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Abstract 

The escape rates and evolution of a dist,ribution ofparticles are considered for a 2-D model of 
transverse motion oiparticles in hadronic storage rings: when nonlinear resonances and external 
diffusion .VP present. Dynamic rnhanrement of diffusion inside separatriws can develop under 
a certain geometry of resonance oscillations and relatively aide resonances~ leading to thP fast 
growth of distribution tails and escape rates The phenomenon is absent in 1-D. 

1 Introduction 

In hadronic colliders. the escape of particles to large betatron amplirudes and associated growth of 
distribution tails due to the small random modulations of the latt~ice parameters (predominantly 
the RF power) is an important practical issue, since it causes some problems with background levels 
in detectors. Experimental evidence indicates that the escape rate has an appreciable magnitude 
onl!- in the presence of the beam-beam interaction. However, t,he present knowledge of low tune 
shift ([ < 0.01) d>-namics of beam-beam interactions in hadronic colliders indicates rhat w cannot 
expect a fast escape of particles from the beam core (betatron amplitudes - lo) to the tail region 
(amplitudes - 50) to originate from the beam-beam interaction alone. Therefore, it seems apparent 
that the external noise and the beam-beam nonlinear dynamics “interfere” somehow to efficiently 
magnify their respective effert,s. The present paper is devoted t,o the description of one particular 
mechanism of amplification. 

The most, important effect of the beam-beam interaction is to drive nonlinear resonances/l,2,3/. 
If we consider them as isolated (an appropriate approximation at least in the absence ofsynchrot~ron 
modulation) me arrive at the problem of diffusive motion in t,he presence of a (everyahere dense) 
net of isolated nonlinear resonances. In most cases the resonance widths are much smaller than 
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the characreristic apertures where particle loss occurs; then in I-D the transport ability of these 
~sonances is minimal; since their influence is confined to a small region near their separatrices. 

In 2-D! resonances appear as lines in t,he planes of betatron energies ~1, and Iv !1.2/. We 
can then draw the arrow of separatrix oscillat,ions, which shows the direction of trapped particle 
oscillations about the wsonance line. Its length 3 is the simpll the width of the separatrix (or 
twice the maximum oscillation amplitude) and its center is the resonance line (see Fig. 1). ?Jon 
consider a small kick 6 applied to a trapped particle in the direction orthogonal to t,he resonance line 

it is clear that the center of oscillations will be displaced a distance bcot(a) along the resonance 
line. Similarly; if we introduce noise of intensity D in this direction, then t,he diffusion of the 
oscillation center along the resonance will have the int,ensit! Drot(a). Thus for small angles a 
between the resonanw oscillations and resonance line, diffusion is enhanced inside the separatrix. 
This enhancement has been termed diffusive “resonance streaming” and is well known /4/, but it 
does not complete the picture. Indeed, under the influence of noise the particles, besides diffusing 
along the resonance line, can also leave (and reenter) the separatrix, so the overall effect of the 
resonance w-ill naturally depend on the width A of the resonance “stripe”, going to zero as 1 tends 
to zmo. For small o and not small A , the effects of resonance streaming lead to a strong increase in 
exape rate and fast growt,h of distribution 61s eren when the resonance width A is much smaller 
than the characteristic aperture limitations. This situation is somewhat similar to the escape 
rate and distribution function problems in the 2~D oscillator with nonlinear resonances, damping 
and noise /5/; where both damping and diffusion are “renormalized” within the separatrices. In 
our problem; however, there is no relaxation and all quantities are time dependent. In realistic 
situations, rhe beam is small relative to the aperture during the entire saorage time. In-terms of 
distribution function evolution, this means that we are interested in region of the distribution tails. 
Generally, an adequate mathematical formalism to deal with the description of distribution tails 
is t,he method of weak-noise asymptotics (WN.4)/6:7/. Unfortunately this method breaks down 
for smaller A values. In this paper me develop a modified IVY.4 which can treat arbitrarily small 
1 for asymptotically small noise intensit,ies 7. To build insight we shall first examine a simplified 
situiation in Chapter 2, where the resonance is “modeled” by a stripe in the 2-D plane with a 
different diffusion intensity t,han in the remainder of the plane. The growth of distribution tails in 
this example ran be described analyticallp to the larger extent. In chapter 3 we then consider the 
full problem in a 4-D phase space. Due to the complex geometry of this phase space, additional 
problems will appear. One possible resolution to these is suggested in a semi-phenomenological 
approach. 

2 Demonstration diffusive example 

2.1 Model 

In this Chapter: we will consider another diffusive model that is maximally simplified to allow 
a clear analysis, but retains all the characteristic features of the original problem of diffusion 
in t,he presense of resonance(s). This model is a two-dimensional diffusive random walk with a 
coordinate-dependent diffusion coefficients. More particularly, the diffusion coefficient D, will be 
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Figurp 1: Displacement of resonance oscillation center by transverse kick. Thick solid line is the 

resonance line. Dashed lines are the separatrix. 
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Figure 2: The stripe of a larger vertical diffusion. Shaded is absorbing bondarv. The arrows show 
the most probable path of escape to the boundary. 

constant throughout the plane, while the coefficient D, will hare a (higher) constant value BYI in 
the stripe z. - A 5 I 5 10 - 1 and a (loser) constant value D,z outside of the stripe (see Fig.2). 
The stochastic equations of motion are: 

(1) 
where t.(t). t,,(t) are whit~e noises &(t)Cz(t - 7)) = (&,(t)&,(t - 7); = E(T) and Dy(z) = D,, if 
zo - A 5 z < z. A A and DJz) = Dyz otherwise. The evolution of distribution density will be 
governed then by the Fokker-Planck equation (FPE): 

$ = D$$ -D,(r)$ (2) 

The transition probability P(E, y; i, g, t) satisfies the same FPE (2) and is subject to the initial 
condition P(r, y; E, Q> 0) = 6(z - Z)c5(y - g). W e also will restrict the motion of particles to the 
positive values of T and y by making the axes 2 = 0 and y = 0 reflecting boundaries. This is 
equivaient to imposing the zero orthogonal component of flux conditions at these axes: 

y = 0 and g = 0 for E = 0. 
2 = 0 for 
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\Ve will analyze the evolution of distribution rails and escape of particles to a distant vertical 
absorbing boundary y = ,4 (see Fig.2). All the particles will be started at t = 0 at z = 0: y = 0. The 
escape rate y(t) is the percemage of particles that are absorbed in a unit of time at the boundary 
y = .4. It equals rhe integral orthogonal flux at this boundary J(t) = sO- D,,(z)%(E.~ = .1)dz for 
the distribution po(r. y, 1) which is subject to conditions po(r, y, 0) = 6(z)&(y) and PO(E. .4,1) = 0. 
By a .‘distanr” boundary we mean that jr lies in the tail region: what is true ai leasr if the maximum 
time of observation of the system T is much smaller then both diffusive time scales .4’/Dv1 and 
.42/D,2. .ilsot under this condition the function po(z; y, t) will be much smaller than po(O,O,t) for 
all times t < T in most of the plane z:y (except a small region near E = 0.y = 0). In hadronic 
colliders this is a realistic approximation since the bram size is kept small relative to the aperture 
during the storage time. 

2.2 Modified Weak-Noise Asymptotic 

If rhe time 7 and all the parameters of the system were kept constant while diffusion intensities 

D,, &I: Dyz were tending to zero we would have the situation where the powerful w&noise 
asymptotic (LVKA) method /6,7/would apply. In this asvmptotics, the function p. is exponentially 
small: 

po(+,y,f) = Z(r,y,t)ezp - y,f)) 
i (3) 

(‘7 here is the common diffusion int,ensity factor D, k vl. D,, k q1 Dyz - 7): 7 -- 0). The p.d.e. 
for the leading exponential factor @has the form of the Hamilton-Jacobi equation (HJE), which is 
of the first order (though nonlinear) and can be solved t,hrough characteristics method. This whole 
approach parallels t,he quasiclassical approximat,ion in quantum mechanics. In particular, the most 
probable paths of transition from one point TO another are the only ones to contribute lo an integral 
in the path-integral representation of po. These paths in their turn provide the minimum of an 
associated classical mechanical action. However the applicability of this approach is determined, 
among others, by the condition AZ/D,7 > 1. Since primarily we are especially interested in the 
effect of narrow resonances and its dependence on t,he width. in this model it is highly desirable to 
consider the case of arbitrarily small 1 and go beyond the limits of applicability of the standard 
\VXA. 

Ph~sicall~~ the condition & > I means that if the most probable path of escape to absorbing 
boundar?- as well as to other piint,s in large regions of (z. y) plane partialIF passes along the swipe 
[see below), then all the paths t,hat are nearly as probable (giving appreciable contribution to the 
probabilitp path integral) are also passing along the stripe. In other words in this case one does 
not, need to take into account the possibility of particles “falling out” of the stripe, recrossing 
back, etc. while making their way along the stripe to the larger y. However, when considering 
small A one does need to account for such possibility. M‘e will be able to do so by taking the limit 

D, - Q,I - Dyz - 17 -+ 0 and letting A be arbitratry in respect t,o 7. Then indeed the width 3 is 
small relative to the other distances in the system and we will be able to solve the FPE applying the 
asymptotic form of the type (3) only in the direction along the stripe while treating the transverse 
direction exactly. This will provide us with the exponent of transition probability for the points 
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along the stripe. At the next stage, RP can forget about the stripe having a width A and consider 
it as a line: x-h& appl+g the standard \%%A (3) ererywherp in the plane except the line. In othe 
words, because of the varkion of diffusion intensity on the small distance A one needs IO consider 
these “microscopic” scales to evaluate the renormalized “macrosropir’~ diffusion along the line: butt 
aft,er that one is left only with the “macroscopic” quamities. The “global” solution for the exponent 
of the function pin the plane zIy is constructed as in the general approach of \$%A, but with the 
special treatment on the line. Technically it can be achieved with the \-ariational representation of 
the exponent @ The general approach is quite similar to that of Ref./B/ for the evaluation of the 
tails of nonequilibrium steady-state distribution in the system with narrow resonances, damping 
and noise. 

2.3 Distribution function along the stripe 

Following the program outlined above, we present the function pO(x: y) in the narrow (of the order 
of .I) vicinity of the sIripe 10 - 1 < I < zO + A in a “partially” asymptotic form: 

Exponetiall~ stong dependence is present in (4) in y and I but not in L. We are most interested 
therefore in function 4; but it turns out that the equation for 0 emerges as the compatibility 
condition of equation for the prefactor 2 with the physical boundary conditions. Substituting (4) 
in (2) and singling out highest powers of l/D*; I/D,~: l/D,, (we suppose D, - D,,] - Dyz - 0), 
one obtains 

where K(~, t) = “w + w(%&!$? I t is also convenient to introduce the notations K*(t) and 
KZ(~) for the values of K correspondingly inside and outside of the stripe. Uote that though the 
function Z is time-dependent, the derivative $$ does not enter the equation (5) as the corresponding 
term is of higher order in diffusion inknsity. 

The most important solution of equation (5) can be presented, if we introduce the notation Zi 
for the function Z inside the stripe and Zi, 22 corresponding to the left and to the right from the 
stripe as: 

i 

(6) 

where 11 = I - zTg. This solurion emerges from the requirements of: 1) s~mrnetr~ relative to 
I = 10, and 2) monot,onically decreasing behariour as a funct,ion of :z - 101. The requirement of 
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the symmetry is rather special in respect to obviously nonsymmetric initial conditions for pa (see 
below). 1j-e supposed IC~ > 0 and K~ < 0, since only in this case c,an RP construct the solution which 
would satisfy the conditions 1 and 2. Tna more conditions to be imposed on the solution (6) are 
3) continuity of the function p at the boundaries of the stripe, and 4) continuity of the orthogonal 
flux j, = Dzg at the same boundaries. The condition 3 yields the relation 

..I, = Aces 39 c i z 
The condition 4 gives one more equation: 

A&sin(A 5) = AJ& 

and together with (7) allow to find the relation between ;f and 2;: 

m(A g) = +! 
2 hl 

Remember here that R~ = $$ - %(g)‘, x2 = $$ + !&@)’ and that &il is positive while K~ is 
negative. 

Equation (Q), though transcendental, defines $$ as a function of 2: 

?f!=, 5 
at i 1 aY 

(10) 

Some remarks about the derivation and the meaning of equations (9) and (10) are in urder. 
First: one observes that the requirement of the symmetry of Z relative 10 z = 10 would be natural 
were we starting particles at T = 20, but plays rather special role in respect to the function po. We 
expect such symmetric solutions to be valid in our asymptotics 7 -- 0 on some section(s) of t,he 
stripe in spite of the asymmetry of the initial conditions of po. These sections are intuitively those 
where the particlesz if their paths are retraced back in time. predominantly travel along the stripe. 

.&nother possible class of solutions of equation (5) corresponds to the situation when the particles 
arrive to the section(s) of the stripe directly from the cenwr E = 0; y = 0. .4t these sections, solution 
(Q),(lO) is inapplicable; but even without explicitly writing another solution one can argue that 
since t,he width of the stripe A is asymptotically small, the transverse crossings of t,he stripe by the 
paths x-ill not give any appreciable conrribution to the probability path integral. The function $ 
then is essentially unaffected by these sections as if the stripe were not there (see also below). 

2.4 Exponent of transition probability along the stripe 

Kow we will find the solution 0 of the pde (10) ahile imposing the initial condition &y, t) * y 
as t -.+ 0, for arbitrary $. Such a solution obviously defines the exponential factor in the transltmn 
probability from point $ to point y (both inside the stripe) in time tl and sill allow one to find 
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the full asymptotic solution for the function po(r, y,t) through a certain minimization procedure 
involving r$(y,t). 

The function g(y, ‘) can be found through the standard characteristics method. Equation (10) is 
the Hamilton-Jacobi equation fi(y,l.p,,pt) = 0 with p, = ‘2 and pu = $. Hamiltonian equations 
of mot~ion are: 

dpy = 0 
dr 
+t 
x 

= 0 

dt 

z = l 

Substituting the general solution of (11) in the expression for $: 

(11) 

O(Y:tl) = if’ (PII dY(T) - P* dt(T)) (12) 

and using the conditions y(t = 0) = g: t(r = 0) = 0 and relation (10); one arrives at the expression 

4(y,tl= PdY - LQ) - mh4) (13) 

ll-here p, has to be t,aken from the (transcedental) relation 

(‘4) 

It is instructive to consider limiting cases of small and large stripe width A. For A - 0, the 
solution of (9) is )(z = 0. It has a verx simple physical implication: it coincides nit,h the HJE 

g = - (g??)‘- G& (g@)’ for the exponent 6 of the 1VX.k (3) on the axis I = zo (where 2 = 0 

from the s!-mmetr~ in respect to initial condition) in the absence of any stripe (when Dy(z) = Dyz 

throughout the plane). Then, the quantit>- G in (10) is G(g) = - $(g)2 and the function $(y,L) 
(13) is explicitly found to be 

j)(y t) = D. (Y - YY 
Dyz 41 (15) 

This is just the expnnent of the usual one-dimensional distribution, spreading from the initial 6. 
functional peak at y = g under the influence of diffusion. One can also easily obtain the first-order 
correction t,o (15) in powers of 1. 

‘The opposite asvmptotics of large A is easily found after observing t,hat t,he argument of the 
tangent in (9) has to lie within the range (0, ;) for all ralues of A to avoid unphysical negative 
values of the distribution function inside the stripe. The asymptotic solution of (9) for large A is 
then found to be 

(16) 



The physical meaning is again very clear. TVhen nl tends to zero for large A: it means that the 
function ;i(y,f) is the same as if the stripe were occupying the whole plane :he particles inside 
the stripe do not “feel” the outside region. The function 4 (13) is 

The condition of applicabilit> of t,he solution (17) can be found by requiring that each term in the 
@ sum K, = ar - 9(g)’ be much larger than the r.h.s. of (16); yielding: 

(18) 

The quantity D,t is the square of the r.m.s. deviation AZ(~) of particle in E direction over the 
time of observation t. \Vere it much smaller than 4, the applicability of the solution (17) would 
be self-obvious. However, since t,he distance y - q is much larger than the r.m.s. deviation 4z 
(we suppose D, - Dy), the applicabilit! condition (18) is less restrictive. For D, -- Dgl it can be 

rewritten as A > L?(t) +. 

Both large and small 4 expressions for the function 6 (15) and (17) are monotonicall? decreasing 
functions of time. The function 3 is actually monotonically decreasing with time t ior arbitrary 

parameters, since the conjecture i$ contradicts the condition K~ > 0. 

2.5 “Global” solution 

Xow that the local exponent, @(y,l) has been found we can find the “global” solution for the 
exponents of distribution tails and the escape rate T on the boundary y = A for the particles 
initiawd at z = 0: y = 0. The relationship of the rate T t,o the WI\TA (3) of the distribution pa in 
the absence of absorbing boundaries is known from the general WK.4 theory !6,7/: 

v(t) = F(1) exp i?) 

where the exponent R is just the minimum of t,he exponent @J(T> y, t) of p. on the boundary: 

R(t) = “” $(L, At) (20) 

The explicit expression for the exponent #(I: y, t) of the leading exponential term of the disribution 
po can be written in the standard variational form of 7VXA: 

dGY>t) = $& jy& L, (k(T)! i(T); G(7): w) 

where the trajectories j(t),Z(t) have fixed end points y(O) = 0, 2(O) = 0, C(T) = y, S(T) = z. In 
our case however the Lagrangian L in (21) is defined as mentioned before bv differen! expressions 
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for the line z = q, and for the rest of the plane. The latrer coincides with the Lagrangian of the 
unperturbed Hamilton-Jacobi equation: 

ad 
ST= 

-(?!)Z _ ;&)z (221 

and is given by: 

(23) 

On the line + = z0 the (one-dimensional) Lagrangian L, = L2(i(t)) is related t,o the Hamiltonian 
H = G(p,) from the Hamilton-Jacobi equation (10) through the st,andard transformation: 

ah(i) 
PY== a’ 

u 

In the full minimization (21)~ we can allow sections of trajectories i.(t). y(t) to pass by the line 
E = zr,, and the function $ on these section(s) is found (up to a constant, defined by continuity) 
from the HJE’s (9),(10). One should be reminded: that, the trajectories i.(t),y(t) providing the 
minimum in (21) are the most probable pat,hs of arrival to the corresponding points /6,7/. After 
these section(s) and the values of $I on them are found, the function q? in the rest of the plane is 
the solution of the unperturbed HJE (22) with the (self-consistent) boundary conditions on the 
section(s). The plane r.y is decomposed into some regions. where the characteristics of the HJE 
(i.e. trajectories 5(t). y(t)) are coming from the renter T = O;y = 0 and other regions where 
the? come from the section(s) on the line z = Q. The function @(r:y,t) is continuous, but is 
not differentiable (cusps are present) on the boundaries between the regions. The whole situation 
(including cusps) is rather similar to the 1VX.k of the nonequilibrium steady stat,e distributions in 
the oscillator wit.h nonlinear resonances, damping and noise /5/: and more details can be found in 
this reference. 

2.6 Large A case 

In order to demonstrate the above described technique of constructing the “global” solution, ler 
us consider the case of large A, when the Hamiltonian G in (10) is G = -s(g)‘. We will 
assume that all trajectories i: i ran have at most one section on the line I = 10 (t,he proof of this 
is straightforward). The most probable paths of arriul to the points on the line T = 20 in time 
4 consist (for y larger than a certain yl see below) of two sections: the straight (unperturbed) 
section going from z = 0, y = 0 to z = 10, y = y1 and another section going along the line as shown 
in Fig.2. If the t,ime of motion on the first section is tl? then the minimum of t,he unperturbed (i.e. 
with the Lagrangian L, (23)) functional (21) on this section is: 

*,l=~+%!i 
4t1 D,z 4Lt 
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The increment of $ on the second section can be t.aken, for the case of large .I we are considering, 
from (17): 

A& = D= (Y - Yl)? 
D,l qt - 11) 

(26) 

The time of motion on the second section is t -- tl: since the full time should be t. Minimizing now 
the sum 0 = 1& - lo2 by both 11 and ~1; we find: 

rn(zo:y,t) = ; 20 

i (: \f - 

D,tDyz D YZ -- 
D;, - D:> \:D$ - Dg 

,o, 2 
TY I- 

\ &I 1 (27) 

and the quantity y1 independent oft: 

Y1 = 20 
%V% 

\~i~$ D$) 

To find the function +(r,y,l) in the entire plane , one needs to solve the unperturbed HJE 

(24) subject to the boundary condhion (‘27) on the line T = ~0, y > y1 and to the requirement 
of the characteristics of this equation to start from z = 0: y = 0. It is easy to see that the time 
dependence of the solution is “purely diffusive” $(z: y,t) : ;r(z: y)/t (note that this is true only for 
large A). Substjtutirlg this dependence in (27) and solving the resulting equation with the boundary 

condit,ions on the line + : zO: y z y1 by characteristics method: one can explicitly find the solution 
~9~ in the part of the plane. This region I is defined by the condition that ~~(z:y) is smaller t,han 

the unperturbed function pO(z,y) = ~$4 A #& The n q = p1 in region I and q = y0 in the rest 

of the plane (region II). The function p(z:y) is not differentiable on the boundaries between the 
regions (has cusps). The qualitative sketch oi the contours of the function @ is shown in Fig. 3. In 
the sane graph, the chararr,eristics, which are the most probable path of arriral to each point, are 
shown. 

The quantity Am (2i) for y = ,-I is the exponent R(t) (20) of the escape rate to t,he boundary 
y = .4 if the boundary is larger than a certain y = yz (see Fig.3). The most probable path of escape 
to the boundary partiall!- goes along the stripe as is shown in Fig.1. 

3 Full system: nonlinear resonances and noise 

3.1 Local FPE 

Our primary system of considerat,ion is the txo-dimensional Hamiltonian oscillator with external 
noise: 

L - 
I = p 

au(tz, f) 
p’ = - az - l/z;, t=(t) (29) 
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Figure 3: The qualitative graph of the contours of function ip(z.y). Dashed lines show the most 
probable paths from the starting point I = 0,y = 0 to the points in the different regions. 
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where q is the diffusion intensity. F;(t) here is the white-noise vector process (Ija(t)E~(t - 7)) = 
E;&(T). \Ve suppose that the potential CT consists of an unperturbed time-depmdent part LIo(Z) 
corresponding to exact,l: integrable motion and a small perturbation L- = Li - cfL-(?: t): time- 
periodic with frequency n. The Hamiltonian of the system (without noise) can be presented 
therefore in action-angle variables of the unperturbed system: 

H = H,(i) - e 1 l,(J+jcos( .r, e- nRf) (30) 
I:* 

where Ho I ~?*j2 - Lo, and the perturbat~ion xas expanded in Fourier series in both 0 and 
t. Each harmonic 1;; excit,es a nonljnear resonance on the line lsul(~) - I,u,(T) -. nfl = 0, where 

C = aHo/af/9/. The amplitude of oscillations of Tat the separatrix defines the “resonance width” 
AI in 7 space and is proportional to “‘7 (see below). The resonant Hamiltonian ran bP obtained 
by dropping all the nonresonant harmonics. introducing new [,canonical) variables 

I 
I, = p 

Y 

J2 - ~ -I, T ;Iy 
Y 

vh = l,B, - i,f?, - nnt (31) 
?& = -9, 

and expanding the Hamiltonian Ho(J) to second order in deviations in 11 from the renter 110(12) 
i’s/. The result nil1 be: 

2 
H = A”$ - et’% cos(y,) (32) 

xhere X = “!~‘p, and rii = (i; n). Th e resonance width. which is thp amplitude of oscillations 
of pl on the separatrix of pendulum (32): is 

Now let us consider the effect of noise. First. instead of stochastic equations of motion: we will 
use the equivalent language of distribution functions. The evolution of the distribution of particles, 
corresponding t,o the primary equations of motion (29) is governed b? the FPE /6/: 

a~ -ap 
x’Pz- 

a(uo - dcq ap azp 
az q-=qw 

We ail1 be constructing the solution of the FPE (34) un d er a set of limitations on the parameters. 
First, we will suppose that the Hamilt,onian part of dynamics ran be well described in terms of 
isolated nonlinear resonances: so that the resonances do not, overlap. This is t,rue under the condition 
(c~V,A~)~/’ >> v (v here is one of the components of 17) /9/. Then, we will be interested only in the 
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tails of distribution. which means that the characteristic energies E = Ho and times of observation 
I” should satisfy the condition E/q7 > 1. .%lso. it will be supposed that the diffusion in our 
system is a slow process relative to both the unperturbed motion (time srales rl s l/u) and the 
resonant oscillations (time scaler 7z -. (e,l’*X )-“‘). The last condition is more restrictive and 
can be otained bv requiring that the r.m.s. t,ime 7 required to shift the particle by diffusion to the 
distance equal to the resonance width (33) r - p:?/~ is much larger than rz: 

(c;l~;)3’2 > A”%) (35) 

This inequality> as well as the previous one holds for small enough noise intensity 7. 
N-hen the diffusion is slon it is natural to assume that, the distribution will smear along the 

Hamiltonian trajectories before it will undergo any appreciable changes under the influence of 
diffusion, so that the distribution after a short time will be constant along these trajectories. 
This assumption is the basis of so called “thermal areraging” technique :lO/ used to describe 
the evolution in the LD version of OUT system with damping. In Ref./5/, such averagings were 
performed as an intermidiate stage of describing 2-D systems (with damping). Following /5/ we 
will now carry out the thermal averaging in two swps. First, transform the FPE (34) to the __ 
unperturbed action-angle variables I, B and (supposing the distribution p depends only on cI and 
not &) average the FPE over both “fast” phases $ keeping “slow” phase @I constant (SW/~/ for 
more details). This will yield 

ap z - El, sin(&)(1,g - 1,$) i (IrYz - I,V, n(l)% = 
r Y 

a aP - 
qaG”k’ar, 

ap 8% a=p 
- qR2 G - ~Rsaw: - vR41rFIz 

Here> on]\- one (resonance) harmonic of Fourier expansion (30) was retained. The thermal averaged 
diffusion tensor Gokr(l,, I,) is 

2n 2n 
c TOM = & o JJ 

aw,p3 aw-,d o do, de, ap; aPi (37) 

where summation orer the repeated indices is implied. The quantities Rz through RI in (36) are 
other averages of the type (3i) and are not given explicitly since the corresponding terms will 
drop our in subsequent transformations. In acceleraror problems, the whole formalism is somewhat 
simplified since the linear betatron part of the Hamiltonian always dominates the zero Fourier 
harmonic of the nonlinear part, coming either from beam-beam interaction or sextupole or octupole 
terms. The actions I,> I, then are just t,he unperturbed linear betatron energies I, = pz/2; &z2/?, 
I, z p;;!2 - “2 yOyz:12. The tensor Gokl then is diagonal: 

Sate that the FPE (36) is local and is applicable only in the vicinity of the chosen resonance since 
all nonresonant harmonics of perturbation 1’ were dropped. 
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It is more conrinient now to use the same local variables p,; I,, r1 as used in Hamiltonian (32). 
The FPE in these variables is 

ap aP ap 
-t Aplgg -cIi,sintil- = at 1 aP1 

i 

azp 
7 Qn- - 

aP: 

Rhere the diffusion tensor in (11~1,) space is 

II QII = - IlV, 
1, II 021 = - 
4% 

Q 22 = c-12 t U) 1: I, 
vz GA54 

(39) 

(40) 

and K = “‘@ (I 1o z 1s t (I ) h e resonance line). The quantity P consists of the terms which we 
proportional either to the first derivative of p with respect to p,, 12 or to the second derivative at 
least one of which is with respect to $]. This quantity will be shown to be safely dropped to the 
precision of consideration. 

3.2 Modified weak-noise asymptotics 

Son we will introduce the \!‘Y‘A only in the direction along the resonance line pl = 0 in the same 
manner as in the illustratiw example of Chapter 2. The method XLS proposed in /S/ t,o describe 
analagous systems with damping. 

The solution of the FPE (39) in the limit 7 w 0 and for arbitrary eiI’e,l/r~ has the following 
functional form: 

P(Pl:lz;Qh>t:11) = Z(P,,Iz,1LI,t;rl)exP - 
i YII> 

(41) 

where l= z ar2 - const : $g -- consf for 7j - 0. Substituting (41) in (39) and singling out 
highest degrees of l/q; we arrive to: 

a2 
xp1 aw, T cVGsin$,* = L(Qz2$ + $)Z - Z(Qs,q nqQsz)z+ 

ap1 11 ap 

~(QII 
a22 i- Q& - 2nQ~i)- aZz - rjFl--- az 
ad bah + Fzq- ay, (42) 

where q = a%. Xote that similar to Chapt.er 2, t,he derivatire g does not enter the equation 
(42). The quantities F,, F2 originate from the last term in (39) and will drop out in subsequent 
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calculations. Int,roducing the notations 

ad 
b(Iz, t) = 2 (~922 Qx) $ 

~(12) = QII + Qm* 242,~ 

equation (42) can be rewritten as n 

a a2 
-hap +cvap2 

@Z az 
Z + VFI~ A FzqG 

(43) 

(44) 

where ix is the Liouville operator iH = g& -- $$& of the resonant Hamiltonian (32). 

Lltilizing the condition (35) of diffusion slowness relative to the resonanl dynamics now we can 
perform the second stage of thermal averaging. i.e. average equation (44) along the trajectories of 
the Hamiltonian H (32). The prowdue is the same as in /5/ we suppose that the function Z 

depends on p, and tiI only through the action J(H) for the Hamiltonian H (32) and average the 
equation (44) over time. The resulting equation is 

;Z+ & bF-cTG(J)$ Z = 0 

where 

F = 

The symbol (...) in (46) implies the averaging over time along the trajectories of the Hamiltonian 
H. The quantity F can be shown to be independent on J. Kot,ice also that the last two t,erms in 
(44) vanished under the averaging. 

3.3 Phenomenological approach 

Physically: equation (45) is very much alike the equat,ion (5) of OUT model example. Therefore, 
it is clear that together nit,h the “physical” boundary conditions it, uniquely defines the relation 
between g and ‘8 (anaiagous to the example of Chapter 2). Technically however the equat,ion (45) 
is intractable since the quantities F and G are expressed through elliptic integrals /lo/. One way 
of handling this problem is the phenomenological simplification of functions F and G as suggested 
in /a/. In this approach, we substitute the exact trajectories of the pendulum (32) by “simplified” 
trajectories shown in Fig.4, and perform the averagings in (44) along these trajectories. Equations 
(44),(&S) are formally the same as those of Ref./R/, while the difference is in the definition of 

16 



I I t 

Figure 4: “Simplified” trajectories approximating pendulum trajectories of nonlinear resonance 

coefficients a and b (43). Therefore we we can use all the intermediate calculations from Ref./B/. 
The resulting one-dimensional HJE, defining the relation between 81 * and 3 analagously to the 

HJE(9) is equation (32) of Ref./B/: 

[ ;(b2 - 4ae)j ’ = tan [(2:)’ F] 

where k is the phenomenological constant of the order of unity. Equation (47) indeed is very much 
similar to the equation (9), so that most of t,he discussion of Chapter 2 applies also in this case. In 

particular, for the (large resonance width pl,)/(small noise 7) regime the solution of equation (47) 
is a = 0. OT 

(48) 

This equation has a very clear meaning the quantity Qz2 is the component of the primary diffusion 
tensor Go (37) in the direction along the resonance line 11 = 110 when transiormed to the new vector 
basis (direction 1, = IIO),(direction 12 = const). Therefore the diffusion inside the resonance evolves 
indeed as a one-dimensional process with geometrically clear transformation of diffusion rate. The 
condition of applicability of the solution (48) can be obtained similarly to that of Chapter 2, yielding 

mGt 

1121 - 120 
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where t is the time allowed for the transition from 12 = I 2. to 1, = I,,. This condition aill hold 
for small enough noise intensity 7, It is interesting to note also that for verl- narrow resonances 
the requirement for the smallness of noise intensity (35) necessary t,o apply the thermal areraging 
is more restrictire than the condition (49). 

It should be born in mind that the solution (47) is not unique in the same way as solution 
(9) of the model example. Indeed, both solutions were constructed subject to certain “physical” 
conditions, implicitly based on the conjecture that the inside-separatrix (inside-stripe) trajectories 
are more probable than the outside-separatrix (outside-stripe) paths. Generally this need not always 
be the case and another “competitive” solution corresponds in the precision of consideration simply 
t,o (locally) ignoring the resonance (see /5/ for details in the similar situation in the steady-state 
problem in the system with damping). 

3.4 Global solution. 

After finding the equation (47) for th e variation of the exponent of distribution function along the 
resonance, we can forget about the resonance as a structure in I,> I,, @I space and treat it as a line 
in I,,I!, plane. The distribution function at this stage can be presented in a standard W’NA form 
both in the entire plane I=,l, and on the line. The equation for the exponent 4 in the plane is the 
unperturbed HJE: 

which is obtained by substituting the WNA form in the FPA (36) with I;i, = 0 and supposing 
& = 0 (tensor G~bl is iaken from (38). Along t,he line, function C$ has to satisfy the one-dimensional 
HJE (47). The funct,ion c++ also has to be continuous. 

The construction of the global solution C$ can be done basing on the variational representation 
(21). The Lagrangian L is the unperturbed one everywhere except on the resonance line, where it 
corresponds to the one-dimensional HJE (47). The plane 1=,1, will be divided into characteristic 
regions. qualitatively looking as in our model example shown in Fig.3. 

The general algorithm of constructing t.he “global” solut,ion ran be formulated along the same 
lines as that of Ref./S/ for the systems with damping and applies t,o the case ofarbitrary number of 
resonance lines or infinite resonance webs, generic in nearly-integrable systems. When performing 
the “global” minimization for 4 over all possible paths we can allow the paths either to cross the 
resonance lines CIT to pass along them. The second case will correspond to the solut,ion (47) while the 
first one to t,he resonance-ignoring solution /5,8/. Which solut,ion will locally take over, i.e. whether 
it is “profitable” for the particles to travel along the resonance at given point, depends on all the 
other points on the resonance line(s) and is therefore a nonlocal problem. The only local condition 
which can be derived is the lower bound of “profitability”, It can be obtained by requiring that it 
be “easier” for the particles to go along the resonance line when the resonance is present than going 
in t,he same direction in the absence of resonance. Because of the time-dependent charact,er of the 
problem this condition is more complicated than the similar one of t,ime-independent steady-state 
(see Appendix B of Ref./S/). In our case, one has to compare two different HJE’s and which one 
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is more “profitable” depends in general on the time allowed for transition. 
Let us obtain the “lower bound” condition for the case of a large resonance width, when the 

effectire one-dimensional HJE along the resonance line (47) rpdutes to a simple form (48). The 
“competing” HJE along the direction of the resonance line in the absence of resonance can be 
obtained by inserting the trajectory pl = 0 and varying 12(t) in the variational representation of 
rhe type (21): 

dJ(P~,lz,t) = T J 1 dt blIPI L 2b&i2 i (51) 
0 

bd] 

where the symmetric tensor b,, is the inverse to the diffusion tensor Z’,,” in coordinates pl,Jz. The 
latter one , if Lo assign index 1 to pi and 2 to I,, is seen from the r.h.s. of equation (39) to be 

Tll = QII - 2@21 - ~‘Qa 
Tz, = QZI - 622~ (52) 

Tzz = Qzz 

The result.ing HJE is 

a$ QzzQll - Q;I 
at T Ql, - ~KQ*~ t dQz2 = ’ 

Thus, both HJE’s (48) and (53) correspond to simple one-dimensional diffusion and t,he coefficients 

before (z)’ are the diffusion intensities (divided by 7). Therefore the “lower bound” condit,ion 

can be obt,ained by requiring that the coefficient in (48) is larger than that in (53): 

QZZQII - Q;, 
Q2z > Qn - 2nQzl y dQzz 

(54) 

If the condition (54) is not fulfilled, the diffusion inside the resonance is not enhanced and the 
resonance will not have any appreciable effect on the distribution tails and escape rates. 

The “global” solution for $ taking into account the net of resonance lines (which is infinite and 
everywhere dense for generic near-integrable systems (30)) can be construcwd from t,he “global” 
minimization principle along the same lines as in the theory of time-independent st,eadg-states in 
the systems with damping /5/. A slight modification will be that when varying the paths of arrival 
to a certain point, and having some sections of it going by the resonance lines, the times of starting 
poims on those sections also have to be varied. 

4 Discussion and Conclusions 

We described t,he mechanism of diffusion enhancement b?; two-dimensional resonances with external 
noise, leading for wide enough resonances to the enhanced rate of transport of particles from the 
beam core to large amplitudes and hence an increased speed of growth of the tails of distribution. 
The basic scenario of diffusion enhancement inside the separatrices due to the small angle between 
the resonance line and the resonance oscillations direction was previously described in the literature 
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/4/. However: that calculation of “renormalized” diffusion intensity inside the separatrix does not 
provide the essential information about, the “macroscopic” transport rate along the resonance and 
its overall effect on the distribution function. The basic dynamic process to t,ake into account to 
evaluate the “macroscopic” transport rate is the diffusion ofparticles in transverse to the resonance 
line direction, so that because of the different longitudinal diffusion intensities inside and outside 
of the separatrix, t,he t.ransverse diffusion modulates the longit,udinal one. This makes the effective 
one-dimensional random walk along the resonance line a more complex stochastic process, in fact 
not even describable by an? sort of diffusion process. 

The present paper was devoted to the description of the physics of phenomenon, and left aside 
the more technical (though very important) question under what conditions can it manifest itself 
in the real hadronic colliders. Few general observations about this aspect of the problem can be 
made however without a substant,ial effort. 

The necessary condition of resonance-induced enhancement is the condition (54), requiring 
smallness of angle between the resonance line and resonant oscillations direction. The question then 
is when this small angle can appear. The important point is that it depends only on nonlinear tune 
shifts hv,, bu,, dependencies on betatron amplitudes A,, A,, and not on the harmonic amplitudes 
(defining the resonance width). The tune shifts are created by both the multipole components 
of magnetic fields and the nonlinear beam-beam interaction field. Since the hadronic beams are 
usually round 1 the beam-beam interaction is symmetric and preliminary numerical evidence is 
that the resonant oscillations are always nearly orthogonal to t,he resonance line. Thus it does 
not look likely that the phenomenon can manifest itself in the absence of multipole components. 
Superimposing the latter on the top of beam-beam int,eractions can however change the situation. 

Consider now the effect of the multipoles in the absence of beam-beam force. The lowest order 
multipole tune-shifts come either from the first-order perturbation term of the octupole component 
or the second-order one of t,he sextupole component and have the same functional forms: 

bv r = C,A: i &AZ Y 

6~~ = &A: i GA; (55) 

where A,, 4, are the betatron amplitudes and the coefficients C ,, Cz! C3 are t,he integrals of the 
multipole amplitudes along the ring and can vary in respect to each other in the wide range. It 
is easy to see that the resonance line is straight in the action variables J. = AZ, Ju = AZ and 
that the angle between this line and the resonant oscillations can be varied arbitrarily by varying 
the constants C1, C?, C3. Thus the phenomenon of the resonance-enhanced diffusion can be more 
easily observed in the absence of beam-beam interaction and is conceivable when both beam-beam 
interaction and lattice nonlinearities affect the tune shifts. 
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