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We show how to modify the Lipatov equation to treat short distance
cross sections in the factorization theorem. :

1 INTRODUCTION

In this paper we will present a solution to the problem of combining the ordinary hard
scattering formalism and the perturbative reggeon of Lipatov!. The formalism we will de-
scribe is designed so that a single formula can be applied both at smali z and at large z
(and hence in the region of intermediate z). It is set up so that one can systematically use
the results of higher order calculations of hard scattering cross sections and of the (Gribov-
Lipatov)-Altarelli-Parisi kernel. Thus we are able to discuss nonleading logarithms, and
indeed non-logarithmic terms. Our aims and results are therefore more general than those
of the work described at this workshop by Catani?.

We will not attempt to discuss the saturation effects that gained so much attention at
this meeting. At sufficiently small  they dominate the physics, even though they are higher
twist. But in this paper we will concentrate on the issue of how to make more accurate
calculations when saturation effects are not important. There is a wide kinematic region
when these effects are ignorable, but where z is sufficiently small that the higher order
perturbative corrections to the standard hard scattering formalism are large.

In Sects. 2 and 3 we will briefly review the standard factorization formula and the Lipatov
equation. This will serve to establish our notation. Then, in Sect. 4, we will present our
modified Lipatov equation. In Sect. 5 we will show how to solve it in closed form, and in
Sect. 6 we will present the results of numerical calculations. Sect. 7 contains our conclusions.
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2 FACTORIZATION

In this section we will review the usual hard scattering formalism?®. For the sake of simplic-
ity we will consider a case such as deep inelastic scattering or the inclusive photoproduction
of heavy quarks or jets, where there is one initial-state hadron. We characterize the dom-
inant scale of virtuality or transverse momentum in the hard scattering by @*. In deep
inelastic scattering this is the virtuality of the exchanged electroweak boson, while in the
photoproduction of a heavy quark it is the mass squared of the heavy quark.

The factorization theorem states that when @ is large, the cross section may be written

1
o(5,Q%) = X [ de sules, Q%) filei i)
o (1)
=6@® f.
Here f; is the distribution of partons of type ¢ in the initial-state hadron, and &;(§, Q?) is
the coefficient function, or short-distance cross section, with a parton target of type 1.
Both f; and &; quantities are defined with an auxiliary scale 4, and the y dependence is

given by the (Gribov-Lipatov)-Altarelli-Parisi equation:

dfi(z ! ij ‘
- ) ISR )

This scale should be set to be of order @, to avoid large logarithms In(Q?/4*) in higher order
perturbative corrections.

The rules for calculating the short-distance cross section are well-known®. They are to
calculate the cross section at the parton level and then to make subtractions to remove the
collinear region. If one sets i to be of order @, then the subtractions force the internal
transverse momenta of graphs to be of order Q.

A great advantage of this formalism is that one can make systematic calculations for
higher order corrections, in powers of ay, for both & and for the Altarelli-Parisi kernel
~vap. However, if one considers the case that the ratio s/Q* is large, then these higher
order corrections contain large logarithms of §/@Q* and £/z. This ruins the accuracy of the
calculations, and creates the set of problems associated with small-z physics. (We have
defined z to be the minimum parton momentum fraction in eq. (2); it is proportional to

Q*/s)
3 LIPATOV'S EQUATION

The Lipatov equation® is applicable to cross sections in the limit of high s. If we consider
hadron-hadron scattering, then graphs have the form of factors for each hadron connected
by a generalized ladder (Fig. 1). The ladder satisfies a Bethe-Salpeter-like equation; this
is the Lipatov equation. By making suitable kinematic restrictions, the equation may be
applied in hard scattering processes, like minijet production (with £y <« /s). Note that the
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Fig. 1. Ladders for perturbative Reggeon.

ladder form is not valid for the contributions of individual graphs, but one must use Ward
identities in a rather subtle way to obtain the ladder form?.

Once one has the ladder structure, the total ladder is obtained by summing over rungs:
1+ L+ L%+ L%+ ..., where L represents one rung. The multiplication of the Ls is in the
sense of a convolution of the loop momenta that connect the individual rungs. The sum is
a geometrical series, 1/(1 — L), and satisfies the following equation:

1 .
A

x L. (3)

An explicit formula is most easily obtained by performing a Mellin transform in the
- center-of-mass energy:

(y) = /ds s (s). (4)

Then the equation is

A , }\r ~’ k/ _ ‘\, -’ }\'. ) , ., 3
X(j, k1) = lowest order + _ashN /dkl"’ U ;Lz (2J 1) n X(7,k1) ’
Ik_l_ —ky | k’f +4k¢4

m(3—1)
where X represents the sum of the ladders, possibly convoluted with the ‘impact factor’®
associated with one of the hadrons.

The kernel of the equation has a pole at 7 = 1; this is the result of the exchange of the
spin-1 gluon. The effect of gluon exchange in individual graphs is to give cross sections that
at high energy are constant up to logarithms of s. After solving the equation we get cross
sectiop< that grow like a power of s.

The Lipatov equation is valid when s/@Q* > 1. It makes no separation between hard and
soft physics. Indeed a more exact version of the equation would have the fixed coupling as
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replaced by a running coupling a(%)). 1t is this lack of separation between hard and soft
physics that we wish to overcome in this paper. The problem is that the solution of the
equation as it stands inevitably brings in the region of low transverse momentum, where the
running coupling is large and where one must therefore treat nonperturbative effects.

Note also that at large enough s, saturation effects become important. This is inevitable,
since the equation leads to cross sections that grow like a power of s. The saturation eflects
referred to in the introduction are needed to restore the Froissart hound. We will assume
that s is not so large that saturation is important.

4 MODIFIED LIPATOV EQUATION

The results we are in the process of deriving apply to the short-distance cross section at
the parton level and to the Altarelli-Parisi kernel. Thus we retain the familiar structure
of a short-distance cross section convoluted with parton distribution functions that evolve
according to the Altarelli-Parisi equation. Since the higher order terms in the perturbation
expansion for such quantities have subtractions that remove the collinear region, we must
modify the Lipatov equation when we apply it to these quantities, by incorporating cor-
responding subtractions. Our resulting modified Lipatov equation only involves transverse
momenta of order the scale ) of the hard scattering. Thus we are freed from the need to
consider the infrared region of nonperturbative effects. In effect our equation resums the -
large logarithms that appear in the short-distance cross section when Q?/s is small and in
the Altarelli-Parisi kernel when /€ is small.

Our procedure is to recognize first that ordinary factorization continues to apply. The
proof® needs generalization from what is actually done in the literature. Next we treat the
problem that higher order corrections have large logarithms of kinematic ratios — logarithms
of £s/@Q* in eq. (1) and of £/ in eq. (2) — and that these imply that low order perturbation
theory is inaccurate. Then in the short distance cross section & and in the Altarelli-Parisi
kernel, we find a generalized factorization scheme for the contributions that dominate when
£s/Q? or £/x gets large. Our modified Lipatov equation applies to these further factoriza-
tions. Finally we add correction terms so that we have a formula that is also applicable
when (*/s is not small. (In perturbation theory, the correction terms have no singularities
near j = 1.)

The ~quation, and therefore the final result for the cross section, are written in terms of
quantities that have no small z logarithms, and that we may therefore usefully expand in
powers of a. ‘

The basic idea for our equation can he obtained by considering how to obtain factor-
ization from two-particle-reducible graphs for deep inelastic scattering: The graphs can be
considered as an irreducible part, S, associated with the hadron, an irreducible part, f,
associated with the virtual photon, and a ladder connecting them. If we treat the ladders as
a sum over rungs, then we have (Fig. 2)

1
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Fig. 2. Ladder graph for deep inelastic scattering, with lowest order subgraphs for the rungs.

To obtain the hard scattering, we consider the parton level cross section, which is H/(1 — R).
The subtractions amount to a projection that kills small momenta, and the short-distance
cross section can be written as

1

-~J
~—

Here, A is an operator that projects out the asymptote when the transverse momentum
coming from the R factor to its right (below in the figures) is much less than the transverse
momentum to its left. The scale j¢ arises in the definition of this projection.

Note that in QCD, the above picture of a (generalized) ladder for the dominant contri-
butions to the decp inelastic scattering is only valid in light-cone gauge. In a general gauge,
the ladders must be modified by the exchange of extra longitudinal gluons.

As an example, consider the one-rung case (Fig. 3). ‘If we have
HR:/d?k; H(Q, k) RO, kL), (8)
then the projected quantity is
H(l-A)R = /dzk'l R(K' kL) [H(Q,K)) = H(Q,0)0(k', < p)]. (9)

A separate calculation® can be made to relate p to the more standard scale iz, and we find
that at small z, p = yzE.

The equation for the ladders at small z is obtained by a further projection to separate
out the small z. We thus obtain a more complicated factorization than the standard one,
which is still true. Similar ideas and results apply to the Altarelli-Parisi kernel. The modified



Fig. 3. One rung ladder.

Lipatov equation for the hard scattering cross section has the form:

UX(j, ko) = U3, k1)

® L. (10)

Here L is our modified Lipatov kernel; we have explicitly separated out its single factor of
1/(5 = 1). The impact factor U has no singularity near j = 1. We obtain the complete short
distance cross section for scatiering off a gluon by adding a remainder term:

5 =UX + Hyem, (11)

where Hien represents the cross section with subtractions not only to cancel the collinear
regions but also to cancel all the leading large & behavior. It also has no singularity near
7 =1

For hard scattering off a quark, we must convolute UX with a bottom impact factor 5
associated with the quark, and in addition make a collinear subtraction:

UX(1 - 4)]—_—B~/dh (UX(j, kL) = UX (3,0)]—3(1%) (12)

The factor of 1/(5 — 1) is associated with the lowest order exchange of a gluon between the

upper impact factor U and the bottom impact factor B. There will also be a remainder
term.

The precise form of our modified equation, with the lowest order kernel is

< N, XGiky) XUk
X(y,ky) = lowest order 4+ ———— @ /11’2 ,2 (237 L) n X(7,k1)
] - 1 I'l” ..L | 1\714 +4k_L4

_X15,0) ok, < ftz - 9(1;_,_ < p) n Ok, < /i ‘
|k — k" kl4 + 4k, ?
(13)
The original Lipatov equation allows &, < ky: this region gives the j = 1 pole of the
Altarelli-Parisi kernel. We have already taken care of this region by the ordinary factorization
theorem, and therefore it is subtracted off.



5 SOLUTION TO THE MODIFIED EQUATION.

We can solve the equation'in closed form by a Mellin transform on k.. This transforin
diagonalizes the original Lipatov equation, but extra work is needed to treat the subtraction
term in the modified equation. We define

. dk,? [k,?
U:\(J,'r):v/ < <l

,
i T) UX(5, k). (14)

Here we have convoluted X with the ‘impact factor’ for the photon-gluon fusion process.
Then the soluticn to eq. (13) is

T _ (.] B I)U(],’Y) " %1\7(:\(7)7(],7‘:(]))
TX(j,7) = sy e . (15)

Here the function y(7) is the same as the one in the solution of the ordinary Lipatov equation:
it 1s the eigenvalue of the kernel, and is given by

N(7) = 2¢(1) = (y) = ¥(1 = ). (16)

It has a minimumi value 41n 2 at v = %, and has singularities when v is 0 and 1. The function
7.(7) is the functional inverse of v(7). That is, it satisfies the equation

, a N, , _

J=1+4 X(7(7)). (17)

It is defined for real values of 7 greater than

O J’VC

jL=1+4 41n2. | (18)

T

The short-distance cross section 1s then

ﬂ@=/%ﬁ“UXmm+mm

. (19)
dy R . ’
= / :)—_S {-/(Ja’\/C(]))—i']{rems
271
where the remainder term goes to zero like a power of & as § — oo. In this limit,
~ A A -1 1 p
(&) o 70 X —; (20)

In*?

The solution can be written in terms of untransformed quantities:

N ) o~ ) o dk 2 2 2\ 7eld) -
5(8) = /_dj_ G- / ds §~J/ 2EL (A_l?) e U (G ky) + Hieme (21
: 0 I
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A similar equation can be used for the Altarelli-Parisi kernel. The solution for the moment
in the gluon-gluon case is

| 'y o dk 2 k 2\ ve(d) '
A (—ﬁ—) T1(J, k1) + O(al)

. ) a
799(]~Q5) = 7(J) T PE

(22)
+ remainder

~ 76(])

The leading singularities of the remainder and of 7, are to the left of j = 1. The last line
of eq. (22) reproduces a result of Jaroszewicz’. Our formula has the possibility of including
higher order and nonleading logarithm corrections.

If we take the limit as the strong coupling a5 goes to zero, we find that

, 7
o) = 2 Ae
-1

, (23)

which enables us to reproduce the leading singularity of the lowest order Altarclli-Parisi
kernel.

6 CALCULATIONS

The above ladder factor is supposed to be convoluted with an impact factor U(ky,$, M). In
our present work, we are considering the case of heavy quark production, so we have replaced
the scale ) by the heavy quark mass, M. The impact factor is essentially an off-shell cross
section. It is projected onto transverse polarization for the gluon. It is subtracted at higher
order, so that it never has a singularity above or near j = 1. It has been calculated by
Catani, Ciafaloni and Marchesini?, as described by Catani at this workshop. Ellis and Ross®
have also calculated this impact factor, but only at j = 1.

We have used the solution to our modified Lipatov equation to make a numerical calcu-
lation of the short distance cross section for photon-gluon fusion to heavy quarks. We have
compared it with the Born approximation. At low § the two calculations give similar results,
since the higher order corrections are smaller by a power of oy and have no extra logarithms.
At large §, the Born approximation falls off rapidly with energy, as is well known, but the
full solution to our equation gives a cross section that rises like a power of §. So we have
also comnpared it with its asymptote:

§jL 1 00 ) dk_L2 k_Lz 1/2
& o = (k5 M), 24
Tasy & In%/? 3 /4M2 ’ ky? <ﬂ2 (ks ) (24)

It turns out that § has to be several orders of magnitude above threshold before asymptopia
1s reached.



7 OUTLOOK

We have an equation for the short-distance cross section and for the Altarelli-Parisi kernel.
This resums the j = 1 singularities that are responsible for the logarithms as ¢ — 0 or
§ — oo. It enables calculations to be done over the whole range of z.

We are developing methods for calculating higher order corrections. The consequence
should be much more accurate perturbative predictions in kinematic regions important for
collider physics: e.g., deep inelastic scattering at HERA, and heavy flavor production at
HERA and at hadron colliders. The calculations are considerably complicated by the pres-
ence of many soft and similar singularities in individual Feynman graphs. These cancel in
the final ans ver.?
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