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Abstract 

We discuss dynamical symmetry breaking with an emphasis on the renor- 

malization group as the key tool to obtaining reliable predictions. In par- 

ticular we disctiss the mechanism for breaking the electroweak interactions 

which relies upon the formation of condensates involving the conventional 

quarks and leptons. Such a scheme indicates that the top quark is heavy, 

greater than or of order 200 GeV, and gives further predictions for the 

Higgs boson mass. We also briefly describe recent attempts to incorporate 

a 4th generation in a more natural scheme. 
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1. Role of the Renormalization Group in DSB 

Recently there has been considerable interest in dynamical symmetry breaking of 

the electroweak interactions in which a top quark condensate plays the role of the 

order parameter [l-4]. The simplest models discussed thus far are generalizations 

of the Nambu-Jona-Lasinio model, though some effort has commenced to address 

naturalness issues, and attempts have been made to place the “new dynamics” at the 

accessible w TeV scale, as briefly described here. 

We wish, however, to emphasize the application of the renormalization group to 

this scheme [4, 51. The renormalization group can be used as a dynamical tool to 

include all of the effects of the juU theory and generate reliable, precise predictions of 

its consequences. This goes beyond the limited approaches of large-l\r bubble sums, 

or planar QCD calculations. Moreover, the results of these “brute force” analyses 

can be easily reproduced by including only those terms in the renormalization group 

equations that correspond to effects included in the “brute force” calculations. The 

important element which makes the renormalization group applicable is the fact that 

the compositeness of certain dynamically generated multiplets, e.g., the Higgs multiplet 

in the minimal CCZLX, implies UV boundary conditions on the renormalization group 

equations of the eflective field theory [4]. 

In Section 2 and 3 we will compare three levels of sequentially improved approxi- 

mation in the context of the renormalization group (RG). These are: (i) the fermion 

bubble approximation; (ii) ladder QCD (internal gluon lines); (iii) the full RG equa- 

tion including the effects of the propagating dynamical Higgs boson. The first two 

cases are presented essentially for illustration of the technique, while the last case 

represents the correct leading log (one loop RG) results. We will further explore the 

universality of the results and sensitivity to the boundary conditions in the presence 

of “irrelevant operators.” The full RG results are found to be robust in the presence of 

these effects. Moreover the renormalization group predictions are more general than 
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any particular choice of the high energy Lagrangian, and can represent generally the 

physics of compositeness in relativistic field theory. 

More generally, the renormalization group will be a relevant tool in any dynami- 

cal symmetry breaking scheme when (i) there exists a linear realization of the sym- 

metry group in the effective Lagrangian over a large range of intermediate scales 

A X p 2 (GF)-I”, and (ii) where A, the scale of the new physics, is very much larger 

than the electroweak scale (GF)-r/r. Th e presence or absence of a linear composite 

representation of the broken symmetry is a general feature that distinguishes between 

various schemes of dynamical symmetry breaking. For example, in technicolor theo- 

ries which attempt to solve all naturalness problems the symmetry is only nonlinearly 

realized; there is no Higgs boson per se (the O+ boundstate lies too near to A). In 

such a scheme the low energy physics is less controlled by the renormalization group 

than by decoupling theorems. Alternatively, in the Nambu-Jona-Lasinio model (by 

which we generally mean the conventional fermion bubble large-N, limit analysis of a 

Lagrangian such as eq.( 1) below) a composite Higgs boson does exist. We emphasize 

that even though A may be close to Gil’*, as in the case of a fourth generation gen- 

eralization of the Et idea, the renormalization group is still a useful tool in analyzing 

the model. 

When A >> (GF)-‘/~ it is of central importance to understand the structure of 

physics in the intermediate range of scales, to which we shall refer as a “desert.” The 

effective Lagrangian L will be, in part, controlled by the compositeness conditions 

which require that it merge onto the new dynamics at A. However, as we scan over the 

scales in the desert the structure of L will be determined by the exact field-theoretic 

renormalization group. Indeed, it must be true that the compositeness conditions 

are expressible as boundary conditions upon & at the scale A. This description is 

inescapable, and is highly restrictive. The full dynamics of the theory as contained 

in L must be operant in any precise loop calculation. 
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The existence of the desert corresponds to our insistence of lying on (or very near 

to) the critical line of the theory. This is equivalent to the fine-tuning of quadratic 

divergences in the gap equation leading to A >> Gil’*. It is, therefore, not surprising 

that i&a-red renormalization group quasi-fixed points correspond to the low energy 

solution of the theory. By “quasi-fixed points” we mean that, if it were not for some 

explicit breaking of scale invariance in the far i&a-red, these would be exact RG fixed 

points. Indeed, the prediction for mtop is an exact fixed point in the limit in which 

the QCD coupling constant gs does not run (i.e., setting the QCD-p(g) function to 

zero). The precise prediction of mtop is sensitive, however, to any new physics which 

acts over the desert through the RG equations. Thus, if we ultimately find a value of 

mtop < 200 GeV, we should still look for theories that give new interactions in the RG 

equations capable of predicting this value. It is not obvious that such models exist (in 

a recent paper T.K. Kuo, U. Mahanta, and G. T. Park [6] considered an imbedding 

of SU(2) x U(1) into SP(G)L x U(1) and find the minimal prediction, mt - 230 GeV, 

to be fairly resilient). The issue of “naturalness” will be addressed in section (4). 

2. Conventional Analysis of NJL from the Perspective of the Renormal- 

ization Group 

2.1 Fermion Bubble Approximation 

If we consider, for discussion, the approximation in which all quarks and leptons 

other than the top quark are massless we may then define a theory at the scale A to 

be: 

L = Linetic + G(@?iso)(&*m) (1) 

Here ‘Z’L = (t,b)L and i runs over Sum indices, (a, b) run over color indices. Lkincric 

contains the usual gauge invariant fermion and gauge boson kinetic terms. 

Alternatively, we may introduce a non-dynamical auxiliary field to rewrite eq.( 1) 
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equivalently as: 

L = L~;netjs + &‘tR.Hi + /L.C.) - M,2H+H (2) 

where we identify 

G = l/M; (3) 

Note that eq.(2) must be viewed as an effective Lagrangian at the scale A. By 

%ffective Lagrangian at a scale ,u” we mean that all the dynamics above the scale ,u 

has been integrated out, but all dynamics below p must be computed. 

The structure of eq.(2) will change significantly, due to radiative corrections, when 

we consider the effective Lagrangian at any other scale, ~1 < A. The technique for 

descending from A to p is known as the “block-spin renormalization group,” [g] 

and consists in the present case of integrating out all loops with internal momenta 

A 1 I 2 p. We will see that eq.(2) d fi e nes the renormalization group boundary 

conditions for the full solution to the theory of es.(l). The auxiliary field introduced 

at the scale A will become the propagating physical Higgs field at low energies p << A. 

Let us summarize the results of a full block spin renormalization group transfor- 

mation performed on eq.(2) to generate the effective Lagrangian at a scale /J [4]. We 

must include the induced gauge invariant kinetic terms of the Higgs doublet, with 

a wave-function normalization constant, 2 H, and the induced quartic interaction 

coming from top quark loops. We obtain: 

L = Lkinctis + (GLtRH + h.C*) 

tZHID,Hl* - M;H+H - ;(H+H)’ + . . . 

where the result of the calculation of the parameters is [4]: 

(4) 

ZH = &ln (AZ/p’) (5) 
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xo = $$ In (A”/$) (‘3) 

We note that the mass Mi has a quadratic divergence leading to running as in: 

M; = M,’ - 2 (A” - $) + o(m;/& 

The evolution of the mass term is ultimately dictated by our choice of a symmetry 

breaking phase at very low energies, which is equivalent to the fine-tuning of the so- 

lution of the gap equation. This fine tuning is equivalent to demanding a cancellation 

between the large terms, MO’ and N,A’/8 x2 in eq.(7). However, in what follows we 

will simply assume that the theory has a broken phase at low energies; the logarithmic 

RG evolution will suffice to obtain the predictions. 

Eq.(4) completely summarizes the set of relevant operators that are present on 

all scales p << A. We thus see from eq.(5) and (6) the following compositeness 

conditions hold as ti -+ A: 

Compositeness Conditions: 

Notice also that Mi -+ MiI,,+*, and in the NJL model we see that X,/Z, + 2. 

These conditions reflect the consistency between the effective Lagrangian and eq.(2) 

at the scale A. Note that all of the results of eq.(5-7) can be inferred from the “brute 

force” bubble summation [4]. The only subtlety here is that the Lagrangian of eq.(4) 

is not written in the conventional normalization form. Let us now reexpress things in 

a more conventional formalism. 
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Conventionally one normalizes the kinetic terms of a field theory at any scale, p, 

with a condition that they have free-field theory normalization. Indeed, this is an 

intermediate step in the block-spin RG transformation as described by Kogut and 

Wilson [8]. In the previous discussion we chose not to insist upon this because of the 

singular behavior of ZH as in eq.(8). However, we can transfer this singularity to a 

condition on coupling constants in the conventional normalization. That is, we may 

exercise our freedom of resealing the various fields, H, q~, tR, etc., to define the coef- 

ficient of IDD,H12 to be unity. In the present case H + H/G. The conventionally 

normalized Lagrangian becomes: 

L = himtic + (gtf'&H t h.c.) 

tlD,H\a - m$H+H - ;(H+H)’ + . . . 

where the physical coupling constants, ms, gt, and X, are given by: 

m:, = M&/ZH; A=& 
Z:, 

(10) 

It is clear from eqs.(ll) that as p -+ A then gr and X diverge, while g:/X -+ constant. 

Hence, in conventional normalization we have: 

Compositeness Conditions (conventional normalization): 

St(P) + 4M-A (12) 

A -+ oolp4 (13) 

We now will show that all of the usual large-N, results are easily recovered directly 

from the conventional, differential renormalization group equations, supplemented 

with the compositeness conditions of eqs.(l2, 13). To obtain the renormalization 
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group description of the NJL model we may utilize the partial p-functions which 

reflect only the presence of fermion loops: 

167’ 2 = N,gt3 

Solving eq.( 14) gives: 

16a* $ = (--4N,g; t 4Ncg;X) (15) 

1 
- = 
9:(P) 

& l=(A2/d (16) 

where we use the boundary condition, l/g:(A) = 0. Eq.(15) may then be solved by 

hypothesizing an anzatz of the form X = cg t. Substituting into eq.( 15) one finds: 

167r* $ = &(4c - 4)N,gts (17) 

and demand that this must be consistent with eq.(14). Thus one finds: c = 2 and: 

1 
- = &ln(A’/p*) 
G) 

Note that the solutions eqs.(16,18) are equivalent to those of eq.(5,6) with the iden- 

tifications of eq.(ll). 

Now, to obtain the usual phenomenological results of the NJL model we examine 

the low energy Higgs potential: 

V(H) = -m&H+H + ;(H+H)’ (19) 

as contained in eq.(lO). Let H” = ‘u + &J/A. Here the value of v can be derived 

by tracking the evolution of Mi. But we can obtain the usual results directly from 

the RG equation solutions, simply assuming that v has been fine-tuned to a physical 

value of V’ = 1/2&G* = (175 GeV)a. 
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Therefore we use the implied results for the top mass from eq.(lO): 

mt = !?tv; (20) 

and the r$ mass implied from eq.(19): 

m; = 273X (21) 

and so: 

n+n~ = 2x/g: = 4 (22) 

where in eq.(22) we use the explicit solutions eq.(16) and eq.( 18). This is the familar 

NJL result, m+ = 2mt. Moreover, we have: 

NC I? = m:/g; = m:= l=(A’ld) = 2iGF 

which is equivalent to the prediction obtained from a direct fermion bubble approxi- 

mation computation of the decay constant [4]. For example, with A = 10’s GeV one 

finds mt z 165 GeV. The results of fermion bubble approximation are given in Table 

I. We have seen that the RG directly and simply reproduces the result of a ‘&brute 

force” summation of fermion bubbles. 

2.3 Ladder &CD 

We can now take a step closer to the full theory by including the effects of gluons 

in the RG equations. Indeed, King and Mannan, and independently Mahanta and 

Barrios [9] consider the “brute force” solutions to the Schwinger-Dyson equations 

with the four-fermion interaction in ladder approximation to QCD. Mahanta and 

Barrios also show that the results are equivalent to those obtained by using the 

renormalization group with the inclusion of terms representing the gluon effects. This 

analysis illustrates again the power of the renormalization group in reproducing the 
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results of this approximation. However, we do not accept the statements of these 

authors that this represents an improvement over thefiZZRG solution obtained in [4,5] 

and in Section (3), since obviously the ladder QCD calculations omit the propagating 

Higgs boson, as well as electroweak effects which are included in the full RG equations 

below. 

We now have, including only the effects of fermion loops and gluons in loops: 

167r’ g = N.g,s - (N,’ - l)g;gl 

167r’ 2 = -(ll - 2nf/3)g,3; 

16~’ $ = (-4N,gj + 4N,g;X) (26) 

Notice the additional QCD term in eq.(24) in comparison to eq.(14). The equation 

for A is unchanged at this one-loop (leading log) order. Again, the UV boundary 

conditions on the theory are as in eq.(12,13). It is most convenient to obtain these 

results numerically, and they are indicated in Table I for various values of A. We first 

see the appearance of the nontrivial RG infrared fixed point for gr at this stage [5]. 

3. Fully Improved Renormalization Group Solution 

To obtain the full renormalization group improvement over the Nambu-Jona- 

Lasinio model we may utilize the boundary conditions on gt and X and the full p- 

functions (neglecting light quark masses and mixings) of the Standard Model. To 

one-loop order we have: 

167r’ $f = (N, f $91’ - (Nj - 1)gs’ - igz2 - Em3 gt 
> (27) 
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and, for the gauge couplings: 

16~~ !$ = -c; gi3 

with 

cl=---20N. 1 c2=--!N. 43 CQ = 11 - 6 9 g’ 6 3 g’ !N 3 g (29) 

where Ng is the number of generations and t = lnp. The principle difference in 

eq.(27) relative to eq.(24) ’ (‘) . 1 1s 1 mc usion of the propagating dynamically generated 

Higgs boson in loops (the additional 3/2 in the coefficient of gf) and (ii) the inclusion 

of electroweak effects. 

The precise value of the top quark mass is determined by running g*(p) from 

very high values at a given compositeness scale A down to the mass-shell condition 

gt(mt)v = mt. We will not discuss possible low energy corrections associated with the 

extrapolation of the symmetric three-point function to a zero-momentum Higgs line. 

The nonlinearity of eq.(27) focuses a wide range of initial values into a small range of 

final low energy results [5]. The solution for m qv,,rk = gt(@)z) is shown in Fig.(l) for 

A = 1Ol5 GeV case (A) and A = 1Ol9 GeV (case B) respectively. 

Th ” e quasi” or moving fixed point would be an exact fixed point if gs were con- 

stant. Thus, this is a reflection of approximate scale invariance of the theory as we 

tune the gap equation to produce mt << A. The scale invariance is explicitly broken 

by AQCD. The uncertainties of higher orders can be viewed as an uncertainty in the 

precise position of the UV cut-off, A, and the fixed point behavior implies that ml 

is determined up to O(lnlnA/mt) sensitivity to A. In Table I we give the resulting 

physical mtop obtained by a numerical solution of the renormalization group equations 

as a function of A. Note the sensitivity to A is reduced when the nontrivial IR fixed 

point is present. 

The Higgs boson mass will likewise be determined by the evolution of X now given 
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by: 

167ra; = 12(X’ t (gt’ - A)X + B - gt4) (30) 

where: 

A = ag12 + ig22; 
1 1 3 

B = p4 + p2g2 t Ega4 (31) 

There are now significant modifications in eq.(30) relative to eq.(26) due to the in- 

clusion of Higgs propagation (the first term on the rhs) and electroweak interactions. 

The joint evolution of gt and X to the RG fixed point is shown in Fig.(2), and mn is 

given in Table I including the full RG effects. 

3.8 Sensitivity to Irrelevant Operators 

The action of the effective fixed-point appears to make the top quark mass pre- 

diction insensitive to the precise initial high values of the coupling constant close to 

A due to the aforementioned focusing [5]. Indeed, there will be potential real physical 

effects here which modify the boundary conditions somewhat, and may be viewed 

as due to irrelevant or higher dimension operators. How sensitive are we to such 

model-dependent effects? 

In an interesting analysis Suzuki has included the effects of some operators which 

involve higher derivatives. We will show that these “Suzuki effects” are in fact rather 

small for a reasonable range of the coefficients of these new operators. The present 

analysis is due to W. Bardeen. 

We take our starting point Lagrangian, es.(l), to be modified as 

L = LkinetictG (‘%tRa t $(D,%~)(D%.)) (td,mLib + $(DllQ(D~qibL)) (32) 

hence eq.(2) is similarly modified: 

L = Lki?& + ((%?&, + -$(D,$F)(D%.))& + h.c.) - M;H’H (33) 
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Now, we perform the block-spin RG transformation as in section 2.1. we obtain 

the low energy effective Lagrangian in analogy with eq.(4): 

L = L&& + ((@p&Hi + /L.c.) 

+.ZHID,,HI’ - h4;H’H - ;(H+H)’ + 0(1/A’)... 

where now the parameters transform as: 

Zrf = 2 (ln(A/p) - x+x2/8) 

ln(h/p) - 2x + ix’ - ix3 + ix4 
> 

and Mz has additive terms which we will fine-tune as above. 

(36) 

To obtain the low energy predictions we see that for large x we cannot use the 

usual renormalization group equations up to scale ~1 - A. Thus, in this regime we are 

forced to adopt the exact results in large-N. However, once the logarithm becomes 

large the usual RG equations become exact. 

The following procedure has been adopted to explore the sensitivity to x: (i) 

from p = A to p = p* = A/5 we use eq.(35) and eq.(36) directly to evolve ZH and 

X0; (ii) from /J = p* to p = mt we use the RG equations. The sensitivity of the 

low energy predictions is shown in Figs.(3,4) for the three cases: (1) fermion bubble 

approximation; (2) ladder &CD; and (3) full Standard Model. The most sensitive case 

is that of fermion loop approximation since we see that there is no real nontrivial fixed 

point to the RG equations of eq.(14). F or a wide range of x the planar QCD and full 

Standard Model predictions are very insensitive owing to the nontrivial fixed point 

for large gt which is rapidly approached. 

We note that taking x larger than unity is unphysical, since then the higher 

dimension operators dominate the lower dimension ones at scales p < A. This implies 



-13- FERMILAB-Conf-90/170-T 

generally a unitarity breakdown, and a full unit&z&ion of the theory would modify 

the assumed Lagrangian at A from that displayed in eq.(2). 

4. Naturalness 

One might object to this scheme on the basis of naturalness and the fine-tuning 

that is implicit in demanding a solution in the limit mt << A. Of course, all known 

physical quantum field theories have a naturalness problem in association with the 

cosmological constant, and whatever mechanism controls this problem commutes with 

many successful predictions. In fact, in a specific proposal to remedy the cosmological 

constant, i.e., Coleman’s “wormhole c&ulus,” scalazs become light and the RG fixed 

points for fermion masses are favored [lo]! H owever, we should investigate whether 

there exist natural generalizations of the above mechanism and what kinds of natural 

theories might exist. 

(i) Supersymmetric Extension 

A supersymmetric extension of the model described above has been studied by 

Clark, Love and Bardeen [ll]. One imagines an effective supersymmetric four-fermion 

interaction to exist on scales p << A and supersymmetry is broken softly on a scale 

A. Here the quadratic divergence of the gap equation is essentially replaced by the 

SUSY soft-breaking scale A. Thus, if A 5 mt and G N l/A’ there is no large 

hierarchy. One generates a low energy effective Lagrangian which now contains the 

two Higgs bosons as demanded by supersymmetry and chirality. One of these (the 

one associated with top) is now composite with analogous compositeness conditions 

as above. The renormalization group improvement is thus similar to the preceding 

case the net result for A N 100 GeV, A N 1Ol9 GeV is mt x 200 GeV. 

There is, however, a potential problem with schemes like this. In particular, 

solutions to the gap equation require G N l/A* while the four-fermion effective 
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Lagrangian is viewed as valid up to scales p 5 A. This implies that G is extremely 

large on scales p >> A and thus there may be unitarity violations on scales large 

compared to A but small compared to A. While the fermion bubble sum implies that 

a partial unitarization has been performed in some channels, there could presumably 

be large violations in more complicated processes. 

(ii) A Fourth Generation Scenario 

Perhaps the simplest solution to the naturalness problem is to consider theories 

in which A N 1 to 100 TeV. Then the top can probably no longer be upheld as 

the condensate since we see that mt becomes N 500 GeV and unacceptably large. 

However, a fourth generation is then workable. We emphasize that such has not been 

ruled out by neutrino counting at LEP and in fact, it is very reasonable in such a 

scheme to consider the see-saw mechanism to be operant at the electroweak scale. In 

this case a remarkable thing happens: light neutrinos go down to their experimental 

limits while heavy neutrinos go up to the electroweak scale [12]! Thus, we will consider 

a dynamical generation of the neutrino Majorana mass scale in the following. In fact, 

this is just a pure, ungauged BCS theory. 

Consider a Lagrangian for right-handed neutrinos in isolation: 

L = &+vR + G(&p;R)(~j.Rv;R) (37) 

where ’ refers to charge conjugation, (i,j) are summed from 1 to N. In analogy to 

eq.(2) we introduce an auxiliary field so that: 

L = i&gun - Mi@‘@ + (D&R@ + h.c.) (38) 

becomes the equivalent effective Lagrangian at the scale A. Note that this possesses 

an SO(N) x U(1) symmetry. As we descend to the scale p by block-spin RG the 
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effective Lagrangian in conventional notation takes the form: 

L = ~$‘vR + la@I” - M%+@ - +(@+@)’ + (/c~&v;~+ + h.c.) (39) 

Now the RG equations are found to be [12]: 

167r’$ = 2Nn3 + 4~~ 

167+ = 8Nn’X - 32Nn’ + 8A’ (41) 

Note that, upon using the low energy effective Lagrangian and demanding that * 

develop a VEV z) so that + = (v + 4/d) exp(ix/&), we see that x is a massless 

Nambu-Goldstone mode and the residual Higgs-Majoron, 4, will have a mass m$ = 

2v*X. The neutrinos will have Majorana masses of mu = 21cnv 

Consider the solution to eqs.(40,41) in the large-N limit. We find: 

1 - - &) = (~~210g(A’l~2); - = 
WP) 

& lodA2/d; (42) 

where we use the compositeness conditions. Hence, again we obtain rnb = 2m~.r, so 

the usual Nambu-Jona-Lasinio result holds in the Majorana or BCS case as well. 

Incorporating this into a realistic theory involves more analysis. In general we 

will have additional quartic couplings of the dynamically generated Higgs boson and 

a term of the form IH211CIZ. The full RG equations are now nonlinear and fully 

coupled and one must treat them numerically. This analysis is in progress by Hill, 

Paschos and Luty [12]. 

Such a theory is a novelty in terms of its dynamics, being a “Strong Broken Hor- 

izontal Gauge Symmetry.” We have experience with the weak broken symmetries of 

the standard model and the strong confining gauge force of QCD, but it is unusual 

(albeit perfectly reasonable) to ponder a force that is, itself, broken yet sufficiently 
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strong to drive the formation of chiral condensates. In fact, this work [12] suggests 

that there may be some dynamical possibilities for engineering a natural family hi- 

erarchy by “tumbling.” Thus a fourth generation with A - TeV is an intriguing 

possibility and we expect mquorh, N 500 GeV. The details are under investigation 

[12]. We further note that nonminimal schemes can lead to multiple Higgs doublets 

in low energy effective theory, as analyzed by M. Suzuki and M. Luty [13]. 
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Table I. Predicted mtop in three levels of increasingly better approximation as de- 

scribed in the text. “Fermion Bubble” refers only to the inclusion of fermion loops, 

equivalent to the conventional Nambu-Jona-Lasinio analysis, in which caSe rn~ = 

2mt. “Planar QCD” includes additional effects of internal gluon lines. All effects, 

including internal Higgs lines and electroweak corrections, are incorporated in the 

“Full RG” lines, and we include the WZH results. Notice that the fd renormalization 

effects cause mu # 277~~. Results (“) are from Mahanta and Barrios, ref.[9] and (*) 

are from ref.[4]. 
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Fig.( 1) Full RG trajectories as a function of scale p. (A) A = 1Ol6 GeV; 
(B) A = lo’@ GeV. The composite trajectories diverge at the corresponding 
value of A. The predicted mpuork is controlled by the quasi-infrared fixed 
point and is very insensitive to A. 
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Fig.(2) Foil RG trajectories showing joint evolution of g( and X for various 
initial values. Compositeness corresponds to large initial gt and X, and these 
are attracted toward the nontrivial IR fixed point (solid circle). 
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Fig.(3) Sensitivity of predicted mtDp (solid lines) and m~is#, (dashed lines) to d = 6 

operator coefficient x. 


