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Abstract

The escape rates and evolution of a distribution of particles are considered for a 2-D model of
transverse motion of particles in hadronic storage rings, when norlinear resonances and external
diffusion are present. Dynamic enhancement of diffusion inside separatrices can develop under
a certain geometry of resonance oscillations and relatively wide resonances, leading to the fast
growth of distribution tails and escape rates . The phenomenon is absent in 1-D.

1 Introduction

In hadronic colliders, the escape of particles to large betatron amplitudes and associated growth of
distribution tails due to the small random modulations of the lattice parameters (predominantly
the RF power) is an important practical issue, since it causes some problems with background levels
in detectors. Experimental evidence indicates that the escape rate has an appreciable magnitude
only in the presence of the beam-beam interaction. However, the present knowledge of low tune
shift (£ < 0.01) dynamics of beam-beam interactions in hadronic colliders indicates that we cannot
expect a fast escape of particles from the beam core {betatron amplitudes ~ 1¢) to the tail region
(amplitudes ~ 5¢) to originate from the beam-beam interaction alone. Therefore, it seems apparent
that the external noise and the beamm-beam nonlinear dvnamics “interfere” somehow to efficiently
magnify their respective effects. The present paper is devoted to the description of one particular
mechanism of amplification.

The most important effect of the beam-beam interaction is to drive nonlinear resonances/1,2,3/.
If we consider them as isolated (an appropriate approximation at least in the absence of synchrotron
modulation) we arrive at the problem of diffusive motion in the presence of a {everywhere dense)
net of isolated nonlinear resonances. In most cases the resonance widths are much smaller than
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the characteristic apertures where particle loss occurs; then in 1-D the transport ability of these
resonances is minimal. since their influence is confined to a small region near their separatrices.

In 2-D, resonances appear as lines in the planes of betatron energies I. and 1, /1.2/. We
can then draw the arrow of separatrix oscillations, which shows the direction of trapped particle
oscillations about the resonance line. Its length A is the simply the width of the separatrix {or
twice the maximum oscillation amplitude) and its center is the resonance line (see Fig. 1). Now
consider a small kick & applied to a trapped particle in the direction orthogonal to the resonance line
- it is clear that the center of oscillations will be displaced a distance é cot(a) along the resonance
line. Similarly, if we introduce noise of intensity I in this direction, then the diffusion of the
oscillation center along the resonance will have the intensity D cot{a). Thus for small angles o
between the resonance oscillations and resonance line, diffusion is enhanced inside the separatrix,
This enhancement has been termed diffusive “resonance streaming” and is well known /4/, but it
does not complete the picture. Indeed, under the influence of noise the particles, besides diffusing
along the resonance line, can also leave {and re-enter} the separatrix, so the overal} effect of the
resonance will naturally depend on the width A of the resonance "stripe”, going to zero as A tends
to zero. For small & and not small A |, the effects of resonance streaming lead to a strong increase in
escape rate and fast growth of distribution tails even when the resonance width A is much smaller
than the characteristic aperture limitations. This situation is somewhat similar 1o the escape
rate and distribution function problems in the 2-I oscillator with nonlinear resonances, damping
and noise /5/, where both damping and diffusion are “renormalized” within the separatrices. In
our problem, however, there is no relaxation and all quantities are time dependent. In realistic
situations, the beam is small relative to the aperture during the entire storage time. In-terms of
distribution function evolution, this means that we are interested in region of the distribution tails.
Generally, an adeguate mathematical formalism to deal with the description of distribution tails
is the method of weak-noise asymptotics (WNA)/6,7/. Unfortunately this method breaks down
for smaller A values. In this paper we develop a modified WNA which can treat arbitrarily small
A for asymptotically small noise intensities 5. To build insight we shall first examine a simplified
situiation in Chapter 2, where the resonance is “modeled” by a stripe in the 2-D plane with a
different diffusion intensity than in the remainder of the plane. The growth of distribution tails in
this example can be described analvtically to the larger extent. In chapter 3 we then consider the
full problem in a 4-D phase space. Due to the complex geometry of this phase space, additional
problems will appear. One possible resolution to these is suggested in a semi-phenomenological
approach.

2 Demonstration diffusive example

2.1 Model

In this Chapter, we will consider another diffusive mode! that is maximally simplified to allow
a clear analysis, but retains all the characteristic features of the original problem of diffusion
in the presense of resonance(s). This model is a two-dimensional diffusive random walk with a
coordinate-dependent diffusion coefficients. More particularly, the diffusion coefficient D, wiil be
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Figure 1: Displacement of resonance oscillation center by transverse kick. Thick solid line is the

resonance line. Dashed lines are the separatrix.
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Figure 2: The stripe of a Jarger vertical diffusion. Shaded is absorbing bondary. The arrows show
the most probable path of escape to the boundary.

constant throughout the plane, while the coefficient Dy will have a (higher) constant value D, in
the stripe 29 - A < 7 < zg ~ A and a (lower) constant value Dy, outside of the stripe (see Fig.2).
The stochastic equations of motion are:

i

V2D: &(t)
\/2Dy(z) £,(1) (1)

where £;(t).£,(t) are white noises {£,(t)(t — 7)) = (§,(t)€,{t ~ 7); = é(7) and Dy(z) = D, if
2o - A <z <25+ A and Dy(z) = Dyy otherwise. The evolution of distribution density will be
governed then by the Fokker-Planck equation {FPE):
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The transition probability P(z, y; Z, 7,t) satisfies the same FPE (2) and is subject to the injtial
condition P(z,¥;%,%,0) = &(z — £)8(y — §). We also will restrict the motion of particles to the
positive values of r and y by making the axes z = 0 and y = 0 reflecting boundaries. This is
equivaient to imposing the zero orthogonal component of flux conditions at these axes: gg =0 for
y:Oandg—;:Oforx.—-O.



We will analvze the evolution of distribution tails and escape of particles to a distant vertical
absorbing boundary y = A (see Fig.2). All the particles will be startedatt = 0atez = 0,y = 0. The
escape rate r(t) is the percentage of particles that are absorbed in a umnit of time at the boundary
y = A. It equals the integral orthogonal flux at this boundary J(1) = f;© Dy(z)%%(z.y = A4)dz for
the distribution po{z.y,t) which is subject to conditions pg(x.y,0) = &(z)é(y) and pelz. 4.1) = 0.
By a "distant” boundary we mean that it lies in the tail region. what is true at least if the maximurm
time of observation of the system T is much smaller then both diffusive time scales 4%/D,; and
A?/D,». Also, under this condition the function pp(z, y,t) will be much smaller than py(0,0,t) for
all times ¢ < T in most of the plane z.y (except a small region near £ = 0,y = 0). In hadronic
colliders this is a realistic approximation since the beam size is kept small relative to the aperture
during the storage time.

2.2 Modified Weak-Noise Asymptotics

If the time T and all the parameters of the system were kept constant while diffusion intensities
D., Dy, D, were tending to zero we would have the situation where the powerful weak-noise
asymptotic (WNA) method /6,7, would apply. In this asvmptotics, the function py is exponentially

small: ( 0
Pz, Y,
oo l) (3)

(n here is the common diffusion intensity factor Dz ~ 1, Dyy ~ 0y Dya ~ 9.1 —— 0). The p.d.e.
for the leading exponential factor ¢ has the form of the Hamilton-Jacobi equation (HJE), whick is
of the first order (though nonlinear) and can be sojved through characteristics method. This whole
approach parallels the quasiclassical approximation in quantum mechanics. In particular, the most
probable paths of transition from one point to another are the only ones to contribute to an integral
in the path-integral representation of py. These paths in their turn provide the minimum of an
associated classical mechanical action. However the applicability of this approach is determined,
among others, by the condition A2/D,T > 1. Since primarily we are especiallv interested in the
effect of narrow resonances and its dependence on the width, in this model it is highly desirable to
consider the case of arbitrarily small A and go beyond the limits of applicability of the standard
WNA.

Physically, the condition FA;T % 1 means that if the most probable path of escape to absorbing
boundary as well as to other points in large regions of (z, y} plane partially passes along the stripe
(see below), then all the paths that are nearly as probable (giving appreciable contribution to the
probability path integral} are also passing along the stripe. In other words in this case one does
not need to take into account the possibility of particles “falling out” of the stripe, recrossing
back, ete. while making their way along the stripe to the larger y. However, when considering
small A one does need to account for such possibility. We will be able to do so by taking the limit
Dy~ Dy ~ Dys ~ 7 — 0and letting A be arbitratry in respect to 5. Then indeed the width A is
small relative to the other distances in the system and we will be able to solve the FPE applying the
asymptotic form of the type (3) only in the direction along the stripe while treating the transverse
direction exactly. This will provide us with the exponent of transition probability for the points

pU(xv y!t) = Z(:tl’ y-.t)emp (h



along the stripe. At the next stage, we can forget about the siripe having a width A and consider
it as a line. while applving the standard WNA [3) evervwhere in the plane except the line. In othe
words, because of the variation of diffusion intensity on the small distance A one needs to consider
these “microscopic” scales to evaluate the renormalized “macroscopic™ diffusion along the line, but
after that one is left only with the “macroscopic™ quantities. The “global” solution for the exponent
of the function p in the plane z,y is constructed as in the general approach of WNA | but with the
special treatment on the line. Technically it can be achieved with the variational representation of
the exponent ¢. The general approach is quite similar to that of Ref./8/ for the evaluation of the
tails of nonequilibrium steady-state distribution in the system with narrow resonances, damping
and noise.

2.3 Distribution function along the stripe

Following the program outlined above, we present the function pg(z. y) in the narrow (of the order
of A} vicinity of the stripe zg — A <z < zg+ A in a “partially” asvmptotic form:
o(y,t
plr,vit) = 2., teap - 21 (1)
&
Exponetially stong dependence is present in {4) in y and { but not in z. We are most interested
therefore in function ¢, but it turns out that the equation for ¢ emerges as the compatibility
condition of equation for the prefactor Z with the physical boundary conditions. Substituting (4)
in (2) and singling out highest powers of 1/D;,1/D.1,1/ D3 (we suppose D, ~ Dy ~ Dy — 0),
one obtains
7 02
~xkZ = D} F (5)
where x{y,t) = Bjé;tﬂ + %ﬁﬂ(%ﬂ)? It is also convenient to introduce the notations x,(t) and
ka(t}) for the values of & correspondingly inside and outside of the stripe. Note that though the
function Z is time-dependent, the derivative %—f does not enter the equation (5) as the corresponding
term is of higher order in diffusion intensity.
The most important solution of equation {5) can be presented, if we introduce the notation Z;
for the function £ inside the stripe and Z;, Z; corresponding to the Jeft and to the right from the

stripe as:
Z;, = Acos <:r:1 . R])
D,

iy
Zy = Alexp(x| 2 (2, — A) . (6)
D,
Zy = Ajexp (— Y ﬁ?i‘[r] - A))
D,
where 21 = ¢ - zy3. This solution emerges from the requirements of: 1) symmetry relative to

r = ¥o, and 2) monotonically decreasing behaviour as a function of .z — z¢|. The requirement of



the svmmetry is rather special in respect to obviously nonsvmmetric initial conditions for pg (see
below). We supposed «; > 0 and k; < 0, since only in this case can we construct the solution which
would satisfv the conditions 1 and 2. Two more conditions to be imposed on the solution (6) are
3) continuity of the function p at the boundaries of the stripe, and 4) continuity of the orthogonal
flux j, = ngg at the same boundaries. The condition 3 vields the relation

Ay = Acos (A ‘gf) (7)

The condition 4 gives one more equation:

K1
A7 sin(A ‘1’3:) = A1y Ik (8)
and together with (7) allows to find the relation between %‘? and ‘gf:
Ry ‘K|
tan(A =4/ — 8
an(A75-) Vo (9)

._a(ﬁ_Dyl_aEQ__igi@ DyQ@Q o e Tt .
Remember here that xy = 3 ﬁ;(ay) y Rg = 37 + T)T(ay) and that x, is positive while xo is

negative.

Equation {9), though transcendental, defines %%’ as a function of %g:

% _g (ﬁ?) (10)
ot dy
Some remarks about the derivation and the meaning of equations (9) and (10} are in order.
First, one observes that the requirement of the symmelry of Z relative to z = &y would be natural
were we starting particles at z = z¢, but plavs rather special role in respect to the function p. We
expect such symmetric solutions to be valid in our asymptotics  —— 0 on some section(s) of the
stripe in spite of the asvmmetry of the initial conditions of pg. These sections are intuitively those
where the particles, if their paths are retraced back in time. predominantly travel along the stripe.
Another possible class of solutions of equation {5) corresponds to the situation when the particles
atrive to the section(s) of the stripe directly from the center z = 0,y = 0. At these sections, solution
(9),(10) is inapplicable; but even without explicitly writing another solution one can argue that
since the width of the stripe A is asvmptotically small, the transverse crossings of the stripe by the
paths will not give any appreciable contribution to the probability path integral. The function ¢
then is essentially unaffected by these sections as if the stripe were not there (see also below).

2.4 Expomnent of transition probability along the stripe

Now we will find the solution ¢ of the pde {(10) while imposing the initial condition @(y,t) ~ y“tg i

as t — 0, for arbitrary 7. Such a solution obviously defines the exponential factor in the transition
probability from point § to point y (both inside the stripe) in time ¢, and will allow one to find



the full asymptotic solution for the function polz.y.t) through a certain minimization procedure
involving ¢(y,t).
The function &(y,¢) can be found through the standard characteristics method. Equation (10} is

the Hamilton-Jacobi equation H[y,t.py,pt) = 0 with p, = %’ and p, = %‘5. Hamiltonian equations
of motion are:
dpy
vy g
dr
e _
dr
dt
= =1
ir (11}
dy oG
— = —=—(p,)
dr dpy
Substituting the general solution of (11) in the expression for ¢:
- t
oy.tr) = [ (p(r) dy(7) - pedi(r) (12)
and using the conditions y(t = 0) = §, {(7 = 0) = 0 and relation (10), one arrives at the expression
&(y.t) = pyly - ) - tG(py) (13)
where p, has to be taken from the (transcedental) relation
dG
- = —-1—-— 14

It is instructive to consider limiting cases of small and large stripe width A. For A —— D, the
solution of (9) is k; = 0. It has a very simple physical implication: it coincides with the HJE

. NP 2
%‘f’ = - (g%) - %%’ (%‘:) for the exponent ¢ of the WNA (3) on the axis ¢ = z¢ (where g‘-g =0
from the symmetry in respect to initial condition) in the absence of any stripe (when D (z) = Dy,
throughout the plane}. Then, the quantity G in (10} is G(%%) = - %Yf(g—i)? and the function é(y, 1)
{13) is explicitly found to be
D _ @02

= (¥ - 9) (15)
Dyg 47
This is just the exponent of the usual one-dimensional distribution, spreading from the initial é-
functional peak at y = § under the influence of diffusion. One can also easily obtain the first-order
correction to (15) in powers of A.

The opposite asymptotics of large A is easily found after observing that the argument of the

tangent in (9) has to lie within the range (0, 7) for all values of A to avoid unphysical negative
values of the distribution function inside the stripe. The asymptotic solution of (9) for large A is

By, t) =



The physical meaning is again very clear. When &, tends to zero for large A, it means that the
function ¢(y,t) is the same as if the stripe were occupying the whole plane - the particles inside
the stripe do not “feel” the outside region. The function ¢ (13} is

(2-5(3;', t) _ gm (y ;f)n

(17)
)

The condition of applicability of the solution (17) can be found by requiring that each term in the
sum K = 22 ~ Eﬂ(%g)z be much larger than the r.h.s. of (16), vielding:

ot D
Dt D,
A GRS b 8
>W\yw§1\/ D, (18)

The quantity Dt is the square of the r.m.s. deviation Az(t) of particle in z direction over the
time of observation t. Were it much smaller than A, the applicability of the solution {17) would
be self-obvious. However, since the distance y — § is much larger than the r.m.s. deviation Az
(we suppose D, ~ D), the applicability condition (18} is less restrictive. For D, ~ Dy it can be
rewritten as A » Az(t) %é‘l

Both large and small A expressions for the function ¢ (15) and (17} are monotonically decreasing
functions of time. The function ¢ is actually monotonically decreasing with time ¢t for arbitrary

parameters, since the conjecture %if’ contradicts the condition k, > 0,

2.5 “Global” solution

Now that the local exponent ¢{y,t) has been found we can find the “global” solution for the
exponents of distribution tails and the escape rate r on the boundary ¥y = A for the particles
initiated at # = 0,y = 0. The relationship of the rate 7 to the WNA (3) of the distribution pg in
the absence of absorbing boundaries is known from the general WNA theory /8,7/:

r(t} = F(t)exp (5@) (19)

n

where the exponent R is just the minimum of the exponent ¢{z,y,t) of po on the boundary:
R(t) = min ¢(z, 4,1) (20}

The explicit expression for the exponent ¢{z, y,t) of the leading exponential term of the disribution
po can be written in the standard variational form of WNA: -

ot = min [ drL {§(r). 7). (7). () (21)

where the trajectories §(t), &(t) have fixed end points §(0) = 0, £(0) = 0, g(r) =y, &(r) = z. In
our case however the Lagrangian L in (21) is defined as mentioned before by different expressions



for the line ¢ = z¢ and for the rest of the plane. The latter coincides with the Lagrangian of the
unperturbed Hamilton-Jacobi equation:

86 8¢, Dy, d0

2 2
bl B, o A L 2
dt (B:c) D, By) (22)
and is given by:
B Dpd
[, =+ Z¥E 3
v= a2t (23)

Oun the line z = y the (one-dimensional) Lagrangian L = I,(g(t)) is related to the Hamiltonian
H = G(p,) from the Hamilton-Jacobi equation (10) through the standard transformation:

¥ ag‘?
]

Ho= o, (24)
a7

In the full minimization {21), we can allow sections of trajectories Z(t). §{f) tc pass by the line
z = z4, and the function ¢ on these section(s) is found (up to a constant, defined by continuity)
from the HJE’s (9),(10). Omne should be reminded, that the trajectories Z(t),#{t) providing the
minimum in {21) are the most probable paths of arrival 1o the corresponding points /6,7/. After
these section(s) and the values of ¢ on them are found, the function ¢ in the rest of the plane is
the solution of the unperturbed HJE (22) with the (self-consistent) boundary conditions on the
section(s). The plane z,y is decomposed into some regions. where the characteristics of the HIE
(i.e. trajectories #(1).y(t)) are coming from the center 2 = 0,y = 0 and other regions where
they come from the section{s) on the line ¢ = . The function @z, y,t} is continuous, but is
not differentiable (cusps are present) on the boundaries between the regions. The whole situation
(including cusps) is rather similar to the WNA of the nonequilibrium steady state distributions in
the oscillator with nonlinear resonances, damping and noise /5/, and more details can be found in
this reference.

2.6 Large A case

In order to demonstrate the above described technique of constructing the “global” solution, let
us consider the case of large A, when the Hamiltonian G in (10} is G = ,%15(%3)2_ We will
assume that all trajectories &, can have at most one section on the line z = £ (the proof of this
is straightforward). The most probable paths of arrival to the points on the line z = z; in time
1 consist (for y larger than a certain y1 - see below) of two sections: the straight (unperturbed)
section going fromz = 0,y = 0 to z = z¢,y = y; and another section going along the line as shown
in Fig.2. If the time of motion on the first section is ty, then the minimum of the unperturbed (i.e.
with the Lagrangian L; (23)) functional {21) on this section is:
(zo)® | D2 wi

Ady = - : 25
O = D2 4ty (25)

10



The increment of ¢ on the second section can be taken, for the case of large A we are considering,
from (17):

D:t gf_— y])i
Dy-l 4(! - fl)
The time of motion on the seccnd section is t - ¢, since the full time should be t. Minimizing now
the sum ¢ = A¢; — Ao, by both ¢; and y;, we find:

Aoz = (26)

1 D leyQ Dyg
olzo, y,t) = — |zol /1 - 25 -
41 (\/ 51 - DE’Q \‘.‘1051 _ Di,g
2
i Dy
Yy = 27
! Dy} ] ( )
and the quantiti' ¥ independent of 1:
D D
Y1 = Zg -__rj’?_h‘y_]_.i (28)

VDe( D3 — D)

To find the function ¢(z,y,?) in the entire plane , one needs to solve the unperturbed HJE
(24) subject to the boundary condition (27) on the line z = z¢, ¥ > 1 and to the requirement
of the characteristics of this equation to start from z = 0, y = 0. 1t is easy to see that the time
dependence of the solution is “purely diffusive” ¢(x.y,t} = ¢(z.y)/t (note that this is true only for
Jarge A). Substituting this dependence in (27) and solving the resulting equation with the boundary
conditions on the line ¢ = x4, ¥ > ¥ by characteristics method, one can explicitly find the solution
w1 in the part of the plane. This region I is defined by the condition that ¢(z.y) is smaller than
the unperturbed function @o(z,y) = z2,4 + g—;%? Then ¢ — 1 inregion 1 and ¢ = g in the rest
of the plane (region IT). The function (z,y) is not differentiable on the boundaries between the
regions (has cusps). The qualitative sketch of the contours of the function ¢ is shown in Fig. 3. In
the same graph, the characteristics, which are the most probable path of arrival to each point, are
shown.

The guantity Ae¢ (27) for y = A is the exponent R{t) (20) of the escape rate to the boundary
y = A if the boundary is larger than a certain y = y, (see Fig.3). The most probable path of escape
to the boundary partially goes along the stripe as is shown in Fig.1,

3 Full system: nonlinear resonances and noise

3.1 Local FPE

Our primary system of consideration is the two-dimensional Hamiltenian oscillator with external
noise:

H)
I
i

PR U G N0 (29)



Figure 3: The qualitative graph of the contours of function @{z,y). Dashed lines show the most
probable paths from the starting point z = 0,y = 0 to the points in the different regions.
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where 7 is the diffusion intemsity. £;(t) here is the white-noise vector process (£;(tV(t — 7)) =
&x6(T). We suppose that the potential I’ consists of an unperturbed time-dependent part LUy(&)
corresponding to exactly integrable motion and a small perturbation I” = Yy ~ ¢£L7(7, {), time-
periodic with frequency 2. The Hamiltonian of the svstem {without noise) can be presented

therefore in action-angle variables of the unperturbed system:

H=Ho(I) - ¢ Y Vi (Neos( -6 - n0t) (30)
in

where Hy = p?/2 — Uy(Z) and the perturbation was expanded in Fourier series in both # and

—

t. Each harmonic V: excites a nonlinear resonance on the line Loy {J) — L, (I) - n$ = 0, where
V= 0Hy/81 /9/. The amplitude of oscillations of T at the separatrix defines the “resonance width”
Al in f space and is proportional to /¢ (see below). The resonant Hamiltonian can be obtained
by dropping all the nonresonant harmonics, introducing new {canonical) variables

J; = {E
I!J
]2 = —-II + I—IIy
ly
Y1 = LBy - 1,8, - afit o (31)
wZ = _9::

and expanding the Hamiltonian Hg(J) to second order in deviations in Iy from the center I1g(1;)
/9/. The result will be;

2
H = A%l- ~ eV cos(t) (32)

where A = g-"»";—#ﬁﬂ. and 7 = (I,n). The resonance width. which is the amplitude of oscillations
of p; on the separatrix of pendulum (32), is '

pats 1/2
Y 33
3| (33)

plr:2‘

Now let us consider the effect of noise. First, instead of stochastic equations of motion, we will
use the equivalent language of distribution functions. The evolution of the distribution of particles,
corresponding to the primary equations of motion (29} is governed by the FPE /6/:

dp  Bp B(Uo~esU)dp 8%

‘ r el )oe _ 2P 34
gt P az  ap  op? (34)

We will be constructing the solution of the FPE {34) under a set of limitations on the parameters.
First, we will suppose that the Hamiltonian part of dynamics can be well described in terms of
isolated nonlinear resonances, so that the resonances do not overlap. This is true under the condition
(elVz A2 >» v (v here is one of the components of #) /9/. Then, we will be interested only in the

13



tails of distribution. which means that the characteristic energies £ = Hy and times of observation
7 should satisfv the condition E/nT » 1. Also. it will be supposed that the diffusion in our
svstem 1s a slow process relative to both the unperturbed motion (time scales 7, ~ 1/v} and the
resonant oscillations (time scales 7, ~ (€.V,zA.)7*%). The last condition is more restrictive and
can be otained by requiring that the r.m.s. time 7 required to shift the particle by diffusion to the
distance equal to the resonance width {33) 7 ~ p?_/7 is much larger than r:

(€iVa)*2 > a2 (35)

This inequality, as well as the previous one holds for small enough noise intensity 7.

When the diffusion is slow it is natural to assume that the distribution will smear along the
Hamiltonian trajectories before it will undergo any appreciable changes under the influence of
diffusion. so that the distribution after a short time will be constant along these trajectories.
This assumption is the basis of so called “thermal averaging” technique 10/ used to describe
the evolution in the 1-D version of our system with damping. In Ref./5/, such averagings were
performed as an intermidiate stage of describing 2-D systems (with damping). Following /5/ we
will now carry out the thermal averaging in two steps. First, transform the FPE (34) to the
unperturbed action-angle variables 1,6 and (supposing the distribution p depends onlv on 7, and
not ) average the FPE over both “fast” phases § keeping “slow™ phase 1, constant (see/5/ for
more details). This will vield

dp - dp dp . adp
T f‘rﬁsm(wl)(lr‘é}; - ’yé};) Loy = Ly, - "Q)a—wl =
i} dp dp 8%p 3%p
= N7 Goki gy ~MRyz— —nR3_— ~ = 36
Tar. OOk, T Mgy T R Mk g (36)

Here, only one {resonance) harmonic of Fourier expansion (30) was retained. The thermal averaged
diffusion tensor Gog(l;,1,) is

2 27 a_[ g 61’ g
Gort = / dé, do, k(2,p) 01(Z, p)
g ] ]

(ﬂw)—z ap i 3P i

where summation over the repeated indices is implied. The quantities Ry through R, in (36} are
other averages of the type (37) and are not given explicitly since the corresponding terms will
drop out in subsequent transformations. In accelerator problems, the whole formalism is somewhat
simplified since the linear betatron part of the Hamiltonian always dominates the zero Fourier
harmonic of the nonlinear part, coming either from beam-beam interaction or sextupole or octupole
terms. The actions [, I, then are just the unperturbed linear betatron energies I, = p2/2+ 2 2?/2,
I, = p2/2 - viy?/2. The tensor Gog then is diagonal:

(37)

I
Gok = = by (38)
V§en

Note that the FPE (36) is local and is applicable only in the vicinity of the chosen resonance since
all nonresonant harmonics of perturbation U’ were dropped.
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It is more convinient now to use the same local variables py, J;, 2’1 as used in Hamiltonian (32).
The FPE in these variables is

dp dp .
=£ £ _ax; 2P -
Y + pl@wl ¢z sinyn o
82p a a i i) 8 \?
SALAN Vo WAL (L. [P 2 2 Ty 3
! (Qnap% “Hopy (312 hap) p = Qa (512 hap) p) ! (39)
where the diffusion tensor in ({1, I2) space is
I
Gn = [—]—
1¥y
{1
Qa = (40)
Ly
—Iy + 11 2
sz — ( 2 1) o IJ
7 Ly,

and k = %%ﬁ (F10(J2) is the resonance line). The quantity P consists of the terms which are
proportional either to the first derivative of p with respect to p1, I; or to the second derivative at
least one of which is with respect to »;. This quantity will be shown to be safely dropped to the
precision of consideration.

3.2 Modified weak-noise asymptotics

Now we will introduce the WNA only in the direction along the resonance line p; = 0 in the same
manner as in the illustrative example of Chapter 2. The method was proposed in /8/ to describe
analagous systems with damping.

The solution of the FPE (39) in the limit # —+ 0 and for arbitrary €/Vz!/7 has the following
functional form:

I,
p(PhIz-,'ﬂbht-,T}) = Z(phIst’]’trn)exp (-i{‘;—‘)) (41)

- 197 1
where zZa, const . -

|QJ
™~

¢ —— const for 5 — 0. Substituting (41} in (39) and singling out

D

highest degrees of 1/n, we arrive to:
0z o gp 1 , 00 0z
Apy— + €Va —— = Qg+ —)Z -2 - —
Prg, T Vasind o 77(Q‘z ¢+ %) (@219 — £¢Q22) op
LA 3z 2z

Q1 + Q22x* - 26Q31) (42)

— = —— + Fag—~
8p " epbyn | b,

where ¢ = g%. Note that similar to Chapter 2, the derivative %—f does not enter the equation
(42). The quantities Fy, F; originate from the last term in (39} and will drop out in subsequent
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calculations. Introducing the notations

do\® 8¢

a(lyt) = Qn (3—12) i

a¢
b{lp,t) = 2(kQz — Qu1) 77 (43)

81

elly) = Qui+ Qunx’ —2Qux
eqguation (42) can be rewritten as .\
= a 7] 6* 3*Z az

LyZ=\--~b—+en—|Z+nF 1 ;—— ~ Fag— 44
" (7? dp napz) " 13?1311?1 zqali’l (44)
- where Ly is the Liouville operator Ly = %f;a% - %{;% of the resonant Hamiltonian (32).

Utilizing the condition {35) of diffusion slowness relative to the resonant dynamics now we can
perform the second stage of thermal averaging. i.e. average equation (44) along the trajectories of
the Hamiltonian H (32). The procedure is the same as in /5/ - we suppose that the function Z
depends on p; and y; only through the action J(H) for the Hamiltonian H (32) and average the
equation {44) over time. The resulting equation is

a a i}
— Je— - —_— =0
TIZ + 57 (bF an(J)aJ) Z (45)

where

r= (T5)

<(31(g;-.1w1)>2> (46)

The symbol (...} in (46) implies the averaging over time along the trajectories of the Hamiltonian
H. The quantity F can be shown to be independent on J. Notice also that the last two terms in
(44) vanished under the averaging.

I

G(J)

3.3 Phenomenological approach

Physically, equation (45) is very much alike the equation (5) of our model example. Therefore,
it is clear that together with the “physical” boundary conditions it uniquely defines the relation
between ‘g—‘f and g% (analagous to the example of Chapter 2). Technically however the equation (45)
is intractable since the quantities F and G are expressed through elliptic integrals /10/. One way
of handling this problem is the phenomenological simplification of functions F and G as suggested
in /8/. In this approach, we substitute the exact trajectories of the pendulum (32) by “simplified”
trajectories shown in Fig.4, and perform the averagings in (44) along these trajectories. Equations
(44),(45) are formally the same as those of Ref./8/, while the difference is in the definition of
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Figure 4: “Simplified” trajectories approximating pendulum trajectories of nonlinear resonance

coefficients a and b (43). Therefore we we can use all the intermediate calculations from Ref./8/.
The resulting one-dimensional HJE, defining the relation between %‘? and gj‘% analagously to the
HIE(9) is equation (32) of Ref./8/:

: = tan [(2%)% ﬁ%] (47)

where k is the phenomenoclogical constant of the order of unity. Equation (47) indeed is very much
similar to the equation {9), so that most of the discussion of Chapter 2 applies also in this case. In
particular, for the (large resonance width pi1,)/(small noise 1) regime the solution of equation (47)
isa=0,o0r

{i(b2 - 4ac)]

ac

a6\?

%? + Qa2 (5]_02) =0 (48)
This equation has a very clear meaning - the quantity @32 is the component of the primary diffusion
tensor G (37) in the direction along the resonance line I; = Iio when transformed to the new vector
basis (direction I = I1o),(direction Iz = const). Therefore the diffusion inside the resonance evolves
indeed as a one-dimensional process with geometrically clear transformation of diffusion rate. The
condition of applicability of the solution (48) can be obtained similarly to that of Chapter 2, yielding

P VeQant

- 49
Ui {21 — T20 (49)
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where t is the time allowed for the transition from Iy = I to Iy = I3y, This condition will hold
for small enough noise intensity 7. It is interesting to note also that for very narrow resonances
the requirement for the smallness of noise intensity {35) necessary to apply the thermal averaging
is more restrictive than the condition (49).

It should be born in mind that the solution (47) is not unique in the same way as solution
(9) of the model example. Indeed, both solutions were constructed subject to certain “physical”
conditions, implicitly based on the conjecture that the inside-separatrix (inside-stripe) trajectories
are more probable than the outside-separatrix (outside-stripe) paths. Generally this need not always
be the case and another “competitive” solution corresponds in the precision of consideration simply
to (locally) ignoring the resonance (see /5/ for details in the similar situation in the steady-state
problem in the system with damping).

3.4 QGlobal solution.

After finding the equation (47) for the variation of the exponent of distribution function along the
resonance, we can forget about the resonance as a structure in I, I, %) space and treat it as a line
in I, I, plane. The distribution function at this stage can be presented in a standard WNA form
both in the entire plane [, f, and on the line. The equation for the exponent ¢ in the plane is the

unperturbed HIE: \
2
% + i"’_ (Eﬁ) + ;[y_ B‘d) -0 (50)
at Vzo BIG, Vyo BIy

which is obtained by substituting the WNA form in the FPA (36} with 15 = 0 and supposing
5%% = 0 (tensor Gog is taken from (38). Along the line, function ¢ has to satisfy the one-dimensional
HIJE (47). The function ¢ also has to be continuous.

The construction of the global solution ¢ can be done basing on the variational representation
(21). The Lagrangian L is the unperturbed one everywhere except on the resonance line, where it
corresponds to the one-dimensional HIJE (47). The plane 7., I, will be divided into characteristic
regions, qualitativelv looking as in our model example shown in Fig.3.

The general algorithm of constructing the “global” solution can be formulated along the same
lines as that of Ref./5/ for the systems with damping and applies to the case of arbitrary number of
resonance lines or infinite resonance webs, generic in nearly-integrable systems. When performing
the “global” minimjzation for ¢ over all possible paths we can allow the paths either to cross the
resenance lines or to pass along them. The second case will correspond to the solution (47) while the
first one to the resonance-ignoring solution /5,8/. Which solution will locally take over,i.e. whether
it is “profitable” for the particles to travel along the resonance at given point, depends on all the
other points on the resonance line(s) and is therefore a nonlocal problem. The only local condition
which can be derived is the lower bound of “prefitability”. It can be obtained by requiring that it
be “easier” for the particles to go along the resonance line when the resonance is present than going
in the same direction in the absence of resonance. Because of the time-dependent character of the
problem this condition is more complicated than the similar one of time-independent steady-state
(see Appendix B of Ref./5/). In our case, one has to compare two different HIE’s and which one
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is more “profitable” depends in general on the time allowed for transition.

Let us obtain the “lower bound” condition for the case of a large resonance width, when the
effective one-dimensiona] HJE along the resonance line {47) reduces to a simple form (48). The
“competing” HJE along the direction of the resonance line in the absence of resonance can be
obtained by inserting the trajectory p; = 0 and varying I;(t) in the variational representation of
the type (21):

-
. s .2
&{p1, I, t} :fo di [511}?12 = 2byyprde = boyly ] (51)

where the symmetric tensor b, is the inverse to the diffusion tensor Ty, in coordinates py, I;. The
latter one , if Lo assign index 1 to py and 2 to [z, is seen from the r.h.s. of equation (39) to be

T = Qu- 28Qy ~ 5°Qu
T31 = Qan~Qnk (52)
Ty, = Q2

The resulting HJE is
8t Q1 — 26Qa + K1Qp \ 8]

Thus, both HIE’s (48} and {53) correspond to simple one-dimensional diffusion and the coefficients

2
before (%) are the diffusion intensities {divided by 5). Therefore the “lower bound” condition
can be obtained by requiring that the coefficient in (48} is larger than that in {53):

@22@11 - %
Q11— 2kQ21 + K2Q 1

If the condition (54} is not fulfilled, the diffusion inside the resonance is not enhanced and the
resonance will not have any appreciable effect on the distribution tails and escape rates.

The “global” solution for ¢ taking into account the net of resonance lines (which is infinite and
everywhere dense for generic near-integrable systems (30)) can be constructed from the “global”
minimization principle along the same lines as in the theory of time-independent steady-states in
the svsterns with damping /5/. A slight modification will be that when varying the paths of arrival
to a certain point, and having some sections of it going by the resonance lines, the times of starting
points on those sections also have to be varied.

Q2 > (54)

4 Discussion and Conclusions

We described the mechanism of diffusion enhancement by two-dimensional resonances with external
noise, leading for wide enough resonances to the enhanced rate of transport of particles from the
beam core to large amplitudes and hence an increased speed of growth of the tails of distribution.
The basic scenario of diffusion enhancement inside the separatrices due to the small angle between
the resonance line and the resonance oscillations direction was previously described in the literature
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/4/. However, that calculation of “renormalized™ diffusion intensity inside the separatrix does not
provide the essential information about the “macroscopic” transport rate along the resonance and
its overall effect on the distribution function. The basic dvnamic process to take intc account to
evaluate the “macroscopic” transport rate is the diffusion of particles in transverse to the resonance
line direction, so that because of the different longitudinal diffusion intensities inside and outside
of the separatrix, the transverse diffusion modulates the longitudinal one. This makes the effective
one-dimensional random walk along the resonance line a more complex stochastic process, in fact
not even describable by any sort of diffusion process.

The present paper was devoted to the description of the physics of phenomenon, and left aside
the more technical (though very important) question under what conditjons can it manifest itself
in the real hadronic colliders. Few general observations about this aspect of the problem can be
made however without a substantial effort.

The necessary condition of resonance-induced enhancement is the condition (54), requiring
smallness of angle between the resonance line and resonant oscillations direction. The question then
is when this small angle can appear. The important point is that it depends only on nonlinear tune
shifts év,, év, dependencies on betatron amplitudes A;, 4,, and not on the harmonic amplitudes
(defining the resonance width). The tune shifts are created by both the multipole components
of magnetic fields and the nonlinear beam-beam interaction field. Since the hadronic beams are
usuallv round , the beam-beam interaction is svmmetric and preliminary numerical evidence is
that the resonant oscillations are always nearly orthogonal to the resonance line. Thus it does
not look likely that the phenomenon can manifest itself in the absence of multipole components.
Superimposing the latter on the top of beam-beam interactions can however change the situation.

Consider now the effect of the multipoles in the absence of bearn-heam force. The lowest order
multipole tune-shifts come either from the first-order perturbation term of the octupole component
or the second-order one of the sextupole component and have the same funciional forms:

bvg, = C1A2 + Cp A2
61@, = CQAi + CgAg. (55)

where A;, 4, are the betatron amplitudes and the coefficients C1, Cy, Cy are the integrals of the
multipole amplitudes along the ring and can vary in respect to each other in the wide range. It
is easy to see that the resonance line is straight in the action variables J, = 42, J, = A;‘: and
that the angle between this line and the resonant oscillations can be varied arbitrarily by varyving
the constants Cy, Cy, Cs. Thus the phenornenon of the resonance-enhanced diffusion can be more
easily observed in the absence of beam-bearn interaction and is conceivable when both beam-beam
interaction and lattice nonlinearities affect the tune shifts.
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