
Fermi National Accelerator Laboratory 
E’BBMILAB-Conf.-90/252-A 
November 1990 

THE INFLXTON SECTOR OF EXTENDED INFLATION 

Edward W. Kolb 
NASA/Fern&b Astrophysics Group 
Fermi ~Vationai Accekmtor Labaratary 
P.O. Boz 500, Eataoia, IL 60510 USA 

and 
Department of Astronomy and Astrophysics 64 Enn’co Penni Institute 
The University of Chicago 
5640 South Ellis Ave., Chicago, IL bO&?? USA 

ABSTRACT. In extended infiation the inflationary era is brought to a close by the process 
of percolation of true vacuum bubbles produced in a first-order phase transition. ta this 
paper I discuss several effects that might obtain if the Universe undergoes an inflationary 
first-order phase transition. 

1. Baryagenesis ’ 

One of the most important results in particle astrophysics is the development of a framework 
that provides a dynamical mechanism for the generation of the baryon asymmetry. The 
baryon number density is delined as the number density of baryons, minus the number 
density of antibaryons: TIB = TU, - “5. Today, no = nb = 1.13 x 10-6(R&Z) cm-s. Of 
cou~sc, the baryon number density changes with expansion, so it is most useful to d&e 
a quantity 8, called the baryon number of the universe, which is the ratio of the baryon 
number density to the entropy density s. Assuming three species of light neutrinos, the 
present entropy density is s = 2970 cm-s, and the baryon number is B = 3.81x 10-B(RBhZ). 
Primordial nudeosynthesis provides the constraint 0.010 5 fl~h’ < 0.017,s which implies 
B = (3.81 to 6.48) x IO-“. 

A key feature of inflation is the creation of a large amout of entropy in a volume that 
was at one point in causal contact. The creation of entropy in in&&m would dilute any 
preexisting baryon asymmetry, so it is necessary to create the asymmetry after, or very 
near the end of, Mation. In order for the baryon number to arise after inflation in the 
usual picture, it is necessary for three criteria to be satisfied: baryon number (B) violating 
reactions must occur, C and CP invariance must be broken, and non-equilibrium conditions 
must obtain. There are two standard scenarios for baryogenesis:’ In the first picture the 
baryon asymmetry is produced by the “out of equilibrium” B, C, and CP violating decays 
of some massive particle, while the second scenario involves the evaporation of black holes. 

In the out of equilibrium decay scenario, the most likely candidate for the decaying 
particle is a massive boson that arises in Grand Unified Theories (GUTS). In the simplest 
models, the degree of C and CP violation is larger for Higgs scalars than for the gauge 
vector bosons, so we will assume that the relevant boson is a massive Higgs partir,Ie. This 
Higgs is also t&n to be different from the titan. The Higgs of GUTS naturally violate 
B. The origin of the C and CP violation necessary for baryogenesis is uncertain. It is 
practical simply to parameterize the degree of C and CP violation in the decay of the 
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particle. To illustrate such a parameterization, imagine that some Higgs scalar H has two 
possible decay channels, to final states II, with baryon number B1, and fi, with baryon 
number B1. Consider the initial condition of an equal number of H and its antiparticle, 
B. The H’s decay to final states h and f2 with decay widths l?(H - fi) and I’(H + fi), 
while the B’s decay to final states fi and fi with decay widths r(a + fi) and I’(a + fi). 
The decays produce a net baryon asymmetry per H-g given by 

r(H -+ fi) - r(a + 1) 
rEi~2Bi ra 1 

where l?H is the total decay width. Of course e can be calculated if one knows the masses 
and couplings of the relevant particles. Reasonable upper bounds for E are in the range 
of lOma to 10-l, but it could be much smaller. For more details, the reader is referred to 
Ref. (3). 

The non-equilibrium condition is most easily realized if the particle interacts weakly 
enough so that by the time it decays when the age of the Universe is equal to its lifetime, 
the particle is nonrelativistic. Then the decay products will be rapidly thermal&d, and 
the “back reactions” that would destroy the baryon asymmetry produced in the decay will 
be suppressed. 

In most successful models of new inflation the reheat temperature is constrained to be 
rather low. This is due to the fact that new inflation requires flat scalar potentials in order 
for in&ion to occur during the “slow roll” of the scalar field toward its minimum. In order 
to maintain the flatness of the potential, the in&ton field must be very weakly coupled 
to all fields so that one-loop corrections to the scalar potential do not interfere with the 
desired Fatness of the potential. The feeble coupling of the inflaton to other fields means 
that the process of converting the energy stored in the scalar field to radiation (“re”heating) 
is inherently inefficient. Although it is possible to overcome this difficulty in several ways, 
it remains a concern for new idation. 

The thermalization process of bubble wall collision at the end of extended infiation 
provides a natural arena for baryogenesis in the early Universe, as it automatically creates 
conditions far from thermal equilibrium, exactly as required for B, C, and CP violating 
GUT processes to produce an asymmetry. 

Our only assumption about first-order in&ion is that the parameter that determines 
the efficiency of bubble nucleation, c(t) = r(t)/II’(t), w h ere r is the nucleation rate per 
volume and His the expansion rate of the Universe, has a time dependence that suppresses 
bubble nucleation early in inflation, then rapidly increases so in&&ion is brought to a 
successful conclusion in a burst of bubble nucleation. 

In order to keep the discussion as general as possible, consider the salient features of 
the potential in t- of a few parameters that can be easily identified with any scalar 
potential that undergoes spontaneous symmetry breaking. The parameters of the potential 
are assumed to be: 1.) CQ, the energy scale for SSB, i.e., the VEV of the scalar field. 2.) 
A, a dimensionless coupling constant of the in&ton potential. We will assume that the 
potential is proportional to A. 3.) [, a dimensionless number that measures the difference 
between the false and the true vacuum energy density via py = &,$ [ must be less than 
unity for sutlicient inflation to occur. 

From these few parameters it is possible to find all the information required about the 
bubbles formed in the phase transition. For instance, an important parameter is the size 
of bubbles nucleated in the tmmelling to the true vacuup~’ In the thin-wall approximation, 
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the size of a nucleated bubble is given by Rc - 3(~X’k7&‘. Bubbles smaller than this 
critical size will not grow, and it is exponentially unlikely to nudeate bubbles larger than 
this critical size. We will assume that all the true-vacuum bubbles are initially created with 
size R = Rc. 

Another interesting parameter is the thickness of the bubble wall separating the true- 
vacuum region inside from the false-vacuum region outside the bubble. For the potential 
described above, the bubble wall thickness is A * (X’/‘Q)-‘. Note that the ratio of the 
bubble thickness to its size is A/Rc - [; as advertised, if [ << 1, the thin-wall approxima- 
tion is valid. We note here that the results are (probably) valid even ln the absence of the 
thin-wall approximation. Finally, the energy per unit area of the bubble wall is 11 N X1&$. 

It is necessary to have some idea of the size of bubbles at the end of inflation, when 
bubbles of true vacuum percolate, collide, and release the energy density tied up in the 
bubble wails. The bubbles of true vacuum are nucleated with size R = Rc. After nucleation 
the bubble will grow until it collides with other bubbles. 

Bubbles nucleated at late time will have little growth in coordinate radius, and any 
increase in the physical size of such a bubble is due solely to the growth ln the scale factor 
between the time the bubble is nucleated and the end of inflation. 

The physical size of a bubble nucleated at time ~NUC is related to its coordinate size by 
R(~Nuc) = r(t~~~)a(t~~o) = Rc. If there is negligible growth in the coordinate size of the 
bubble between the ~NUC and end of inflation LEND, then at the end of inflation the bubble 
will have a physical size R(~END) G R = ~(~NUC)U(~END) = Rc[~(~END)/u(~Nuc)]. Assume 
that the burst of bubble nucleation at the end of inflation leads to bubbles all of the same 
size, R = aRc, where Q E CZ(LEND)/U(~NUC). 

Now we have the picture of the Universe at the end of extended inflation. To a good 
approximation the Universe is percolated by bubbles of true vacuum of size R = aRc, with 
all the energy density residing in the bubble walls. The next step is to examine how the 
release of energy from the bubble walls into radiation via bubble wall collisions takes place. 

Now concentrate on a single bubble of radius R = oRc. The collisions of the bubble 
walls produce some spectrum of particles, which are subsequently thermal&d. We need 
to estimate the typical energy of a particle produced in these collisions. When a bubble 
forms, the energy of the false vacuum has been entirely transformed into potential energy 
in the bubble walls, but as the bubbles expand, more and more of their energy becomes 
kinetic and the walls become highly relativistic. A simple calculation shows that if the 
bubble has expanded by a factor of a since nucleation, then only l/a of its energy remains 
as potential energy. The numerical simulations of bubble collisions by Hawking, Moss, and 
Stewart’ demonstrate that during collisions the walls o&late through each other, and it 
seems reasonable that the kinetic energy is dispersed at an energy related to the frequency 
of these oscillations (see their discussion of phase waves). The kinetic energy is presumably 
dispersed into lower energy particles, and does not participate in baryogenesis. We are 
more interested in the fate of the potential energy. The bubble walls can be imagined aa 
a coherent state of h&ton particles, so that the typical energy of the products of their 
decays is simply the mass of the in&ton. This energy scale is just equal to the inverse 
thickness of the walL Note that by the time the walls actually disperse, most of the kinetic 
energy has been radiated away,’ so the walls are probably no longer highly relativistic. 

The probable first step in the reheating process is converting this coherent state of Higgs 
into art incoherent state. The next step would be the conversion of the incoherent state of 
Higgs into other particles either through decay of the Hlggs, or through inelastic scattering. 
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We are assuming that baryon-number vioiating bosom H will be produced in the process. 
The o field is typically in the adjoint representation of the gauge grou-, vhile ..- ‘s typically 
in the fundamental or some other representation. It is possible to er: ,on so:.:: symmetry 
forbidding a direct u-H coupling, or that the coupling is very sm. compx to other 
couplings. If this is the case, production of H relative to other particies will be suppressed 
by some power of the small coupling constant. However in the generic case where all 
couplings are of the same magnitude there will be no suppression. Of course the ultimate 
answer is model dependent but calculable. 

As discussed earlier, bubbles do not grow substantially before percolation in our idealized 
extended inilation model. Hence a remains not too far from 1, although a growth by a 
factor of 1000 even will not necessarily rule out the model. The bubble wall collisions 
yield a significant amount of the original false-vacuum energy in the form of potential 
energy, giving rise to hip;h energy particles. The potential energy in the bubble walla is 
given by Mpo~ = 4*7.:.: w 4rX 1 cr R 1 * 0” 2. Taking the mean energy of a particle produced 
in the collisions to be of the order of the inverse thickness of the wall, (E) N A-‘, the 
mean number of particles produced in the collisions from the wall’s potential energy is 
(N) z A&&(E) N 4aAX’/‘.$R’. 

In general, the bubble collisions will produce all species of particles, at least all species 
with masses not too large compared to (E). In the following we will assume that this 
is the case for the baryon-number violating Riggs particles. If the I-Eggs mass exceeds 
A-’ by a significant amount, we can expect some suppression, presumably exponential, 
in the number of Higgs formed. This possibility wiIl be discussed later. For now, we 
simply parameterize the fraction of the primary annihilation products that are supermassive 
Higgs by a fraction fa, which in general will depend on the masses and couplings of a 
particular theory in question. The typical number of Higgs particles produced per bubble 
is (NE) N frr(N) N 4nfrrAX’k,3R1. 

Now assume that the only source of the supermassive Higge is from the primary particles 
produced in the bubble-wall collisions. This will be true if the reheat temperature, TRH, is 
below the Higgs mass. 

The Higgs particles produced in the wall collisions decay, producing a net baryon asym- 
metry e per decay, where e is given in Eq. (1). Hence, the excess of baryons over antibaryons 
produced from a single bubble, NB = Nb - Ng, is given by 

NE = r(Na) - 4mfp7,R’, (2) 

where we have substituted ln for the bubble thickness. This results in a baryon number 
density of 

ng = NB/(4uR3/3) = 3cfsru;R-‘. (3) 
Now calculate the entropy generated in bubble-wall collisions. As stated above, the potential 
energy of a bubble is L&oT = 4no$3X’/2R2. Including the (possibly dominant) kinetic 
energy contribution, the total mass of the bubble is MBUB = 4s~~A’~~R~a. Thermal&&n 
of the mass in the bubble walls will redistribute this energy throughout the bubble, resulting 
in a radiation energy density 

pi - M/(4nR3/3) N 3X’~a&x/R = &T,& (4) 

which is just the false vacuum energy. The reheat temperature is related to the radiation 
energy density via PR = (g.n2/30)T&, where g. is the effective number of degrees of 
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freedom in all the species of particles which may be formed in the thermalization process. 
From this we obtain the entropy density, s, produced by the thermalization of the debris 
from bubble-walI collisions: 

7. 
s = gg.T& _ g.‘l’~~/‘p/‘o~. 

Eqs. (3) and (5) give B E n~/s = ,fHa-‘g;‘14X-‘14~‘l’. 
Provided the mass of the IIiggs is less than TRH, one might conjecture that fx is given 

simply by 9x/g., where gx is the number of Klggs degrees of freedom; that is, all suitably 
light particles are produced equally. In general the situation will be more complex, and 
the fraction of Klggs produced will depend on the various couplings in the theory. This 
introduces a model dependence into the picture, though ln fact one can always regard cfa 
as a single unknown parameter. For simplicity, we assume here that aB particles are indeed 
produced equally. Substituting this gives the ilnal result B = ‘9ao-‘9;6f4X-‘l’~‘l’. This 
al.lows us to make numerical estimates of B based on sample values of these parameters. 
Notice that the dependence on both X and [, which are the two parameters on which the 
in&ton’s potential depends, is very weak. The important contributions are the degree 
of asymmetry in CP violating Kiggs decays, the number of particle species available for 
production ln the wall collisions and the factor a by which bubbles expand before collldlng. 

It is also interesting to note the possibility of isothermal perturbations arising from the 
thermalization process. While we have assumed throughout this paper that at percolation 
all the true vacuum bubbles have the same size, the full picture is somewhat more com- 
plicated, as bubbles formed earlier in inflation will grow to larger sizes ‘than those formed 
right at the end. While homogeneity of the microwave background requires large bubbles 
to be suppressed, one would still expect to see a range of sizes of small bubbles, and hence 
spatial variations in the ratio of baryon number density to entropy density from point to 
point. 

In conclusion then, we have seen that the result of the first-order phase transition 
bringing extended inflation to an end is an environment well out of thermal equilibrium. In 
such conditions baryogenesis via the decay of baryon number violating Hlggs particles can 
proceed, and we have demonstrated a means by which the baryon number can be estimated. 
The mechanism has further been shown to work for a large range of model parameters and 
to have the capability of predicting a baryon asymmetry of the required magnitude. 

For more details on baryogenesis, the reader is referred to the original paper of Barrow, 
Copeland, Kolb, and LiddIe.’ 

2. Black Holes s 

There are three possible sources for the formation of small primordial black holes after 
extended inflation. Holes may form via the gravitational instability of lnhomogeneities 
formed during the thermallzation phase; there is the possibility of trapped regions of false 
vacuum (within their Schwarsscbild radii) caught between bubbles of true vacuum;’ and 
there is the possibility that black holes are formed ln the collision process.’ 

Unfortunately, the technical details of even estimating the typical number density and 
mass of the black holes formed by these processes are quite dl5cult. Some progress in this 

5 



direction was made by Hawking, et al., ’ in the context of the original inilationary scenario, 
and more recently Hsur has examined black hole production from false vacuum regions 
in extended inflation. In order to keep the discussion on a more general footing, for now 
simply assume that some fraction p of the energy after collisions is in black holes, while the 
remaining 1 - p is in radiations and later consider the various outcomes implied by the 
differing values of 8. 

The total energy density at the end of extended inflation is partitioned between the 
energy density of radiation, ~a, and black holes, ~na: 

P(~END) = PR(~END)+PBB(~END) 

PR(tEND) = (1 -P)P(tEND) = $& 

PBH(~END) = ~(~END) = MoWa(fENDh (6) 

where TM is the reheat temperature, Me is the initial mass of the black holes formed (for 
convenience we will assume that they all have the same mass), and ng~ is the number 
density of black holes. The time t~nn can also be expressed ln terms of P(~END): 

(7) 

(For matter domination, the factor 3/32x is replaced by 1/6x.) Ram HEND and p we also 
define a “horizon mass” at t&s end of intlation: 

&OR = $P(tEND)(%I# = (&)l" $TtkND). 

(The right hand side is the same in the matter dominated case.) MHOR represents the mass 
within the “physics horizon,” at the end of inflation, and plays the same role as the mass 
within the horieon in the standard FRW model. 

Once formed, the black holes evaporate at a rate given by 

ni,, = -embl 
3 M&’ 

which leads to a time dependence of the black hole mass of 

M;,(t) = M,3 -W&(t - tEND). 

It is convenient to defme a black hole lifetime, 

(9) 

(10) 

7 s M,3 I g.n&, (11) 

and the expression for the mass as a function of time becomes M(t) = Mo[l - (t - 
tEND)/T] . V3 The evaporation ends at time tga = tm + r. 

Black holes radiate as blackbodles with temperature !l’s~ = m&/SnMna. This allows 
us to calculate what is, for our purposes, the most important quantity-the number of 
particles emitted during the course of the evaporation. Let us first calculate the number 
of particles emitted while the black hole is between the temperatures 2’ and T + Cf. The 
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change in mass of the black hole, dM, which is the amount of energy radiated as particles, 
is given bv 

Each emitted particle has energy 3T (the mean energy of a particle in a Maxwe&Boltzmann 
distribution at temperature T), so the number of particles emitted between those temper- 
atures is just 

Integrating this, we find that the number of particles emitted as the black hole temperature 
increases from its initial temperature To to co is 

4*M, 
N=- 

3m$, . 

Note that this gives the total number of particles emitted. 
It is interesting to consider the possibility that amongst the particles radiated are I-Eggs 

bosons, again denoted as H, whose decay can lead to the baryon asymmetry. Again, B 
will depend upon the traction of the particles emitted as H, denoted as fa. To determine 
the appropriate form for fa, the initial temperature of the black hole at formation may be 
important. If it is less than the mass of the H&s boron, mu, then the the.rmal spectnrm 
in the initial phase of the evaporation will not include Higgs as the typical energy is not 
high enough to produce so massive a particle. Only when the black hole temperature has 
increased to ma will the thermal radiation include a sign&ant traction of Higgs. Tbls can 
lead to an overall suppression in the number of Hlgga produced during the complete course 
of the evaporation. Once the temperature is high enough to radiate Higgs, we expect that 
the energy of radiated particles will be distributed evenly amongst all radiated species, so 
that fH is a constant given by ga/g.. 

Black hole evaporation affects the evolution of both components of the total mass den- 
sity. Since the hole mass is decreased by evaporation, the evolution of the black hole 
energy density, which in the absence of evaporation would be that of nonrelativistic matter 
(PNR a a-‘, where o is the scale factor), is altered. The production of radiation from the 
hole evaporation also modifies the evolution of radiation energy density, which normally 
scales as a-‘. Of course, the departure of the energy densities from the normal evolution is 
most pronounced around the time t = ti~2 + 7. An exact treatment of this effect is given 
in Ref. (S), where a network of equations is derived describing the evolution of the different 
components of the energy density and also the evolution of the baryon asymmetry. In order 
to understand the general remits, let us for the moment ignore the complication resulting 
fkom the de-e of the hole mass. 

Two d&rent situations arise, depending on whether black holes or radiation dominate 
the energy density of the Universe at the time the holes evaporate.s If p < l/2, then 
the evolution of the scale factor is that appropriate to a radiation-dominated Universe, 
i.e., a(t) N t’/‘, and the energy density of black holes goes as as3 cc tw31P, while that of 
radiation goes as a-’ a t-s. Therefore, provided their lifetime is auf&iently long, black 
holes wiIl coma to dominate the Universe at a tlme t. = t~m(l - p)‘/ps, and hence if 
r > t. - tEND, they will come to dominate before their evaporation. If fi > l/2, black 



holes dominate even initially. If the black holes dominate before evaporation, then their 
evaporation produces not only the baryons, but also the entropy. 

For the details of the caiculations the reader is referred to Ref. (5). Here I shall simply 
summarize the results. 

Fist consider the case where black hole evaporation occurs before domination. This 
corresponds to small ~3 and initially light black holes. Since the black holes never dominate, 
the Universe expands like a radiation-dominated Universe, with a cc t’l’. If the black holes 
evaporate before domination, their radiation will not significantly change the background 
entropy density. 

In this case the final baryon asymmetry is 

BA 3 T = $fH 
(g” (zy (&y (1 $,,l (15) 

where we have used Eq. (8). Note that the penultimate factor gives the initial black hole 
mass as a fraction of the horizon mass. 

Now consider the second possibility, that holes evaporate after they dominate the energy 
density. This divides into two further sub-cases; in the former, black holes come to dominate 
at time t. as defined earlier, while in the latter black holes dominate immediately after 
formation. 

In the iirst of these sub-cases, once t > t. the scale factor evolves as appropriate for 
a matter-dominated Universe, a(f) N lap, and so pea = p~~(t.)(t./t)~ and pi = 
PR(t.)(Llt)“3, with the energy densities equal at t.. 

The evaporation of a single black hole gives a baryon munbex no = rfaN ng~(tg~). 
This time, though, the entropy is also determined by the other black hole evaporation 
products, as they provide the do minant contribution. The result for the baryon number is 

h = i@ftz (g” (Ji!y (-3!J(1 -pp, (1 +T& 
(16) 

This expression is very similar to that obtained in the “evaporation before domination” 
scenario; in particular the black hole mass appears in the same functional form, and the 
prefactors are all the same with the exception of the /3 term, which naturally has changed 
a~ we move to a different physical situation. The last factor demonstrates how a long black 
hole lifetime dilutes the baryon asymmetry obtained; if T is very small this factor is just 
equal to one, while for 7 > tm we get a reduction in the baryon asymmetry by a factor 
of abotit dw. Clearly, this factor can be important for long-lived (initially 
massive) black holes. These are atso exactly the type of holes that cme might expect to 
survive long enough to came to dominate even ifp is originally substantially less tb.an l/2. 

We now examine the second sub-case of black hole domination-that in which the black 
holes dominate even initially. The black hole energy density is now given by pBa(t) = 
PBIf(kR)(h7/~)‘, ad 

which is just Eq. (16) multiplied by (p/(1 - p)) II’. This factor represents the dilution of 
the black hole energy density up to domination. As expected, Eqs. (16) and (17) match 
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in the case of marginal domination where /3 = l/2. The p dependence in Eq. (17) simply 
rellects the fraction of the horizon mass contributed by black holes. It di&s from Eq. (16) 
because hare there is no evolution in the initial radiation-dominated phase, hence no era of 
dilution before domination. In the case of Eq. (16) an extra multiplier of [(l - 0)/p]‘/’ is 
needed to account for the evolution in the initial radiation-dominated phase. 

This completes the set of results for the different regions of domination, and is sum- 
marized in Table I. Many more details are to be found in the paper of Barrow, Copeland, 
Kolb, and Liddle.s 

Table I. Results for the baryon number produced by black hole evaporation 
depend upon p (the fraction of the energy of the Universe in black holes at 
t = LEND, whare LEND is taken to be the end of Wtion), t, (the time at which 
the black holes dominate the mass of the Universe), and 7 = M&/g.m$, (the 
lifetime of a black hole of mass Msa). 

P f B I ,,,J/d 
P < 112 7 < t. - tEND Eq. (15) 
P < 112 t>t.--EN,, Eq. (16) 

1 p > l/2 independent of 7 Eq. (17) 1 

5. Topological Defects 9 

I have already discussed the generation of adiabatic density fluctuations during extended 
inflation. However there might very welI be a different mechanism for the formation of 
structure after extended inliation, namely the formation of topological defects in the inflaton 
field formed as it passes through the phase transition. Calculations of the false-vacuum 
decay rate made so far consider the evolution from a false-vacuum state to a unique true- 
vacuum state. However, the intlaton is far more likely to have degenerate 
if it is part of a grand-tied Hlggs sector. 

minima, especially 

Recall the picture of defect formation in a smooth second-order phase transition.“’ 
At early times the universe was very hot and the fields describing interactions were in a 
highly symmetric phase. However as the universe expanded and cooled, symmetry breaking 
occurred, which may have ieft behind r emnants 
form of strings, domain 

of the old symmetric phase, possibly in the 
walls or monopoles. Here, we concentrate on strings. 

String appropriate to galaxy formation are required to have a line density of G# N 10-6, 
where fi N u& corresponding to a breaking scale of lo-’ Planck Massey Unfortunately, 
generic new and chaotic infiationary scenarios occur at or below this energy scale, and 
hence the strings form before or early in the intlationary epoch and are rapidly tited 
away. It has been demonstrated that the universe cannot be made to reheat after inflation 
to sulliciently high temperatures as to restore the symmetry of the string-forming field and 
allow a new phase of string f&mation after Xiation .*lJa This leads to the incompatibiity of 
cosmic strings with new or chaotic ation. These arguments apply whether the in&ton 
and the cosmic string fields are the same field or different ones (m chaotic in&&m the 
bAaton field can never be identified with the cosmic string field as the symmetry is broken 
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even initially). Lu the case where the cosmic string field is distinct from the inflaton field, 
models have been proposed which resolve the conflict. The model of Vishniac, Olive, and 
Seckelrr couples the inilaton and the string field in a particular way, but the only motivation 
for doing this is to solve the strings-inflation problem, so their solution appears unnatural. 
More recently, Yokoyama I3 has suggested that a non-minimal coupling to gravity of the 
string field can hold it in its symmetric phase during intlation, and allow strings to form at 
the end of inflation. 

Now consider the picture of string formation in extended inflation, where the fact that 
the transition is first order has crucial consequences. As the Universe cools from high 
temperatures, a complex scalar field is trapped in a false-vacuum state and the Universe 
enters a phase of rapid power-law expansion. Bubbles of true vacuum than begin to nucleate 
and grow at the speed of light. Due to the presence of event horizons in the inllating Universe 
they grow to a constant comoving volume which depends on their time of formation. The 
important ingredient to our scenario is that each bubble forms independently of the rest, 
and so there is no correlation between the choice of true vacuum made in each bubble from 
the seiection of degenerate true vacua. Eventually the bubbles grow and collide, finally 
percolating the Universe and bringing the inllationary era to an end. 

At the end of intlation, the collision of bubble walls (in which all the energy is held) 
produces particles and causes thermalization of the energy. However, because the scalar 
field is only correlated on the scale of a bubble, we can expect topological defects to be 
present. The usual arguments state that there is typically of order one cosmic string per 
correlation volume of the scalar field, and hence we expect roughly one string per mean 
bubble size at the end of intlation. 

This model for the formation of strings allows for the existence of large voids, which 
would be a consequence of the rare large bubbles. Although the typical string separation at 
the end of inflation is &.r, extended inflation allows for the possibility of rare large bubbles, 
formed by quantum tunnelling early in inflation. The true vacuum formed inside bubbles 
contains no matter (any matter originally in that volume is assumed to be inflated away 
while the scalar field dominates the energy density). All the energy of the Universe after 
inflation is contained in the wails of the expanding bubbles which collide to form matter 
and to cause thermal&&ion of the energy density. After collisions, matter will flow back 
into the void, though as it cannot travel faster than light, we can calculate the minimum 
time the bubble will require to thermal&e. A large bubble will have a coherent scalar field 
vacuum and hence no strings will be formed within it-we can thus expect the interior of 
the bubble to evolve into a large region void of strings. If cosmic strings are to provide 
the seeds for galaxy formation, then we can expect to eee few or no galaxies within the 
void. The presence of voids is an additional property of this model which may help explain 
observed largcscale structure. 

In fact, at the time of percolation the bubbles may have a range of sizes, which can 
lead to the formation of an initial string network differing horn the usual one. As the 
correlation length is essentially just the bubble size, and because there would appear to be 
no a priori reason why bubbles everywhere should be ezactiy the same size (at small sizes 
the assumption of a scale-invariant bubble size distribution would seem more reasonable), 
the strings will be formed with a randomly spatially varying correlation length. This will 
presumably lead to higher densities of strings in some regions than others, which again may 
have implications for structure formation, depending on how much the effects of the initial 
string distribution might be wiped out by the future evolution and decay of strings. One 
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desirable effect of a more dilute string network would be to avoid the uncomfortable bounds 
from gravitational wave production from small string 10opr.r~ The fact that the correlation 
length will generically be greater (and in some models perhaps much greater) than that of 
the Kibble mechanism may also have important implications, though perhaps not as great 
ar one might naively suppose if the small strings rapidly disappear from the network once 
string evolution commences. 

These formation arguments can be equally well applied to the cases of domain wails 
and monopoles, again giving rise to an estimate of order one defect per bubble at the time 
of bubble coilislon. In the case of domain waila this will give rise to an excessive numhar, 
and will be disallowed on cosmological grounds. Hence, any extended lnilation model 
featuring a potential with domain wall solutions (i.e., a disconnected vacuum manifold) cart 
be ruled out. The situation is less clear for monopoles, because the correlation length may 
well be substantially greater than that of the Kibble mechanism and hence proportionally 
fewer monopoles are expected. However, standard estimates of the cosmological monopole 
abundance’6 give values of perhaps twenty orders of magnitude in excess of the Parker 
llmit,re so the correlation length would have to be increased by seven or eight orders of 
magnitude before being within experimental limits--such an increase see& very unlikely. 

If we conaidar the unification to be part of a grand-uniiied theory, the problem of 
monopole overproduction must be addressed, as any breaking to the symmetry of ~the 
standard model must produce monopoles at some stage. The simplest method is to arrange 
for monopoles to be formed in a partial symmetry breaking and then later b&ted away in 
a recond transition. 

Fbr more detaiIs, the reader should see the original paper of Copeland, Kolb, and 
Llddle.O 

4. Gravity Waves rr 

One of the moot interesting new features of a completed first-order phase transition is the 
observation by Turner and Wllczek that a significant amount of gravity waves might be 
produced ln the reheating process.” 

The beauty of this observation is that it is largely independent of the details of the 
particular extended inflation modal. In the picture of reheating I have beeu describing 
here, bubbles of size R and mam A&n collide. Purthermore, the bubblea are most likely 
relativistic, or at least semi-relativistic, when they collide. The luminosity in gravity waves 
emitted in such a close encounter can be estimated from the quadrupole formular 

LOW N GN 

Thus a bubble collision releases an energy .?l& given by 

%uB 
EGW N RLGW N GN-, R 

in the form of gravitational radiation with wavelength R. 
Of course it is most useful to compare thla energy with the total energy released in 

the bubble collision. Since the total mass of the bubble, Mum, is eventually released into 
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radiation, then the ratio of the gravitational wave energy density to the radiation energy 
density is 

EGW = 
EGW MBUB 

- - GN-~ 
MBUB R (20) 

If this is true after extended inflation, then the present ratio would be approximately 
g.(today)/g.(Tm) - 0.01 times this value. Since the contribution to fl in radiation is 
today about 3 x 10-‘/t-‘, and pow and PR both decrease in expansion as a-‘, this implies 
that today ftcwh’ * l‘?-‘eGw. 

The wavelength of the gravitational radiation today would simply be the wavelength at 
creation, X(Tm) u R, redshifted by the expansion of the Universe: 

X(today) = R(a(today)/a(Tm)] N RTm/2.7 K N 4 x 10aER(M/lO”GeV), (21) 

where again we have assumed that the re-heat temperature is comparable to the mass scale 
of symmetry breaking M. 

Now the question is what to use for R. Turner and Wllczek make the reasonable 
assumption that the size of the bubble is the particle horizon at the end of extended 
tiation. If this is true, then GNMBUB/R is about unity, e~w N 0.01, and RGwh’ N lo-‘. 
The iact that eGw is about unity in this case is easy to understand: -masses the size of the 
horizon are moving about with velocities of about the velocity of Qht! This choice for R 
also predicts R m E-r N r&Ma N 2 x 10-19(10’4GeV/M)%m, wnich leads to a present 
wavelength for the gravity waves of X(today) = 8 x 103(101’GeV/M)cm. This is quite 
interesting because it is within the sensitivity and wavelength range of LIGO II and other 
large second-generation lnterferometric detectors. 

However it might be equally possible that the bubbles are much smaller. The smallest 
they might be is Bc, their critical size. Let’s take the pessimistic view that R w M-l. Ifthis 
is true, then e~w N GNMBUB/M = MB”BM/~&. If the bubble size is M-i and the false 
~aeuum energy is of order M’, then MBUB w M, and e w Ma/m& N 10-10(M/10’4GeV)1. 
This would lead to a present value of i&wh’ * 2 x lo-“(M/lO”GeV)*. Another price 
to be paid is that the present wavelength of the gravity waves would be much smaller: 
X(today) = 8 x 10mz cm. This is too small in magnitude and wavelength for interferometrlc 
detectors. 

Clearly the correct answer is model dependent. The latter assumption is most likely far 
too pessimistic, while the former assumption may turn out to be somewhat optimistic. 
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