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Abstract 

We discuss the optimization of the Drell-Yan pair production cross section calculated 

at O(as) and compare it with the O(ai) results of van Neerven et al. It is shown that 

the optimized predictions do agree analytically with the latter calculation near the phase 

space boundary. They also provide a good numerical approximation wherever the stability 

equations have a solution. 
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Recently the application of optimization principles [l-3] to perturbative QCD cal- 

culations of reactions involving real or virtual photons have led to very successful phe- 

nomenological results. In particular, for the photoproduction of large pi hadrons [4], the 

production of photons [s] or of heavy gauge bosons at large pi [6], Drell-Yan pairs [7] as 

well as ei- + e- + jets [8], the optimized results have all been shown to yield better 

agreement to data than analyses using scales like the transverse momentum or the mass 

of the virtual photon. The question is then to understand the reason of this success. As 

a step in this direction we briefly review the optimization of the O(as) Drell-Yan cross 

section with respect to the arbitrary mass scales, as it has been used previously in practice, 

and compare it with the O(a$) results of van Neerven et al. [g-11]. Good agreement is 

obtained. We then discussed the optimization with respect to the factorization scheme 

and it is shown that the leading terms of the O(~Y:) results are correctly reproduced. 

The general form of the Drell-Yan cross section up to O(~Y,) is 

Q4 du - = 
dQZ 

F(M) F(M) (1 + &)(2dln $ + ~1)) 

where we only consider the non-singlet case (with one quark flavor). We have taken 

moments of the cross section with respect to 7 = Qz/s , but we have dropped the usual 

moment index n, so that we deal with products of terms rather than with convolutions. The 

quark distribution F depends on the arbitrary factorization scale M . The correction 

term ‘u)~ has been calculated some years ago by several groups [12-141 and, like F, it 

depends on the factorization convention. The expansion variable is a(p) = c&)/r 

which depends on the renormalization scale p. 

The anomalous dimension d which appears in eq. (1) enters the Altarelli-Parisi equa- 

tion as 

;;li$) = F(M) a(M) ( d +a(M) dl + . ..) 

while the evolution of the coupling is 

d+L) - = -b a’(p) ( 1 + a(p) c + . ..) 
dlnp 

with b = .5 (11 - 2iV~/3) and c = .5 (153 - 19NF)/(33 - ~NF). The parameter dl 

is an unphysical variable which characterizes the factorization scheme. In eq. (1) it has 

been fixed by the convention F(Q) = Fz(Q). We shall d iscuss below the optimization with 

respect with this parameter. 

In the following we want to compare the optimized result for Q4 du/dQ’ in eq. (1) 

with the results of van Neerven et al. [g-11], d erived at O(a:). After taking moments, one 

-l- 



finds for large TZ, i.e. near the boundary of phase space, 

Q4 d”(2) = Fz(Q)F2(Q)(1+a(Q)c~(ln2n- ilnn) 
dQ2 

+ a’(Q) a -(cF(ln4 TZ - 31ns n) + cFblns n + O(ln* n))) (4) 

= FZ(Q)FZ(Q)exp(a(Q)wl)(l+ F(c&ln”n + O(ln’n))) 

The first line is the exact second order expression restricted here to the very large T limit, 

7 + 1, whereas the last line is the improved expression where, following refs. [g-11], 

the abelian term has been exponentiated [15]. Th e moment of the coefficient function is 

correspondingly approximated by 

WI = cF(ln’n - i Inn) (5) 

and the anomalous dimension behaves as 

d=cp(% -2lnn) 

N -2CFhTZ 

in the approximation we are interested in. The factorization scheme used here is to identify 

the quark structure function F with the deep inelastic structure function Fz [13]. 

Before discussing the full optimization, with respect to p, M, and dl, of eq. (1) we first 

give a simplified (and therefore incomplete) treatment which nevertheless shows the main 

features of the optimized Drell-Yan cross section up to O(as) [3,7]. It is restricted to the 

leading logarithmic approximation of eqs. (2), (3) and therefore the stability condition with 

respect to the factorization scheme (defined by d 1 is not implemented. This approach is of ) 

practical interest since it is not possible to continuously vary the factorization prescription 

in the configuration space. Applying, in this approximation, the Principle of Minimal 

Sensitivity [l] or the Effective Charge method [2] gives the same result 

Q4 d@” 

dQ2 
= F(J&t) F(M,,t) 

with 

Here F is identical to Fz, the deep inelastic structure function. Using eqs. (2) and (3), 

in the leading order (c = dl = 0), one can express eq. (7) in terms of F(Q) rather than 
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F(M,,t). Integrating the Altarelli-Parisi equation one finds 

Fz(Mopt) =&(Q) e~(d~~- @f)~) 

= WQ) (a(;f;t,)‘. 

Plugging this expression into eq.(7) and using 

*(MD,t) = a(Q) 
1 +ba(Q)ln v 

one finds 

Q4 du”P’ 

dQ2 
= &(Q) &(Q) exp (a(Q)wl - F$ + O(a3)). 

After expanding to O(a’(Q)) and using eqs. (5) and (6) one finds 

Q’ d@P’ 

dQ2 
= &(Q) a%(Q) (1 + a(Q)c+~“n - ;lnn) 

+ q(c;(lnln - 3ln3n) + +l% + O(ln2n))) 

(9) 

(10) 

(11) 

02) 

where only the dominant terms in the large n limit are kept. We see by comparing with 

eq. (4) above that the abelian part is correctly reproduced. The optimized result even 

indicates that this part should be exponentiated as conjectured in [9]. It is interesting to 

recall that this abelian part, which is known to dominate the correction term at O(as), is 

related to the “soft and collinear structure” of the diagrams. Concerning the non abelian 

part we note that it is, in this approximation of optimization of eq. (l), only partially 

reproduced, namely one finds cFbln’ n/4 instead cFbln3 n. 

For illustration we make a numerical comparison of the optimized expression, eq. (7), 

with the results of ref. [ll]. We denote by uci) the cross section Q’ du/dQ’ calculated 

to O(a&). In the figure we show with a solid line the ratio ‘~(~)\~~~~/q(‘)]q where the 

index refers to the choice of scales. Also shown for comparison is the ratio o(‘)[g/u(‘)\g 

using the perturbative expression (dotted line) or the exponentiated one (dash-dotted line) 

of eq. (4). Two exemples are considered: = p scattering at fi = 19.1 GeV and p p at 

fi = 630 GeV. In both cases only the non-singlet contribution is kept and the exact (i.e. 

valid for all T) expression for WI is used. It is seen that when optimization is possible 

a good agreement is obtained with the results of ref. [ll]. We use, for our predictions, 

the structure functions fitted by Duke and Owens [16] for the proton and by Owens [17] 
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for the pion which are associated to a value of A = 200 MeV. This is different from 

the choice of leading logarithmic parametrizations made in ref. [ll] for the predictions 

at fi = 19.1 GeV but, in the ratios, the dependence on the structure functions should 

“factor out”. At fi = 630 GeV part of the discrepancy between the optimized results 

and the O(a$) ones can be ascribed to the fact that, in ref. [ll], 6 flavors instead of 4 

are used in the evaluation of as. A question often raised concerns the value of the scale 

at the stability point: it is obvious from eq. (8) that for a large positive value of zu1 (zul 

is the correction term at scale Q) the optimal scale turns out to be smsller than Q since 

the anomalous dimension d is effectively negative for the r range where optimization is 

possible. One can parametrize 

Mfp, = C Q2. (13) 

In practice, at fi = 19.1 Gel’ one finds C N .1 which is accurate to better than 10% over 

the whole 7 range. At 4 = 630 GeV th e scales turn out to be relatively smaller since 

one obtains C N .05 . Although such a large difference with the so-called “natural” scale 

Q may be surprising it nevertheless turns out to be necessary to reproduce the O(a%) 

results adequately. It is interesting to note that the same conclusion about the relatively 

small values of scales was obtained in an analysis of ef + e- -+ n jets whether one applies 

the Principle of Minimal Sensitivity (Kramer and Lampe [S]) or one chooses the scales to 

optimize the fit of the theory to the data (Bethke [s]). 

We now discuss the complete optimization of eq. (1) with respect to /J, M and 

dl. The final result of this procedure can be taken from ref. [l] with the corresponding 

replacements for eq. (1). It is 

Q’ dooPt 
= A(wpt) --Idlb (1 + caopt) Z(cd-dop’)/bc 

dQa 
1 , 

where dyP’ and aopt are obtained from the equations which express the stability of the 

cross section under variation of the unphysical parameters 

dypt 
c*opt + c d -a;p* - ln(1 + CGpt) = 0 

1 1 -+& caopt --- 49) btl _ L = o 
d"' 

-- 
1 + caopt C1nl+ca(Q) 2d d *opt 48) (16) 

with the factorization scheme invariant tl = w1 - 2dl/b. Next we express the result for 

Q4~dcroJ’t/dQ2 in terms of a(Q) and F(Q) using the stability conditions above and the 

expression for the quark distribution 

F(Q) = A(ccz(Q))-~‘~ (1 + ~cz(Q))(~~-~~)‘~=, (17) 
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where d1 specifies the factorization scheme for this quark distribution. 

Keeping sll the terms to order u’(Q), a lengthy calculation gives 

Q4 du”pt 

dQ2 
N F(Q) F(Q) (l+ a(Q)w + y(w: - z, 

+ a’(Q) 2dlull 24 de2 
(18) 

-(7-bd-ZT;- 

where the last term is the extra term compared to the result of eq. (12), arising from the 

complete optimization of eq. (1) using next to leading logarithmic expressions. In order 

to compare directly with eq. (4), F(Q) and dl h ave to be specified for the non universal 

factorization scheme with M = Q, namely F(Q) = Fz(Q) and dl = -bnl, where nl is 

the scheme invariant of the structure function (the analogous of tl in the Drell-Yan cross 

section). Again keeping only the leading terms for large n we obtain [13,14] 

nl ct yln’n+ O(lnn), 

and we find that the extra term in eq. (18) behaves for large 7~ as 

(19) 

a'(Q) 3bCF 
F(. lx? n + O(ln2 n)). (20) 

From eq. (18) the final result is found to be 

Q4 duo@ = Q4 drc2) 

dQ2 dQ2 (21) 

when terms of O(a2(Q)ln2 TZ) are neglected. 

Following van Neerven [9], we observe (seexq. (4)) that with the substitution Qa + 

Q’(1 - 7) in the running coupling constant (i.e. Q2 t Q*/n’) the Drell-Yan cross section 

becomes 

Q’ da -9’ du”P’ 21 Q’dc(‘) 
dQ= dQ2 dQ2 

--Fz(Q) h(Q) (~~p(a(Q/n)w(ln*n- 31=42))+ O(*2(Q)l=2n)), 
(22) 

valid for T + 1, i.e. all large corrections near the boundary of phase space can be re- 

summed. It is encouraging to find this result either by inspecting the exact O(a:) calcu- 

lation or by the optimization of the O(as) cross section. 

The above discussion suggests the usefulness of the optimization methods to other 

processes such as prompt photon production or photoproduction at large transverse mo- 

mentum. It is known [18,19] that terms arising from the soft and collinear gluon emission 
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can give large corrections as in the Drell-Yan process. Therefore it is reasonable to believe 

that the optimization methods [l-3] al so improve the perturbative predictions for those 

reactions. 

It may be interesting to confront the result, eq. (23), with the criticisms on op- 

timization put forward in connection with the O(ai) calculation of the total cross sec- 

tion for e+ + e- + hadruns [20,21]. The reason of the criticism is that the quan- 

tity (Rc3) - R(*))/R(‘) is smaller in the MS scheme with the standard choice of scale 

Q = de+.- than with either the choice based on the Principle of Minimal sensitivity [I] 

or the approach of Effective Charges [2]. H ere, R(“) is the usual hadronic to leptonic ratio 

calculated to n loops [22,23]. Numerically, following the results of Maxwell and Nicholls 

[24] one finds for this ratio the values .092, 0.121 and .124 respectively for the schemes 

mentionned above (a value of A = 100 MeV and 5 flavors are assumed). So the optimized 

approach appears to be less stable than the standard one when one more order of pertur- 

bation theory is considered. The strength of this argument is diminished if one looks now 

at the relative size of the last two terms in the perturbative series: the ratio of the O(&) 

term over the O(ai) one is 1.75, -.98 and 0. respectively and, naively, this disfavors the 

standard approach compared to the other two methods (for A = 500 MeV, these ratios 

become 2.34, -.96 and 0. respectively). Note that a recent paper has explored the general 

sheme dependence of the ratio R and found large instabilities [25]. 

Admittedly, none of the arguments given above are very strong since one cannot 

say anything about the behavior of the still higher order terms. It is more reasonable 

to conclude that the perturbative series for R presents us with a very incomfortable 

situation where the real question is not to know which sheme is the best one but, rather, 

to understand the nature of the perturbative series for this particular proccess. Indeed, the 

problem arises from the peculiar behavior of the coefficients of the series which are (in the 

MS sheme for 5 flavors with standard scales) l., 1.41 and 64.8 for the as/r , (as/a)’ and 

(as/r)’ terms respectively. Since optimization amounts to some form of exponentiation 

or summation it is clear that optimization based on the first two terms cannot reproduce 

the third term. One can say however that the uncertainty among the different predictions 

is small, of the order of 5%. 

In principle one could try to optimize van Neerven et al. exact result up to order a: 

in order to estimate the yet uncalculated terms of order a$. The full optimization however 

amounts to find the stability point with respect to five variables, namely the scales p and 

M; the anomalous dimension coefficients dl and d2 and the p-function coefficient cl at 

O(&) (cf. eqs. (2) and (3)), which is a rather formidable task. Even more, it is rather 

academic since, e.g. d2 is not calculated in the MS-scheme. 
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Figure caption 

Higher order predictions for Drell-Yan pair production normalized to the O(as) cross 

section evaluated with the scales p = M = Q. Only the non singlet part of the cross 

section is considered. The solid lines are the optimized results, eq. (7), for r p scattering 

at fi = 19.1 GeV and p p at J1; = 630 GeV. The dotted lines are the O(a$) perturbative 

predictions and the dash-dotted lines are the “exponentiated” O(&) predictions taken 

from ref. [ll]. 
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