectrum with respect to the ground state 

can now be solved for by evaluating the expectation of the other terms in P- in a 

basis of states with total number of links N + co. 

IV. Spectrum 

On a linear lattice a string of length N can be represented by a series of N pluses 

and minuses. A label for the centre of mass motion is also needed. It is therefore 

convenient to think of these configurations as a series of Ising spins together with an 

overall phase factor, for which a typical string state would be denoted by 

exp(Mo) ltllt ... it> (4.1) 
‘Following ref.[J] we regularize 80 M to introduce a minimum amount of longitudinal momentum 

P+/N 
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where zo is the centre of mass in space of the given spin configuration and, for the given 

string configuration, ranges over a lattice of spacing a. When all spin configurations 

are included, and N + m, the string centre of mass may take any real value. It is 

straightforward to show that, to leading order in NC, the action of the second term 

in the hamiltonian P- on states in the spin representation is equivalent to 

- $$$ (1 - fla(jba(j + 1)) (4.2) 

while the action of the third term in P- is 

-g&( l+ ca(j),(j + 1)) + u+(j)u-(j + 1) + fl-(j)c+(j + 1) (4.3) 

where R’ is some constant fixed by or and a, and the standard Pauli matrices have 

been used. In order to eliminate the lattice momentum p from the problem for the 

time being we shall compactify the transverse lattice on a circle, i.e. mod out by 

some sublattice. If we mod out by the full lattice we end up with a single link 

lattice with periodic boundary conditions, thus eliminating the need for p. It is again 

straightforward to check that equations (4.2) and (4.3) are unaffected by this trick, 

to leading order in NC.3 Later we will argue that the fundamental length involved in 

the model is in fact two links. 

The full hamiltonian now reads 

p- =-&$ (‘1 4’ ) - ,-io+ j cr j + 1 + o (j)o+(j + 1) - 2Aa$j)crs(j + 1) (4.4) 

up to a quadratically divergent constant (as N + co) and A is related to X. Equation 

(4.4) is proportional to the XXZ hamiltonian of a linear quantum spin chain with 

periodic boundaries. The finite size scaling spectrum with respect to the groundstate 

energy as N -t 00 for a state of conformal spin S is [6] 

E=h+X+r+F , S=h+r-i;-F (4.59 

where h,i; are Virasoro highest weights of representations of two commuting U(1) 

*In fact this is a general consequence of large N. reduction of lattice matrix models. Because the 

theory ia free only the zero mode is affected by eompactiAcation to one link. 
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Ka&Moody algebras in charge sector Q taking the possible values 

(h’il) = ( 
IQ + 4gd’ [Q - 4gd’ 

16g ’ 16g ) 

K 

’ = 4(s- arccos A) 

Q = ~$4) 
J--1 

(4.6) 

(4.7) 

and a can be any integer. The integers r,~ are the usual string mode excitation 

numbers. Q has integer (half-integer) eigenvalues for N even (odd) respectively. The 

model is continuously critical in the range -1 < A < 1, so that the above equations 

are appropriate for l/4 < g < co (0 < arccosA < r). 

The string interpretation of this is as follows. Equation (4.4) is reckoned to rep- 

resent the lattice model on a single periodic link, which one can think of as circle 

compactification of radius R = a/2r. Thus 2Q should be winding number n, and we 

must at least make the identification 

in order that winding makes the correct contribution to the spectrum, which is now 

of the form 
P+P- 
- = n’R= + 

a’ 
2 z+r+i;. 

The map between matrix model states and spin states is one-to-many since all spin 

states obtained from one another by shifting the spin configurations around by a 

certain number of sites, are equivalent to the same matrix model state. Thus one 

should apply the constraint of zero conformal spin (o-space momentum) to project 

out the translation invariant states. It is noteworthy that this constraint, which 

appears in standard treatments of light cone strings, arises naturally in this matrix 

model approach. For N odd n is odd and we have immediately that 

must be an integer, implying that we should project onto even Q. In fact the situation 

is more subtle. The o-space momentum S given here is the generator of shifts in the 
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spins by an even number of sites. To see this recall the standard method of solution 

of the XXZ chain [7] in terms of fermions via a Jordan-Wigner transformation 

$(j) = ii n a(k)c-(j) (4.12) 
h<j 

++(j) = i-j &Tjdkb+(j) (4.13) 

For N even it is meaningful to stagger these fermions in doublets. 

These ?! are then Dirac fermions in a Thirring model, which can be bosonized to 

yield the spectrum. For staggered fermions ordinary continuum a-space translations 

correspond to translations by an even number of sites, generated by 

S - i C #+(Mi + 2) - ti+(j + 2hW (4.15) 
j 

Thus, imposing S=O in the present problem still leaves an additional projection to be 

done. String/spin states should be invariant under shifts by an odd number of sites 

also; annihilated by 

7 ~+(jM(j + 1) + 1ct+(j + 1)4(j) (4.16) 

which is the axial charge in fact. For N odd this is not actually an extra condition 

since equation (4.15) suffices to generate all translates from a given spin configuration. 

If N is even, n is even, and equations (4.15) (4.16) require .’ 

- = F--r , aeven 
2 

That cz even is needed is most easily seen by introducing the conventional Kaluza- 

Klein number m = a/2 and seeing that equation (4.16) acts in transverse space as a 

rotation once around the compactification circle. This operation will have eigenvalues 

fl for the two types of state invariant under equation (4.15), corresponding to m 

integer or half-integer. We want invariance, so m is integer. Hence equation (4.10) 

becomes the bosonic string spectrum on the circle of Fig2(a). 

If more links are now added to the lattice in transverse space we must reintro- 

duce the lattice momenta p of equation (4.1). These range over the Brillouin zone 
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-a/a < p 5 x/a and are in addition discretized according to the appropriate bound- 

ary conditions. Following ref.[3] we may modify the hamiltonian (4.4) to incorporate 

p by making the substitutions 

~++(jb-(i + 1) - c+(j)c-(j + l)exp(2ipa/N) 

a-(jb+,(j + 1) --t u-(j)u+(j + l)exp(-2ipajN) (4.18) 

since whenever u+(j),-(j + 1) acts on a string state the centre of mass moves 2/N 

lattice units to the right. Similarly the conjugate term moves the centre of mass to 

the left. The Pauli matrix algebra is preserved under the transformation 

Q-(j) - c-(j)exp(-2ipaj/N) 

c+,(j) - g+(j) e~r@pajlN) (4.19) 

which reduces the hamiltonian to the XXZ one again, but with boundary conditions 

Q+( N + 1) = CT&( 1) exp( f2ipa) (4.20) 

The spectrum becomes [6] 

E= $+2g(a+po/n)z+r+~ 

and we should take CY even. If transverse space has L’links then the winding number 

is 2Q/L, being an integer for closed strings, and we have compactification at radius 

R = aL/2~. Once again we require winding modes to make the correct contribution 

to the spectrum. Reworking the analysis one finds again equation (4.9). We thus 

have R -+ co as L -+ co with a unaffected (and fixed and non-zero through (4.9)). 

As L + co the momentum zero mode becomes continuous and we have free strings 

in un-compactified space. 

In the case of un-oriented closed strings we should mod out the Hilbert space by 

the transformation o -+ -cr, of the Q co-ordinate on the string, which reverses the 

counting of spins in a given configuration of the XXZ chain. This operation can be 

realised in the original light cone lattice model by using real link matrices A&,. One 

can also orbifold the model by, modding out by Xi -+ -Xi, achieved in the spin 

model by requiring invariance under the operation of spin flip and zs --t -za for the 
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centre of mass variable. Thus, the model appears to incorporate sll the features of 

free closed string theory. 

V. Phase Structure 

It was claimed in ref.[3] that the phase structure of the lattice field theory in 

un-compactified space was governed solely by that of the XXZ model. We therefore 

remind the reader of these properties, which may also be phrased in the language 

of the lattice string model on a single periodic link. (Note that the L link periodic 

lattice may also be regarded, for fixed zero mode momentum p, as a lattice with 

a single periodic link R = a/2r and twisted boundary conditions as follows from 

equations (4.9) (4.20) (4.21)). The XXZ h c ain renormalises onto a Gaussian fixed 

line for -1 < A < 1. At A = -1 there is a natural boundary at which there is 

a first order transition to a phase with < os >= 1 and corresponds to zero lattice 

spacing (compactification circumference). We are prevented from making a arbitrarily 

large due to a Kosterlitz-Thouless type transition at A = 1, where. < (-l)jas(j) > 

becomes non-zero. This staggered spin operator is a mass term. The reason for this 

transition is the presence in the gso3 term of equation (4.4) of a spin-wave vertex 

operator which becomes marginal at a lattice compactification radius corresponding 

to R = l/2&, i.e. half the self-dual radius. In fact it is the first, of all possible spin- 

wave operators, to become relevant as one increases the radius up from zero. The 

three phase structure exhibited here is not uncommon in other physical systems. The 

Gaussian phase is the roughened region, where translation symmetries are restored 

at finite spatial lattice cutoff, and A = 1 marks the roughening transition. The point 

A = -1 may be thought of as a ‘deconfining’ transition since, formally speaking, it 

signals the relevance of vortices of infinite winding number (from (4.8) as N + co). 

It may seem surprising that the critical region is 0 < R. < 1/2fi and not 0 < 

R < l/d since one is used to the B-Vertex model, which has the XXZ ‘hamiltonian’, 

mapping onto the physically inequivalent circle compactifications of a free boson. 

However we should recall the peculiarity of the present case (equation (4.17)) where 

we have to omit a odd. If we had compactified onto two links (Fig2(b)) then the 

spectrum appropriate for this could have been gotten by forgetting the momenta p 

and including a odd as a prescription instead, in this case. The equivalence of the 
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full XXZ model and a circular boson such that 0 < R < l/d is then clear IS]. In 

fact one should regard the two link length as the ‘fundamental length’, at least in the 

present description of closed bosonic strings. ’ The string co-ordinate must consist of 

right and left movers , naturally relating to the right and left vector current densities 

of the fermion solution to the XXZ model. These current densities are spread over 

two sites on account of the staggered nature of the fermions. We believe that the 

calculations presented here go some way to quantifying the often repeated dictum 

that duality’.symmetry on the circle has something to do with ambiguity in defining 

short distances. Or more precisely the relation of short distance ambiguity to the line 

of physically inequivalent circle vacua. 

VI. More Than One Transverse Dimension 

The most natural generalisation of P- to greater than 1 transverse dimension is 

to take a D - 2 dimensional lattice and consider terms in P- which are again traces 

around all possible loops of length 2 or 4. In order to prove equivalence to D - 2 

uncoupled XXZ models we find it convenient to work, not on a hyper-cubic lattice, 

but on a lattice of body diagonals of the latter (i.e. the lattice generated by the 

(overcomplete) set of vectors {(*l, *I,. . . , fl)}). In this way each string bit on 

such a diagonal can be labelled by a plus or a minus (Ising spin) by projection onto 

each of the D - 2 Cartesian axes of the hyper-cube. The Hilbert space then consists 

of D - 2 spin models, and the problem is to show that terms in P- which couple 

these models are irrelevant in the N -V m continuum limit. 

The length 2 loops in P- provide the instability as before, and the length 4 loops 

can be of zero Z or non-zero NZ area (not necessarily planar), illustrated for D-2 = 2 

in Fig3. We have to study the action of these operators on all possible configurations 

of successive string bits (j, j+ 1). The Z terms act as both kinetic cr+o- and potential 

usus operators, while the NZ terms are only of kinetic type. By studying the effects 

of these matrix model operators on simple string configurations it is not hard to see 

‘The present lattice model seems only suited to closed bosonic strings. The open strings one may 

construct do not have the standard open bosonic string spectrum. 
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that the following spin operators 

Aj = c~i(j)d(j + 1) + u!(j)&(j + 1) (6.1) 
i 

Bj = C c!J j)ui( j + 1) (6.2) 
i 

are sufficient to analogue any behaviour, on appropriate spin states, where the sum 

over i in this form is dictated by cyclic symmetry i + i + 1. The potential harnil- 

tonian will be some polynomial in variable (6.2) and the kinetic hamiltonian will 

be a polynomial in the variable (6.1) . Upon transformation to fermion fields via a 

Jordan-Wigner map (4.12) (4.13) we obtain as N -+ 05 

NC-4 
j 

Thus we need only keep terms up to and including the linear ones in our polynomials, 

the higher terms will be irrelevant operators and are supressed by powers of N in 

the continuum limit on the string. The hamiltonian is then, up to a quadratically 

divergent constant, a sum of D - 2 uncoupled XXZ hamiltonians with the coefficient 

of the kinetic part set to the fundamental string tension by adjusting a parameter 

analogous to R appropriately. We can make the coefficients of the potential parts 

variable, analogous to A, by giving special consideration to the only purely potential 

2 term illustrated for D - 2 = 2 in Fig3(c). In general there should be D - 2 such 

terms each with an independent coefficient. These D - 2 degrees of freedom set the 

radii of a simple torus compactification. 

VII. Conclusions 

By completing the solution for the spectrum of Klebanov and Susskind’s light-cone 

lattice string model as a compactification problem we have been able to establish a 

quantitative relationship between the ambiguity of short distances in closed bosonic 

string theory and the line of physically inequivalent circle vacua in moduli space. 

Indeed, we have shown that the lattice is hidden behind continuum free string theory 
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(for a certain range of parameters) providing that the lattice spacing a is non-zero 

and the fundamental length 2a is less than the self-dual circumference rr& for circle 

compactification. If 2a is increased beyond the self-dual circumference the model 

suffers a de-roughening transition to a lattice dominated phase. This gives an intuitive 

understanding of the nature of duality symmetry in background space, at least in short 

distance regularizations of that space investigated here. 

Many important questions now arise. Here, as in ref.[3], the vacuum energy has 

remained q;adratically divergent (with the opposite sign to the conventional light- 

cone gauge divergence) enabling a simplification of the model. It has not been proved 

whether this can be renormalised away to yield a Lorentz invariant spectrum, and 

at the same time leave all the considerations about lack of short distance structure 

intact. A supersymmetric version of the lattice model, if indeed one exists yielding a 

superstring spectrum, would be an important test of the logic applied in this paper, 

especially pertinent in view of the effects that worldsheet fermions might be expected 

to have on critical properties. Lastly there is the question of string interactions. At 

finite N, there are 3-string interactions with coupling l/N=, and one might hope that 

a large N, expansion would yield the dual amplitudes. As far as we know, this has 

not yet been shown. ,In any case, once the interactions are turned on (however small), 

one would expect to expose the full richness of the phase structure of the compactified 

model, such as Polyakov line condensates [g] and Kaluza-Klein condensates. 
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Fig1 The 2 and 4 link loops on a linear lattice 

A 

i 

(4 

Fig2 Compactification on a) one link b) two links 
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Fig3 Some 4 link loops in D-2 = 2 
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