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Theoretical developments within the mq + 00 limit of QCD and their applications to B physics are reviewed. 
Effective actions, symmetry relations and perturbative matchings are discussed for the continuum and lattice 
theories. An analysis of recent lattice results which emphasizes the situation for fr, is presented. 

1. INTRODUCTION 

In the last few years, B physics has become an 

exciting subject both because of the prospects for de- 

tailed experimental study1 and recent theoretical de- 

velopments. A partial list of the aspects of B physics 

that are interesting to theorists would include: (1) 
the spectrum of b quark mesons and baryons - e.g. 

the excitation spectrum for B,, Bd. B,. and B. 
mesons; (2) the internal structure of B hadrons - 

e.g. the charge density and magnetic moment: (3) 

the electroweak decays of B mesons - e.g. the de- 

cay constant f~, and semileptonic decays b + e 
which depend on IV,1 and b -+ u which depend on 

IV&I; (4) mixing in the B meson system - e.g. the 

B. -z mixing parameter which together with f~. 

the KM mixing angles (including [%I or IV,,\) and 

the top quark mass determine the mixing strength: 

and (5) CP violation which can be studied in rare 

decay modes - e.g. B + li, + KS and B + r+ a. It 
is particularly exciting to us here at this conference 

as lattice gauge calculations will play an important 

role in understanding each of the items above. 

Recent theoretical developments, which have 

generated such excitement about B physics, exploit 

the fact that the QCD interactions of a heavy quark 

takes a simple form in the limit that the mass of the 

heavy quark goes to infinity. Since the b quark mass 

is significantly heavier than the other mass scales 
(the QCD scale and the light quarks masses) which 

enter into the dynamics of B hadrons, it is likely a 

good approximation to treat the b quark in mq + m 

limit within B hadrons. 

The most familiar systems in which quark masses 

are large compared to the QCD scale are the (ZC) 

and (Zb) family of resonances - the J/$ and Y res- 

onances. These systems are nonrelativistic. In such 

systems, the typical momentum transfer (between 

the heavy quark, Q, and antiquark, g) < ps >l/s is 

small compared to the heavy quark mass, mq, but 

not bounded as mq -+ 00. Instead the relative three 

velocity v = 2 < $ >l/s /mu is bounded below by 

4a.p. 
In contrast, for hadrons that contain only one 

heavy quark a different dynamics applies in the limit 

that no ---t 00. In such systems the heavy quark be- 

comes static. The momenta transferred are typically 

of the QCD scale and the scale of the light quark 

masses and remains bounded as the heavy quark 

mars goes to infinity. The B mesons and baryons 

are prime examples of such systems. It is also fruit- 

ful to consider the charm mesons and baryons as 

such systems. Hadronic systems involving the top 

quark would be ideal except for the fact that when 

top quarks are produced their weak decays occur so 

rapidly that hadronic states do not have time to fully 

form. This makes study of top hadrons extremely 

difficult. 

There is also a very practical reason for studying 

B mesons on the lattice using an effective theory for 

the heavy quark. The continuum limit is approached 
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as the lattice spacing becomes small compared to all 

the physical parameters in the problem. As the quark 

mass increases it requires larger lattices to satisfy 

both mqa t 0 and a physical volume for the lattice 

sufficiently large to keep the finite size effects small. 

For a 24s x 48 lattice at p = 6.0, a physical volume 

of (2.4fm)3 implies that m,a x .9 and mba x 2.6. 

Clearly direct simulation of B mesons using the usual 

lattice fermion action (Wilson or KS) for the b quark 

is impractical. Heavy-light methods2p 3 were pro- 

posed to allow the direct calculation of the proper- 

ties of hadronic systems with only one heavy quark 

- such as B mesons. The basic idea is simply to use 

an effective interaction which arises in the static 46 * 

or nonrelativistic limit of the heavy quark motion. 

I will discuss this approach in detail. 

There are two methods for studying B physics 

on the lattice: 

1. 

2. 

Use the standard lattice action and simulate 

with heavy quark masses as large as possible 

while still keeping the systematic errors associ- 

ated with the large value of mqa manageable. 

Then use the scaling behaviour determined from 

the continuum effective theory in the rnq -+ 00 

limit to determine how to scale the results to 

the B system. This will be denoted the extrap- 

olation method. 

Use a lattice effective action for the heavy quark 

which will determine the physical quantities in 

the mp + co limit of QCD. Systematic inclu- 

sion of l/ma corrections will then give the prop- 

erties for the B systems to increasing accuracy. 

This will be denoted the static (or heavy-light) 

method. 

Both methods rely on the properties of the heavy 

quark limit of QCD. 

Before turning to the effective action approach 

on the lattice, I will discuss the various actions which 

have been used to study the mq + 00 limit in 

the continuum theory, illustrate how they lead to 

new symmetry relations and determine how physical 

quantities scale with mq in the heavy quark limit. 

2. EFFECTIVE ACTIONS 

If a heavy quark is bound within a physical meson 

or baryon in which the other masses and momenta 

are of the order of the QCD scale, then, in the rest 

frame of this physical system, the heavy quark is 

essentially at rest and on shell. In this limit, the 

heavy quark propagates only in time. Three effective 

actions have been used to study QCD in this limit: 

(1) The static effective action6 7 is valid if the 

momentum transfers to the heavy quark are cutoff at 

a scale fixed relative to the QCD scale even as the 

heavy quark mass increases without bound8. The 

Lagrangian is given by5* 6 7s g: 

L. = i$J’oo?l, - $b’tmqll, + &‘?Y* 
0 

+- l *t- 
2mQ 

n.&+O( (2.1) 

where 4 = F$JD~,,~ is a two component quark 

field and B’ E igt”&kF;h and DY = 8, - igt”A;. 
The field II, can be resealed by $ = exp(imqt)$ 

and $t = exp (-im,$)$t to eliminate the order mq 

term in the action. 

The terms in the action of order l/rnq are 

treated as perturbations to the static limit for the 

heavy quark. Thus, in leading order, the propagator 

for the quark field 4 is given by: 

5$(r) = -i15(z’)Ty2)O(r0) (2.2) 

where P(z”) is the time ordered phase integral from 

0 to 2. 

(2) The second form of the effective action - 

the nonrelativistic (NR) action 3, 5* g - is closely re- 

lated to the first. The static action is a special case 

of this action, since the NR action is valid as long 

as the heavy quark is moving with low velocity (i.e. 

1Gj < 1). The form of the bare NR action is the 

same as the static action given in Eq. 2.1. How- 

ever, in the nonrelativistic limit, the kinetic motion 

of the heavy quark cannot be ignored. Hence the ex- 

pression for the quark propagator differs even in the 

free quark limit. For the static action, the free quark 

propagator is l/(po + ie); while for the nonrelativis- 

tic action, the propagator is l/(po + 3/2mq + k). 
Therefore, the renormalization of operators and per- 

turbative corrections to matrix elements determined 
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Figure 1: The first two terms in the QCD pertur- 

bative expansion for the scattering of a static quark 

and antiquark in Coulomb gauge. The static quark, 

Q and antiquark, g. are denoted by double solid 

lines and the Coulomb exchange, g, is denoted by 

a dashed line. In position space, the total time be- 

tween initial and final states is denoted by T, while 

the relative time between interactions is denoted by 

t. The spatial VQ separation is denoted by R. 

from those two approaches can differ, even though 

the naive actions are the same. One might ask why, 

in the limit mo + co, the kinetic energy contribu- 

tion to the quark propagator can’t always be treated 

perturbativeiy. The problem arises in certain physical 

situations in which the kinetic energy contribution is 

necessary to regulate the infrared behaviour. This 

cannot happen in a physical system with only one 

heavy quark*. However, in a bound state of a heavy 

quark-antiquark this does happeng. 

To illustrate the difference between the static 

and NR limit in a simple case, consider static quark- 

antiquark scattering. In Coulomb gauge the first two 

terms in the perturbative expansion for this process 

are shown in Fig. 1. The lowest order term is just 

a single Coulomb exchange. In position space this 

term is just given by V(R) = -4as/3R. The sec- 

ond order term is given by f[V(R)12 integrated over 

the relative time, t, between the two interactions. 

The integration over relative time is only cutoff by 

the total time, T. This is the origin of the infrared 

divergence in this graph found in momentum space. 

In a physical heavy quark-antiquark system the large 

t behaviour is cutoff by the spatial propagation of the 

heavy quarks. No matter how small the kinetic en- 

ergy term is. there is some time large enough that it 

cannot be neglected. On the other hand, integrating 

both terms over the total time, T. we see that these 

terms are simply the first and second order terms 

in the expansion of exp (-V(R)T) the static energy 

associated with the Wilson loop. 

(3) The constant velocity effective action 10,ll 

is a different generalization of the static action. The 

four velocity of the heavy quark (i.e. @‘/no) is 

fixed. All momentum transfers remain of the order of 

the QCD scale as for the static case. The Lagrangian 

for a heavy quark of four velocity v in lowest order 

in l/ma is given byll: 

&, = i&h’V,~~ (2.3) 

where $~v = exp(imo~v,z~)~. Converting to two 

component notation we can define 

cc. = i$;v’q$*,f - q;v’vp~, (2.4) 

where $$ = ?j(l zt #)&,. The total Lagrangian is 

given by: 

c= 
I (2.5) 

There is a velocity superselection rule in this limit: 

fields associated with quarks moving with different 

velocities do not interact. The full Lagrangian (Eq. 

2.5) is constructed to preserve a formal Lorentz in- 

variance of the effective action. Note for vJ’ = (o’, 1) 

the action Eq. 2.3 reduces to the static action. In 

the next section the symmetries of these effective 

actions will be explored. 

3. SYMMETRY RELATIONS 

To investigate the enhanced symmetries in the 

limit mo + co consider the static effective action 

given in Eq. 2.1. In leading order in l/ma the 

Lagrangian has two types of symmetries. First, the 

Lagrangian is invariant under an arbitrary spin trans- 

formation of the quark field 11 ---t exp (-in’. Z)q. 

Including both quarks and antiquarks this gives rise 

to an SU(2) 8 SU(2) symmetry. Second, if we al- 

low for more than one flavor of heavy quarks then 

the Lagrangian. in leading order in l/mq, is just a 

sum of terms for each flavor of heavy quarks, hence 

for N flavors of heavy quarks there is a SU(N) flavor 

symmetry. Thus in the N flavor case the Lagrangian 

is symmetric under a full 

SU(2N) c3 SV(2iv) 



symmetry. This symmetry was first exploited by Is- Thus the matrix element for the effective cur- 

gur and WiselO. rent is given by 

For the nonrelativistic effective action the kinetic 

energy term spoils the flavor symmetry. However the 

spin symmetry is maintained in leading order. 

The largest symmetry group is preserved in the 

fixed velocity effective actionl’v 11* 12. There, all 

the symmetries of the static action are preserved, 

and in addition the Lorentz invariance of the full La- 

grangian,Eq. 2.5. can be exploited. For a meson, H, 

containing a heavy quark, Q, and a light antiquark. 

‘i, the transformation properties under rotations and 

boosts associated with the Lorentz group can be de- 

scribed by a 4 x 4 matrix i?(u) which transforms 

as 

-i < Ol$(z)lH(p) >= (3.3) 
ftfma 
-7~~ exp [-i(mrr - m&P . z,]. 
dzG 

Here 

ii(v) -+ D(A-‘)@A-‘v)D(A) 

D(A) = exp (i&=,$,) 

is the usual Lorentz representation. The appro- 

priate transformation properties12~ l3 for a heavy- 

light pseudoscalar meson state is I?(V) = (1 + $)/2 

and for a vector meson state for polarization E is 

H’(V) = 7si(l + $)/2. Finally to eliminate any ex- 

plicit mass dependence in the normalization of the 

matrix elements, define a noncovariant normalization 

Since the current and matrix elements are de- 

fined to remove all explicit dependence on mo 

for large mq, the right hand side of Eq. 3.3 

must also be independent of mo as mo -+ 00. 

The four momentum of the meson is replaced 

by the four velocity which is independent of 

mo and E~jrn~ = ve = l/m is inde- 

pendent of mq. Therefore, the binding energy 

mq -ma appearing in the exponential and the 

combination of the decay constant and ma, 
fH* which appears in the prefactor must 

also be independent of mq. These conclusions 

areeasy to understand since the dynamics of the 

H meson would be expected to depend on the 

QCD scale and the reduced mass of the quark- 

antiquark system both of which are independent 

of mq in the limit rnq --t m. In particular, in 

a potential model the combination fxe is 

simply related to the magnitude of the wave- 

function at the origin of the H meson 

< H(p’,s’)lH(p,s) >= 6.%6(+ - p’) fa%/G = JIzl~(O)l (3.4) 

where p, p’ are momenta and s, s’ are possible spins 

for the heavy-light state H. 
Now these symmetries can be applied to obtain 

information about the mesons containing one heavy 
quarkl0, 11, 12. 13 

s First consider the axial current Jf;(z) = 

~(~)7”7~Q(+). The matrix element of this cur- 

rent between a pseudoscalar heavy-light state, 

H, and the vacuum is given by 

and hence independent of mg. 
At this point I should comment that the scal- 

ing behaviour being discussed here use the re- 

lation (Eq. 3.2) between bare currents in the 

full and effective theory. These relations will be 

slightly modified when perturbative QCD cor- 

rections are included. This will result in addi- 

tional logarithmic corrections to the scaling be- 

haviour for fg given above. I will discuss these 

corrections in the next section. 

-i < ojJ;(z)ja(p) >= g& exp ‘-“,:r’, 

where f~ is the meson decay constant. The co- 

variant current JA can be reexpressed in terms 

of the current in the effective theory jA as fol- 

lows: 

J;(z) = j;(z) exp (-imqv%,). (3.2) 

l Second, consider a general current J(r) involv- 

ing two heavy quarks, Q and Q’, given by 

g(r)JJQ(+) = (3.5) 
l xp [-i(mqv@ - mo#)r,]j(z). 

The matrix element of the current, j, between 

two heavy-light mesons, H and H’ (containing 



the heavy quarks Q and Q’ respectively) can be 

written in a form where the Lorentz structure of 

the matrix element is explicitly evaluated. Us- 

ing the known transformation properties for the 

heavy mesons under Lorentz transformations on 

the heavy quark fields, the general form is given 

by 

< H’(v’)l.qO)lH(v) >= (34 

; y;ff(vl J . tJ)TT[P(V’)IIEi(V)]. 
I? and Ei’ are the 4 x 4 matrices appropriate for 

the particular meson state as defined before. 

The major result of this analysis is that there 

is a uniueraal form factor t in leading order in 

l/q. The form factor, t, is independent of 

the Lorentr structure of the current,j, and the 

spin and heavy flavor of either of the states H’ 

and H. All spin and heavy flavor information is 

contained in the trace. This result was obtained 

by lsgur and WiselO and then in the fixed ve- 

locity formulation of Georgill by Falk, Georgi, 

Grinstein and Wisel*. 

As a simple application of this result consider 

the matrix element of the vector current be- 

tween a single pseudoscalar heavy-light meson, 

H. Using i!Z = (1 + #)/2, Eq. 3.6 becomes 

< H(d)lti’(O)lH(v) >= (3.7) 

The normalization of ,$ at v’ . VJ = 1 can be 

determined by considering the special case of 

the meson at rest, where V’.V = 1. Since $‘o is 

the zero component of a conserved charge we 

conclude that r(l) = 1. 

The general result of Eq. 3.6 can be applied 

to many experimentally important processes. 

Prime examples are semileptonic decays of B 

mesons to D mesons. For the decays of a pseu- 

doscalar meson H = B to a final pseudoscalar 

H’ = D only the vector current contributes, 

and the matrix element is given by 

< H’(v’)li+(O)(H(v) >= (3.8) 

/-- ;;:;p’~ v)( ?Y ; “@). 

If the final state is a vector meson, H’ = D* 
both vector and axial vector currents contribute. 

The matrix elements are: 

. 

< H*(v’,~)l?~(O)lH(v) >= (3.9) 
4; J y;y. v)c-“*““‘p”~ 

and 

< H’“(d,~)li”(O)lH(~) >= (3.10) 

There 

are many applications of these relations 10.12 . 

For example, B -r D + eu and B + D* + ev 
decays are related in leading order in l/mk and 

llm.. Also since [( 1) = 1 the semileptonic de- 

cay B + D + Ed can be absolutely normalized. 

This allows a determination of IV&l from this 

process. 

Finally, consider the matrix elements of a gen- 

eral heavy-light current between a heavy meson 

and an ordinary light meson (eg. a pion. rho, or 

omega). Such matrix elements are needed if one 

is to use measurements of charmless exclusive 

semileptonic B decays to extract /V&l. Unfor- 

tunately, there is no reduction in the number 

of form factors14p l5 in these processes even in 

the mq + cc limit. On the other hand, when 

the momentum of the final light hadron is small, 

it is precisely these decays which can be com- 

puted using lattice methods16. The measure- 

ment of these form factors in that limit should 

be a important goal for lattice simulations in 

the coming years. 

Now that some uses of symmetry relations have 

been examined17, I will turn to the calculation of 

physical quantities in the heavy-quark limit. These 

calculations necessitate perturbative matching and 

lattice simulation. 



4. PERTURBATIVE MATCHING 

An appropriate lattice action for studying both 

light and heavy quarks in the mq -+ 00 limit of QCD 

is given by: 

SE = Sgaugc + c slight + c Sheovy. (4.1) 
fl..or‘ fkwa, 

Here Sg.ry)c is the standard gauge action with cou- 

pling strength p = 6/gs; .S’ri,,k is the Wilson action 

for various flavors, f, of light quarks with mass deter- 

mined by its associated hopping parameter, nf; and 

for each flavor of heavy quark, Q, the action Sh.vy 

is given to order l/mq by16 

S helwy = (4.2) 

(-a)3~{Q+(~)[Q(4 - @t(+ - Ga)Q(= - ‘ja)l 
D 

+ & ,$ Q+(=W;'(z - h,Q(z - 30) 

+Uj(Z + ;~)Q(z + 30) - ~Q(z)] 

+- 2atn, i >& Q+(z)~kc4 ,i, i 

The first order l/ma term in this action is just a lat- 

tice form of the kinetic energy term of Eq. 2.1. The 

second term is the spin interaction with the (spa- 

tially smeared) gauge plaquette, VP. The gauge 

field dependence in the second term reduces to the 

chromomagnetic field in the continuum limit. Heavy 

antiquarks are included by adding a term to Skc.vy 

with Q replaced with the charged conjugate field Q. 

and U transformed by Uf(r - ba) + U*(z). 

Having defined the lattice action for the static 

limit, it remains to relate the matrix elements mea- 

sured using this action on the lattice to the corre- 

sponding physical quantities in the continuum. This 

matching can be done analytically in perturbation 

theory. The general procedure is well known lg; how- 

ever, the application to the static effective theory is 

new. 

The matching is done in two stages. The first 

step is to match the effective theory to the full theory 

and then the lattice effective theory is matched to 

the effective continuum theory. 

The first quantity for which this procedure was 

applied is the matrix element of the axial current 

w (0) 

Figure 2: One loop corrections for the axial current 

between a heavy and light quark. The heavy quark 

is denoted by a double solid line, the light quark by 

a single solid line and the gluon by a curly line. The 

vertex correction is shown in (a). The usual self- 

energy correction for the heavy quark is shown in 

(b). For the lattice theory there is also a tadpole 

self-energy correction shown in (c). The standard 

light quark self-energy corrections are not shown. 

between a heavy-light pseudoscalar meson and the 

vacuum*Ov 21, **. This matching determines how 

to normalize the bare value of the decay constant 

measured on the lattice to its physical definition. 

For example, the one loop vertex correction for 

the axial current is shown in Fig. 2(a). This ver- 

tex correction can be calculated by straightforward 

methods63 2o in the static effective field theories as 

well as in the full theory. The infrared divergences 

can be regulated using a gluon mass, X. The ultra- 

violet divergences can be dimensionally regulated in 

the continuum full and effective theories using the 

MS scheme. The ultraviolet divergences are cutoff 

by the finite spacing, a, on the lattice. Finally, the 

matrix elements of the renormalized currents are de- 

fined at scale p. It is also simple to compute the 

heavy quark wavefunction renormalizations shown in 

Fig. 2(b and c). with the three actions. The results 

for the vertex and heavy quark self-energy correc- 

tions in one loop are shown in Table 1. The standard 

light quark correctionslg are also included in Table 

1. Since the axial current is partially conserved, all 



Correction j FULL EFF LAT 

ZV 
2 

4%) In($) - In(Xsa’) 

fl +1 +12&I 

ZQ 2ln($)+ 2ln($) -21n(~zaa) 

In(*) - 4 i-24.40 

Zl 
I 

- In(S) 
1 

- Vti) In(Xsas) 

$112 +1/2 +13.35 

Table 1: Results for the one loop renormalizations 

of the axial current vertex, Zv; the heavy quark 

wavefunction, Zo and the light quark wavefunction, 

Zr. The results for the full theory are given in the 

column denoted FULL. The results for the effective 

continuum theory are given in the column denoted 

EFF6 *O. *l. The results for the lattice static the- 

ory are given in the column denoted LAT*O. The 

renormalization scale in the continuum is p and the 

gluon mass is X. The lattice spacing is a. A com- 

mon factor of gs/12ns multiplies all the entries given 

here. 

dependence on the renormalization scale p drops out 

for combination ZVZQ ‘I’Zr”s corresponding to the 

renormalization of the matrix element of the axial 

current in the full theory. Futhermore. the depen- 

dence of the gluon mass is the same for each action 

since the infrared behaviour of perturbation theory 

is identical in all three theories. 

In the final matching it is convenient to choose 

/A = l/a. Using the results in Table 1. the ratio of 

matrix elements between the lattice and continuum 

effective theories is 

< OIJjjB >LAT 

< OIJjIE >EFF 
=1+ k(30.35) (4.3) 

and between the effective and full continuum theories 

is 

< oIJ:iB >EFF 

< OiJ:IB >FVLL 
= 

1+ 
@w 3 P2 

3n [z In(%) + 21. 

Hence, the physical matrix element of the axial cur- 

rent between the B meson and the vacuum is related 

to the bare lattice quantity by 

<olJ:I~ >FULL= z.4 < olJ;IB >LAT (4.5) 

where 2, is given by 

2;‘= [1+ 
a=(p) 3 j2 

s 3r (5 ln(~)+2)1[1+~(30.35)1. 
(4.61 
\ ~I 

Choosing 0 = 6.0 so grat = 1, and cxp at 

,u = 2.0 GeV for &CD = 250 MeV and four active 

quarks; ZEFF/~FULL = AX', ZLATIZEFF = 1.26 

and finally 

z, = .a2 (4.7) 

Three comments on this result are in order: 

(l)The previous numerical disagreement for 

some of the matching constants has been resolved. 

The method of Boucard, Lin and Pene*l now agrees 

with the effective action method presented here 23 . 
(2)The renormalization group improved relation 

between the full and effective theory is given by 

(4.8) 

(ZFULL/ZEFF)~,,=,,[I + 

aS(a-l) - aS(mb) 
( 

kk7J 

4a --$$I 
w; 

where here p is the QCD beta function and 7 is the 

anomalous dimension for the axial current 

(4.9) 

Both the first24, 7,~ = -4 and the second25, rI z 

-42 for Nf = 3, coefficients have now been calcu- 

lated. 

(3)The size of Z4 is very sensitive to the choice 

of coupling constant for the lattice to continuum ef- 

fective theory matching. The value chosen above 

corresponds to the bare lattice coupling. It has been 

argued by Lepage and Mackenzre 26 that a more ap- 

propriate coupling can be defined using the heavy 

quark potential measured on the lattice. With their 

choice, the value of Z, is reduced to c 0.65. Clearly, 

two loop calculations of these corrections would help 

in determining the proper lattice coupling for this 

matching. 



5. LATTICE RESULTS 

The focus of lattice simulations for B physics in 

the last year has been the extraction of a reliable 

signal for the ground state pseudoscalar heavy-light 

meson and the measurement of the value of the as- 

sociated heavy-light meson decay constant. Since in 

the mQ -+ co limit the dynamics is heavy flavor in- 

dependent I will often use the B meson to mean any 

heavy-light meson. I will discuss the comparison of 

these results with the results from the extrapolation 

method at the end of this section. 

All these measurements are made by consider- 

ing the two point correlation between operators with 

appropriate quantum numbers to couple to the B 

meson ground state. The general form is 

C(“)(T) =< op(l)(T)o(a)(o)lo > 

and by assumption as T -+ m 

(5.1) 

C@‘)(T) ---t < OIO(‘)(T)IB >< B[Cl(‘)(0)10 > 

= Z(~,z(a, exp (-ET) (54 

where the mass in the static theory & is defined by 

& = MB - mb (i.e. minus the binding energy) and 

Z(i) is the coupling of the operator Ot’) to the B 

state. 

In the static limit, the good quantum numbers 

are the total angular momentum(J), parity, and total 

angular momentum of the light quark (jr). Different 

values of jr are not degenerate even in the static 

limit. In the usual nonrelativistic terminology, the 

S-wave B mesons ( the pseudoscalar and vector) are 

degenerate, but the P- wave mesons are split. There 

are two degenerate states with (jr,J) = (3/2,2) 
and (3/2,1), and two with (jr,J) = (l/2,1) and 

(l/2,0). The difference between the mass measured 

by this method for the various B meson states and 

that of the pseudoscalar B meson (the true ground 

state) is the excitation energy and is physical. In 

order l/mq. all remaining degeneracies are broken. 

It is to be expected that corrections of order l/n&b 

to the spectrum with a given (jr, J) should be of the 

order of ten percent of the splitting between ground 

and first excited state. A few initial measurements 

of excited states in the B meson system have been 

made27, 28: but much remains to be explored. 

&LL eff 

n 1 
1.0 - 

0.a - 

YJ,-yyJ,~ 
0.6 - 

5 IO 
t 
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Figure 3: The effective mass associated with the 

axial current - axial current correlator measured from 

adjacent time slices. This effective mass is defined 

as &s?(t) = In(CLL(t)/CLL(t+ 1)) and is shown as 

a function of the dimensionless time t. Results were 

obtained from 30 configurations on a 20 x 10’ x 40 

lattice at p = 6.0 and K = .1515 by Boucaud et. 

al 2g . . 

For the ground state pseudoscalar B meson, the 

original measurements of the correlator of Eq. 5.1 

choose the time component of the axial current for 

the operators OfL) = Of’) = O(s) and then 

(5.3) 

At the time of the last lattice conference: (1) 

It was clear from the results of Boucard. Pene, Hill, 

Sachrajda, and Martinelli2g shown in Fig. 3 that 

using the local axial current for both operators in the 

correlator did not allow the extraction of the ground 

state. As can be seen in Fig. 3, the effective mass 

measured from adjacent time slices never reaches a 

plateau. (2) However, there was already preliminary 

oviden& showing that using a smeared operator 

could improve the situation. This year we have seen 

from a number of groups that this is indeed the case. 

The basic idea of smearing is to enhance the 

coupling to the ground state by a suitable choice 

of a spatially non-local operator. This technique 

had already been applied successfully to the ordinary 

hadrons by the APE group30. 



A smeared operator can be used on the source 

side (t = 0) or the sink side (t = 2’) or both. The 

corresponding correlators will be denoted by CsL, 

CL’, and Css respectively, 

For the correlator with two smeared operators, 

there should be a large contribution from the ground 

state with mass & and smeared operator coupling 

2s as well as remaining contributions from excited 

states with mass E’ > & and couplings 2;. There- 

fore, for large times the Css correlator is given by 

CSS(T) -+ (5.4) 

c (q?‘exp(--ET)) + Z,:exp(-ET). 
crdtcd 

Similarly, the correlator of the local axial current 

with one smeared operator should behave like 

P(T) + (5.5) 

c (Z~Z~exp(--E’T)) + Z,Zsexp(-ET). 
encited 

Hence the ratio 

CLS(T)/CSS(T) -+ WI 

ZLlZS[ 
1+ c z;/z,z;/zs exp [-(E’ - E)T] 

1+ C(z:/zs)sexP [-(El - E)Tl I 

will approach Z‘/Zs at sufficiently large time. Thus, 

by measuring these two correlators. the value Z, and 

hence fs can be extracted. 

In the last year, three groups have produced re- 

sults for fn using this method: 

1. 

2. 

3. 

Allton, Sachrajda. Lubicz, Maiani, and 

Martinelli31 have results for p = 6.0 on a 

10s x 20 x 40 lattice. I will denote this group 

RS. 

Alexandrou, Jegerlehner, Gusken, Schilling, and 

Sommer27 have results for p = 6.0 on a3 x 36 

and 123 x 36 lattices, for 0 = 5.74 on a 8s x 24 

lattice, and for p = 5.62 on a 6s x 28 lattice. I 

will denote this group W. 

Barnard, Labrenz, and Soni have results for 

p = 6.0 on a 163 x 40 lattice. I will denote this 

group UCLA. 

I will focus on the data at p = 6.0 for which all three 

groups have results. 

ESS eff 

0 5 10 15 
t 

Figure 4: The effective mass, E$T, for the smeared 

correlator measured using adjacent time slices. The 

lattice parameters are the same as in Fig. 3. Unlike 

the situation for &tf5, a true plateau is seen in this 

data from the RS group31. 

Before turning to the results, a few more de- 

tails about constructing the spatially smeared oper- 

ator discussed above are in order. A number of dif- 

ferent operators ware chosen by the various groups. 

The RS group worked in Coulomb gauge and used 

nonlocal operators of the general form 

US(t) = Q+(Z,t)+l(o’,t) (5.7) 

They constructed smearing operators from the op- 

erator Us by averaging the position of the heavy 

quark relative to the light quark over spatial cubes 

of length 3, 5. and 7 on a side. They also employed 

operators where this procedure was done twice. The 

UCLA group worked in Landau gauge and used op- 

erators smeared over cubes of length 3 and 5 on a 

side. In contrast, the W group smeared in a gauge 

invariant manner. They averaged the relative posi- 

tion of the heavy quark with a weighting function 

with one of two forms: (1) a simple Gaussian and 

(2) an exponential from the spatial propagator of a 

scalar field with adjustable mass. 

All these methods succeeded in producing a dra- 

matic improvement in the ability to extract the ef- 

fective mass of the ground state. The results for the 

RS group with smearing are shown in Fig. 4. 

Various choices for the detailed smearing opera- 
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Figure 5: The time dependence of the effective mass 

for various smeared correlators. Results were ob- 

tained from 100 configurations on a 8s x 24 lat- 

tice at p = 5.7 and IC = .166 by the W group 27 

They used the local axial currant (L) and two types 

of gauge invariant smearings: Exponential (E) and 

Gaussian (G). Here the correlators are denoted as 

follows: open circles (LL), solid circles (LE), open 

squares (LG). solid triangles (EE), and open trian- 

gles (GG). (For details see the original work2’). 

tor do affect the short time behaviour of the correla- 

tor as can be clearly seen in Fig. 5. This is expected 

as different smearing operators will have different 

couplings to the excited states. For the CtS correla- 

tor (with a number of choices for the smearing), the 

effective mass approaches its asymptotic value from 

below. This, at first, surprising result can be seen 

from Eq. 5.5 to happen whenever (Z$Z~/ZLZS) is 

negative. Nonrelativistically, the first excited state 

which can contribute will have a radial wavefunction 

which changes sign; hence, this behaviour would be 

explained if the smearing weight in the region outside 

the node in the wavefunction is sufficiently strong. 

Now consider the results at p = 6.0 for the RS 

and W groups. The comparison of mass values ex- 

tracted at various K values for the light quark is given 

in Table 2. The agreement between the groups is ex- 

cellent. However, the mass measured here 

MB - mb(bare) = MB - mb(renorm) - 6m (5.8) 

Table 2: Results for the mass mu - rnb in lattice 

units for the RS and W groups. The various values 

of n for the light quark mass are indicated with the 

resulting value. 

UCLA .390 f .028 

Table 3: Results for fn from the RS. W. and UCLA 

groups. The results presented here arc all for/3 = 6.0 

and have been scaled to a common value for the 

lattice spacing l/o = 2.0 GeV. No systematic errors 

are shown in this table. 

is unphysical since 6m is linearly divergent20 as 

a + 0. 

For the comparison of fn I have adjusted their 

results so the all are reported for the same value of 

l/a. The RS group used l/u = 2.0, while the W 

group used l/u = 2.3 and the UCLA group used 

l/a = 1.75. I will use l/d = 2.0 GeV and the 

renormalization Z, = .8. The results for fa are 

shown in Table 3. The agreement is excellent and 

the result surprisingly large34. 

The RS and W groups reports the value of fa 

for light quark mass extrapolated to zero: i.e. n = 

nrritiurl; while the UCLA value is for n = ,156. There 

is a slow variation of the decay constant with the 

light quark mass as shown in Fig. 6. 

We are now in a position to compare the static 

method with the extrapolation method discussed 

in the introduction. This comparison is made for 

f~& in Fig. 7. 

In the scaling limit f~fi should be approx- 

imately constant ( up to the logarithmic scale vio- 

lation given in Eq. 4.8). It is clear that the two 
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Figure 6: The dependence of fn fi on n. Results 

from the UCLA group32 at p = 6.0. tcrritti x .157. 

methods have not converged. If the scaling region is 

already setting in at the mass of the D meson mass, 

then there is a significant systematic difference be- 

tween the two methods. 

The systematic effects which could account for 

all or part of the disagreement between the static 

and extrapolation methods of determining fu are: 

l Important finite size effects (FSE) or finite a 

scale violation effects. The W group27 have 

found that there is no significant volume de- 

pendence changing the spatial extent from 0.7 
to 1.05 fm. Also, the W group27 only found 

15% scale violation from p = 5.7 to 6.0. Goity 

has analyzed the FSE in the continuum for large 

volumes.3a 

. Large moo corrections particularly for the ex- 

trapolation method. Both the UCLA group 32 

and the RS group31 have presented preliminary 

data at larger p. At present, the situation re- 

mains uncertain. An improved action for Wil- 

son fermions has been developed3’ which will 

help in understanding the first order mod cor- 

rections. 

. Large perturbative correction ZA for fa in the 

static effective theory. 

a Large l/mq corrections to the mq -t oo limit. 
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Figure 7: Comparison of values for the scaling form 

for the mason decay constant, f&&, from ex- 

trapolation and static methods. Results for a Wilson 

heavy quarks are denoted as follows: C. Bernard et. 

al.33 solid circles; T. A. DcGrand et.a1.35 open cir- 

cles: and M. B. Gavels et. al.36 crosses: C. R. Allton 

et. al. 37 open triangles. Results extent up to pseu- 

doscalar meson masses, Ma of = 3 GeV. Results 

for a static heavy quark are denoted as follows: RS 

group31 solid triangle; W groupz7 open circle; and 

UCLA group32 solid circle. The static results shown 

at Ma = MB are valid in the limit of an infinitely 

massive heavy quark. The scaling behaviour for the 

static case (Eq. 4.8) leads to a variation with Mn 

depicted by the dotted line. 

One general consistency test, suggested by the 

differences seen here, is to measure wavefunction of 

the B meson. Since the difference between the two 

methods remains large even for a relatively heavy 

light quark, one might use the relation between the 

decay constant and the wavefunction at the origin 

fBJmB = JIzl$(O)l 

to extract a value of fn. 

(5.9) 

Preliminary studies of this method were reported 

at this conference28, 32. Labrenz32 reports that in- 

deed the wavefunction of a heavy-light meson is more 

compact than that of a light hadron, and that the 

value of fn measured from this method is roughly 

consistent with the large value reported using the 

static effective action. The small size of the B me- 



son is consistent with the lack of volume dependence 

of the results for fn found by the W group 27. It 

would also help explain the intermediate time be- 

haviour of the various CLs corrclators and this may 

aid in finding a batter smearing operator for the B 

meson. Clearly much remains to be understood, but 

this approach looks promising. 

We must eventually compute the l/ma correc- 

tions to the static limit. To date the only progress 

has been in the continuum effective theory. In par- 

ticular the one loop matching has been done for all 

the operators which contribute to the l/mq correc- 
tions to fn4’. The matching between the lattice 

and continuum effective theories has not been done 

yet and none of the l/mq corrections has yet been 

measured on the lattice. 

6. SUMMARY AND OUTLOOK 

There have been major theoretical developments 

in B physics in the last few years: 

a Effective actions for QCD in the mq --t m limit 

have been developed. Three forms which are 

particular useful are the static, nonrelativistic. 

and fixed velocity affective actions. 

. Applications of the symmetries in the mq + 00 

limit have lead many useful relations for B and 

0 physics. 

s For these effective actions, perturbative match- 

ing and renormalization has been done, to one 

loop, for a number of physical quantities. 

a The l/mq corrections to the heavy quark limit 

have come under intense study. In particu- 

lar, the perturbative renormalizations for all the 

l/mq contributions to fn have been done for 

the continuum static and fixed velocity actions. 

Furthermore significant progress has been made 

through lattice simulations in the last year. The fo- 

cus of much of the effort has been on the extraction 

of fn. The status is as follows: 

a By employing smearing techniques. numerically 

reliable estimates of fs have been obtained by 

a number of groups in the static affective theory 

approach. 

a At present there is a sizable gap between the 

value of fa obtained by the static quark and 

extrapolation approach. 

The coming year should bring a number of improve- 

ments in this situation for fn: 

One expects the first lattice measurements of 

the l/mq corrections. 

More study of the wavefunction and other de- 

tailed properties of heavy-light mesons should 

aid in understanding the origin of the disagree- 

ment between these two methods. 

For the extrapolation method, studies at larger 

,0 should allow a clear determination as to 

whether the large mass scaling limit has actually 

set in by the mass of the D meson. 

Of course there is a rich and varied set of other ap- 

plications of heavy-light methods to the B mason 

system. We have only begun the study of B physics 

on the lattice. 
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