
• TI'I_ submitted manuscriDt has been authoredsb_la contractor of the U. Government ANI,_Hi_I-,_I.:I-'._)II__Z
under contract No. W-31- I09-ENG-38.

Accordingly, the U. S. Government retains a
nonexclutive, royalty-free license to publish
or reproduce the published torm of this
contribution, or allow others to do ro, for
U, S. Go_;ernment purposes.

ANL-HEP-CP--9 0-6 2

• FACTORIZATION AT SMALL x"
,DE91 006 006

J. C. Collins *

Department of Physics, Pennsylvania State University
State College, PA 16802, U.S.A.

and

Argonne National Laboratory
Argonne, IL 60439, U.S.A.

R.K. Ellis

Fermi National Accelerator Laboratory :, ,, . _
Batavia., IL 60510, U.S.A.

We show how to modify the Lipatov equation to treat short distance
cross sections in the factorization theorem.

1 INTRODUCTION

In this paper we will present a solution to the problem of combining the ordinary hard
scattering formalism and the perturbative reggeon of Lipatov 1. The formalism we will de-

scribe is designed so that a single formula can be applied both at small z and at large z
(and hence in the region of intermediate x). It is set up so that one can systematically use
the results of higher order calculations of hard scattering cross sections and of the (Gribov-
Lipatov)-Altarelli-Parisi kernel. Thus we are able to discuss nonleading logarithms, and
indeed non-logarithmic terrr_s. Our aims and results are therefore more general than those
of the work described at this workshop by Catani 2.

We will not attempt to discuss the saturation effects that gained so much attention at
this meeting. At sufficiently small z they dominate the physics, even though they are higher
twist. But in this paper we will concen_:rate on the issue of how to make more accurate

calculations when saturation effects are not important. There is a wide kinematic region
when these effects are ignorable, but where x is sufficiently small that the higher order
perturbative corrections to the standard hard scattering formalism are large.

In Sects. 2 and 3 we will briefly review the standard factorization formula and the Lipatov
equation. This will serve to establish our notation. Then, in Sect. 4, we will present our
modified Lipatov equation. In Sect. 5 we will show how to solve it in closed form, and in
Sect. 6 ,re will present the results of numerical calculations. Sect. 7 co_tains our conclusions.
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2 FACTORIZATION

In this section we will review the usual hard scattering formalism 3. For the sake of simplic-
ity we will consider a case such as deep inelastic scattering or the inclusive ptiotoproduction
of heavy quarks or jets, where there is one initial-state hadron. We characterize the dom-
inant scale of virtuality or transverse momentum in the hard scattering by Q2. In deep
inelastic scattering this is the virtuality of the exchanged electroweak boson, while in the
photoproduction of a heavy quark it is the mass squared of the heavy quark.

The factorization theorem states that when Q is large, the cross section may be written

2a(s,Q 2) = _ d_ _,(_.s, Q2;#2) f,(_;P ?_
, (1)

-- &®f.

Here f_ is the distribution of partons of type i in the initial-state hadron, and b_.(_a,Q2) is
the coefficient function, or short-distance cross section, with a parton target of type i.

Both fi and bi quantities are defined with a.n auxiliary scale tr, and the # dependence is
given by the (Gribov-IApatov)-Altarelli-Pa, risi equation:

2df,.(x) _ _ d_ ;j- ")'Ap(_/Z,CY_)fj(_). (2)
d In tt 2 j

This scale should be set to be of order Q, to avoid large logarithms ln(Q2/lt ') in higher order

perturbative corrections.

The rules for calculating the short--distance cros_ section are well-known a. They are to
calculate the cross section at the parton level and then to make subtractions to remove the

' collinear region. If one sets lt to be of order Q, then the subtractions force the internal
transverse momenta of graphs to be of order Q.

A great advantage of this formalism is that one can make systematic calculations for
higher order corrections, in powers of a'_, for both _ and for the Altarelli-Parisi kernel
TAP" However, if one considers the case that tile ratio ,s/Q 2 is large, then these higher
order corrections contain large logarithms of g:/Q2 and 4/x. This ruins the accuracy of the
calculations, and creates the set of problems associated with small-x physics. (We have
defined x to be the minimum parton momentum fraction in eq. (2); it is proportional to

3 LIPATOV'S EQUATION

The Lipatov equation I is applicable to cross sections in the limit of high s. If we consider
hadron-hadron scatiering, then graphs have the form of factors for each hadron connected

by a generalized ladder (Fig. 1). The ladder satisfies a Bethe-Salpeter-like equation; this
is the Lipatov equa,tion. By rnaking st_itable kinematic restrictions, the equation may be
applied in hard scattering processes, like nfinijet production (with Ez << v/_). Note that tile



Fig. 1. Ladders for perturbative Reggeon.

ladder form is not valid for the contributions of individua,1 graphs, but one must llse \Vard

identities in a rather subtle way to obtain the ladder form 4.

Once one has the ladder structure, tile tota.1 ladder is obt_tined by summing over rungs:

1 + L + L 2 + L a + ..., wtlere L represents one rung. The multiplication of the Ls is in the

sense of a convolution of tile loop momenta that connect the individual rungs. The sum is

a geometrica.1 series, 1/(1 - L), and satisfies the following equation:

1 1
- 1 + × L. (3)

1-L 1 -L

An explicit formula, is most easily obtained by performing a Mellill transform in the

center-of-mass energy:

Then the equation is

,. o, Nf [X(j,k'_L)-X(j,I,'_L)+X(j, tc±)](5 ).X(a, kl ) -lowest order + _(j _ 1) dk_L2 Iki 2 - k±2l _//ci4 + 4k_L4 '

where X represents the sum of the ladders, possibly convoluted with the 'impact; factor 's
associated with one of the ha.drons.

The kernel of the equa.tion has a pole at j = 1; this is the result of the excllange of the

spin-1 gluon. The effect of gluon exchange in individual graphs is to give cross sections that

at high energy are constant up to loga.ril:hms of _. After solving the equation we get cross

sect, lope that grow like a power of a.

The Lipatov equation is va,lid when s/Q 2 >2 1. lt makes no sepa ra.tion between hard and

soft physics. Indeed a more exact version of the equation would have the fixed coupling c,_

3



/

/

replaced by a, running coupling a'._(/J, ). It is this la,ck of separation between hard and soft

physics that we wish to overcome in this paper. The problem is that tile solution of the.

equation as it stands inevit:_,bly brings in the region of low transverse moment{,m, where the

running coupling is large and where one must therefore treat nonpert.urba,tive effects.

Note also that at large enough s, saturation effects become important. This is inevitable,

since the equation leads to cross sections that grow like a power of s. The saturation effects
referred to in tile introduction are needed to re,_;torc the Froissari" bound, We will assume _

that s is not so la.rge that saturation is important.

.i" A r4 MODIFIED LIPATOV EQU rION

The results we are in the process of deriving apply to the short-dist,_nce cross section a.t
the parton level and to the Altarelli-Parisi kernel. Thus we retain the familiar structure

of a short-distance cross section convoluted with parton distribution functions that evolve

according to the Altarelli-Parisi equation. Since the higher order terms in the perturbation

expansion for such quantities have subtractions that remove the collinear region, we must

modify the Lipatov equation when we apply it to these quantities, by incorporating cpr-

responding subtractions. Our resulting modified Lipa,tov equation only involw_.s transverse

momenta of order the scale Q of the ha,td scattering. Thus we are freed from the need to

consider the infrared region of nonperturba,tive effects. In effect our equation resums tile

large ]ogarit, hms that appear in the short-distance cross section when (22/s is small and in

the Altare]li-Parisi kernel when a:/f. is sma,ll.

Our procedure is to recognize first that ordinary factorization continues to apply. The

proof a needs generalization from what is actually done in tile literature. Next we treat the

problem that higher order corrections have large logarithms of kinema,tic ratios -- logarithms

of {s/O 2 in eq. (1) and of C/z in eq. ('2)- a.nd that these imply tl,a.t low order perturbation

theory is ina.ccur_e. Then in the short distance cross section a and in Llle Altarelli-Parisi

kernel, we find a generalized factorization scheme for the contributions tha,t dominate when

{s/Q 2 or {/z gets large. Our modified Lipatov equation applies to these further factoriza-

tions. Finally we a,dd correction terms so tha,t we have a formula that is also applicable
when 2@ /s is not sma]l. (In perturbation tl_eory, the correctic, n terms have no singularities

near j = 1.)

The c,quation, and therefore the final result for the cross section, are written in terms of

quantities that have no small z logarithms, and that we may therefore usefully expand in

powers of c_.

The basic idea for our equal, ion can be obtained by considering how to obtain factor-

iz.ation from two-particle-reducible gra.phs for deep inelastic scattering: The graphs ca.n be

considered as an irreducible part, S', associa.ted with the hadron, an irreducible part, H,

associated with lhe virtual photon, and a ladder connecting them. If we treat the la.dders as

a sum over rungs, then we have (Fig. 2)

1

11 rG)

4



Fig. 2. Ladder graph for deep inelastic scattering, with lowest order subgraphs for the rungs.

To obtain the hard scattering, we consider the parton level cross section, which is H/(I - R).
The subtractions amount to a projection that kills small momenta, and the short-distance
cross section can be written as

1

6-: H I- (I- A)R" (7)

Here, A is an operator that projects out the asymptote when the transverse momentum
coming from the R factor to its right (below in the figures) is much less than the transverse
momentum to its left. The scale lt arises in the definition of this projection.

Note that in QCD, the above picture of a (generalized) la,dder for the dominant contri-
butions to the deep inelastic scattering is only valid in light-cone gauge. In a general gauge,
the ladders must, be modified by the exchange of extra longitudinal gluons.

As an example, consider the one-rung case (Fig. 23). If we have

:-:R = j d2/_,, :-/(Q,//,_) R(_2, _:±), (8)

then the projected quantity is

2 i t
t1(1 - A)R= d IcLR(kL,IC,L)[II(Q,h:'.L ) - H(Q,O)O(k'L < #)]. (9)

A separate c.alcula,tion _ can be made to relate ILto the more standard scale/z_-rg, and we find
that at small z, ht = #_-¢g.

The equation for the ladders at small z is obta,ined by a further projection to separate
out the small z. We thus obtain a more complicated factorizat,ion than the standard one,

. , r- }which is still true. Similar ideas and res_llts apply to the Altarelli-Parisi kernel Y _e modified



j- :=

Fig. 3. One rung ladder.

Lipatov equation for the hard scattering cross section has the form:

UX(j, kj_) = U(j,k±) + c_SNcU.\" ® L. (10)
3-1

Here L is our modified Lipatov kernel; we have explicitly separated out its single factor of
1/(j - 1). The impact factor U has no singularity near j = 1. \Ve obtain the complete short
distance cross section for scattering off a gluon by adding a remainder term:

O" --- UX ..Hrem, (11)

where Hr_.,nrepresents tile cross section with sub_ractioI,s not only to cancel the collinear
regions but also to cancel all the leading large _ behavior, lt also has J_osingularity near
j=l.

For hard scattering off a quark, we must. convolute UX with a bottom impact factor/3
associated with the quark, and in addit, ion make a collinear subtraction:

. ux (_-._ ))--_--/_/J=/ d_[U.X'0, k_)- UX(j,0)]__ B(_) . (_2)

The factor of 1/(j - 1) is associated with the lowest order exchange of a gluon between the
upper impact factor U and the bottom impact factor B. There will also be a remainder
term.

The precise form of our modified equation, with the lowest order kernel is

/ {x.,
<_N_ , 2 (j,k±)- X(j, kx) X(j, kx)

X(j, lcl ) = lowest order + " dlc± ., 2 +
_(j- 1) Ik_ - !_._21 V/-__+ 4_L_

o(_2< i_)-o(_l < _)+O)
Ik'__- _,_l _ + 41_4

The original Lipatov equation allows k2 << /c.L: this region gives the j = 1 r,ole of the
Altarelli-Parisi kernel. \Ve have already taken care of this region by tt_e ordinary factorization
theorem, and therefore it is s_btracted ofF.



5 SOLUTION TO THI!; MODII,_II!;D EQUATION.

We can solve the equation in closed form by a Mellin transform on kz. This transform
diagonalizes the origina,1 Lipatov equa.tion, but extra work is needed to treat the subtraction'
terrn in the modified equation. We define

ttere we have convoluted X with the 'impact factor' for the photon-gltv,n fusion process,
Then the solution to eq. (13) is

UX(j, 7) = (j - 1)U(j,7)- _N_x'(7)U(j,%(j))
j - 1- _¢N_x(_) ' (1,5)

}tere the function ,\'(7) is l,he same as the one in the solution of the ordinary Lipatov equation:
it is the eigenvalue of the kernel, and is given by

X'(7) = 2_/,(1)- _'(7)- _'(1 -7). (16)

lt has a minimum value 4 In 2 ai, "7.--=½, and ha.s sing(llarities when 7 is 0 and 1. The function
%(j) is the functiona.1 inverse of X(7). Tt_at is, it satisfies tlm equation

O's J_lc
j = 1+ _x(_(j)). (17)

71"

lt is defi:_ed for real va}ues of j greater than

(Xs ]Vc
jc _ ] + " 4 In 2. (18)

71"

The short-distance cross section is t}len

f dj ,_j__ i _ .
(19)

__-- --j d_____j,_j-1-[7(j_ , "fc(j)) "Jr- /]rem,2tri

where the remainder term goes to zero like a power of _aas ,._--+ oo. In this limit,

1
a(._,)_>_,_J,--_x . (20)

ln3/:_,;

The solution can be wril,ten in terms of unt,ransform(:d q_lantities:

;j-1 ct:{_-J k±2_ _(j)
5(,_) = '2_'Z ,,,, _:.___ 7,/ 7_(j)U(,_.,_:.) + H_.,,,. (21)



A similar equation can be used for the Altarelli-Parisi kernel. The solution for the moment
in the gluon-gluon case is

i

' ,-, \72 (j' kl) +
(22)

+ remainder

C

The leading singularities of the remainder and of _a are to the left of j = 1. The last line
V' 7of eq. (22) reproduces a result of .Jarosze_ lcz . Our formula has the possibility of including

higher order and nonleading logarithm corrections.

If we take the limit as the strong coupling cY_goes to zero, we find tl_at

7r j ....1' (23)

which enables us to reproduce the leading singularity of the lowest order Altarelli-Parisi
kernel.

.

6 CALC;ULATIONS

The above ladder factor is supposed to be convoluted with an impact factor U(k±,_,M). In
our present work, we are considering the case of heavy quark production, so we have replaced
the scale Q by the heavy quark mass, M. The impact fa.ctor is essentially an off-shell cross
section, lt is projected onto transverse polarization for the gluon. It is subtracted at higher
order, so that it never has a singularity above or near j = 1. It has been calculated by
Catani, Ciafaloni and Marchesilfi 2, as described by Catani at this workshop. Ellis and Ross a
have also calculated this impact factor, but only at j = 1.

We have used the solution to our modified Lipatov equation to make a numerical calcu-
lation of the short distance cross section for photon-gluon fusion Io heavy quarks. We have
compared it with the Born approximation. At low _ the two calculations give similar results,
since the higher order corrections are smaller by a power of c_ and have no extra logarithms.
At large ._, the Born approximation falls off rapidly with energy, as is well known, but the
full solution tc) our equation gives a cross section that rises like a power of ._. So we have
also corr:pared ii; with its asymptote:

--S,S (24)

lt turns out that ..4has to be several orders of rnagnitude above threshold before asymptopia
is reached.



7 OUTLOOK

\'Ve have a.n equation for the short-distance cross section and for the Altarelli-Parisi kernel.
This resums tile j = 1 singularities that are responsible for the logarithms as a -+ 0 or
_ -+ oo. It enables calculations to be done over the whole range of a.

We are developing methods for calculating higher order corrections. The consequence
should be much more accurate perturbative predictions in kinematic regions important for
collider physics: e.g., deep inelastic scattering at HERA, and heavy flavor production at
HERA and at hadron colliders. The ,:alculations are considerably complicated by the pres-
ence of many soft and similar singularities in individual Feynman graphs. These cancel in
the final arts ,ver. 9
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