
0 Fermi National Accelerator Laboratory 

Use of UNIX in Large Online Processor Farms* 

Joseph R. Biel 
Fermi National Accelerator Laboratory 

P.O. Box 500 
Bat&n, Illinois 60510 

April 1990 

* Presented at the 1990 Conference on Computing in High Energy Physics, Santa Fe, New Mexico, 
April 9-13, 1990. 

Operated by Unlverrities Research Arsocialion Inc. under contract with the United States Departmen of Energy 



USE OF UNIX IN LARGE ONLINE PROCESSOR FARMS 

Joseph R. Biel 
Fermilab, Batavia, Illinois 60510 

ABSTRACT 

There has been a recent rapid increase in the power of RISC 
computers running the UNIX operating system. Fermilab has begun to 
make use of these computers in the next generation of offline computer 
farms. It is also planning to use such computers in online computer 
farms. Issues involved in constructing online UNIX farms are discussed. 

INTRODUCTION 

There is an increasing trend in high energy physics experiments in 
the direction of using online farms of general purpose computers. 
“General purpose” as it is used here refers to a computer that can be 
programmed in a high level language (i.e. FORTRAN) with essentially 
the same ease as an offline analysis computer. These online farms are 
used as a final filtering step to reduce the rate at which data is written to 
tape. The purpose of this paper is to discuss some of the issues involved 
in running the UNIX operating system in these general purpose 
computers. I will first discuss some reasons for using general purpose 
computers in online farms. Next I will give the reasons for running 
UNIX on such farms. Finally, I will discuss some recent work performed 
at Fermilab that relates to online UNIX farms. 

ONLINE FARMS OF GENERAL PURPOSE COMPUTERS 

The main argument for using general purpose computers online is 
the ease of use they offer in the preparation of the online program. A 
general purpose computer allows the use of a well known high level 
language, such as FORTRAN, for writing the online algorithms. This 
makes it possible for online algorithms to be discussed with the entire 
experimental collaboration in terms of FORTRAN code instead of some 
arcane language, such as microcode. Online farms are usually targeted to 
be used as a final filtering step. In this situation, the filtering program 
running in each online computer has access to the entire set of data for 
each event. Because the entire event data is available, the online filtering 
program operates with essentially the same information that the offline 
analysis program has. If the online computers are general purpose 
computers, the program they run can be written in a manner similar to 
that used to write the offline program. The division between what is 



2 

done online verses what is done offline can be made very flexible. An 
experiment can start its run with little or no event filtering being done 
online. After filtering algorithms have been fully tested offline, the 
filtering code can then be moved online. As offline filtering techniques 
are improved, an improved form of online filtering can be performed. 
The transfer of code between an offline computer and an online farm is 
especially easy if the online farms have been built using the same 
processor chip that is used in the offline analysis computers. This is not a 
requirement, but it should increase the confidence that any online 
filtering is executing the same algorithm that has been tested offline. 

UNIX ONLINE FARMS 

In the above discussion, I have defined a general purpose 
computer in part as one that can be programmed “with essentially the 
same ease as an offline analysis computer”. A significant contribution to 
the ease of programming a computer is due to the operating system 
environment that the computer provides. In order to meet the goal of an 
online farm of fully general purpose computers, a full operating system 
should be provided. In particular, the programs should have the usual 
FORTRAN access to disk files and terminal input/output. This allows 
program development to be done for an online farm the same way it is 
done for an offline computer. Initialization data files can be read from 
ordinary disk files using FORTRAN OPEN and READ statements. 
Programs can be debugged on the actual farm hardware by running a 
normal terminal session with a symbolic debugger. Virtual memory 
paging should be supported so that an occaisional need for a large 
amount of memory does not hit a restrictive physical memory limit. If a 
program crashes, the operating system can make its usual crash dump 
file. The crash dump file can then be examined later with a crash dump 
analysis program. The farm hardware and software should allow 
peripheral connections to be made over a network. Serial connections 
can be established with a network utility such as Telnet, and disk 
connections can be established with network mechanisms such as NFS 
and ftp. For processors that share the same high speed bus (e.g. VME) the 
network connection can be made directly over that bus. For processors 
that do not share such a bus, a network connection can be established 
over Ethernet. 

There are some potential disadvantages to running a full operating 
system on the online processors. First, the processor modules will be 
somewhat more expensive because they may need more hardware 
features to run the operating system. These features range from the 
simple (i.e. perhaps an onboard time-of-day clock chip) to the complex 
(e.g. a disk controller and Ethernet controller). Second, more memory 
will be needed to hold the operating system. Third, the booting of the 



3 

farm is likely to be more complex with a full operating system. Fourth, 
the operating system itself must be “ported” to the processor board. This 
includes getting the appropriate license for the operating system. 

FERMILAB UNIX WORK 

Recently the Fermilab Computer Research and Development 
Department (formerly the ACP group) has done some work that 
demonstrates how hard it would be to construct an online farm of RISC 
computers running UNIX. Most of the work reported below has been 
done by Computer R&D Department members Mark Fischler and Mike 
Isely. The work was done in the process of developing support software 
for a VME computer module that was being developed by the 
department. This module, called the ACP/R3000, is based on the MIPS 
Computer Systems R3000 RISC microprocessor. The work done falls into 
four categories. First, UNIX was ported to the ACP/R3000. Second, 
interprocessor communication mechanisms were implemented. Third, a 
special version of UNIX, called “diskless UNIX”, was prepared that allows 
construction of farms of mostly “diskless” ACP/R3000 modules. Fourth, 
some tools were developed to support online use of UNIX on the 
ACP/R3000. 

UNIX Port: The first step was to port UNIX to the module. This 
was greatly aided by the fact that a version of UNIX for the R3000 
microprocessor had already been developed by MIPS. A source license for 
that version of UNIX was purchased and the necessary changes made to 
it. The changes involved were primarily due to the different VME access 
mechanism used by the ACP/R3000. Changes were made to 
approximately 40 of the approximately 1000 source files that make up 
UNIX. This took about six months time for two (very good) people to 
complete. This included the time for them to learn about UNIX, both 
from reading ‘books about the subject and from studying the UNIX source 
files. 

Interurocessor Communication; The next step was to implement 
an interprocessor communication mechanism. This was needed to 
provide network connections with the processor and as a preliminary 
step toward the implementation of “diskless” UNIX described below. 
Interprocessor communication (Figure 1) was implemented first by 
constructing a device driver that could transfer a block of data to or from 
a range of VME addresses. Because the memory of each ACP/R3000 is 
accessible over VME, this device driver allows one processor to read or 
write the memory of another processor. This device driver was then 
used to allow “IP” packets (i.e. the lower level part of the TCP/IP protocol) 
to be transfered between processors. The result was an implementation 
of standard network mechanisms over the VME bus between ACP/R3000 



4 

modules. Thus, for example, NFS disk references could then be made 
between processors over VME. 

Diskless UNI% The next step was to allow farms of mostly 
“diskless” processors to be constructed. The idea here was to allow an 
entire crate of ACP/R3000 modules to boot UNIX from a single disk. 
Ordinarily, each VME processor module running UNIX would boot from 

Disk file Telnet 
‘tp read/write F 

Interprocessor 
memory-to-memory 

transfer 

Internet ------- ------- 7 I 
I 
I 
I 
I I 
I 

-I 
Disk Ethernet VME 

device device device 
driver driver driver 

Figure 1. Interprocessor communication paths 

its own disk. This would require as many disks as there are processor 
modules. This is not only expensive but also mostly unnecessary. In a 
typical use of an online farm, each processor will, in the steady state, run 
a memory resident program with no need to use a disk file for virtual 



5 

memory paging or reading disk files. Access to a disk is needed only for 
booting UNIX and starting up the online application program. This 
means that the disk I/O bandwith needs of each processor are small. It is, 
therefore, acceptable to have a single disk shared between many 
processors. At Fermilab, we have achieved this by producing a “diskless” 
version of UNIX. 

This diskless version of UNIX works in the following way. One 
processor in each VME crate boots UNIX by using a VME disk controller 
module to read UNIX from a disk. This processor, called the “boot 
server” (Figure 2) also connects with a VME Ethernet controller module 
when it boots so it has access to all other computers on Ethernet. The 
boot server then writes a copy of the UNIX kernel into the memory of 
each of the other processors in the VME crate (which are called “diskless 
processors”). The boot server then starts each of the diskless nodes 
running. Each diskless node then uses NFS file reads over VME (which 
are serviced by the boot server) to complete its UNIX boot. Once a 
diskless node has complete booting, it is in full network communication 
to the boot server (over VME) and to any processors on Ethernet (over 
VME to the boot server which acts as a network gateway). Thus, for 
example, anyone logged onto a computer attached to Ethernet may Telnet 
to any of the nodes in the crate and logon. The crate is essentially a 
network of UNIX processors with VME taking the place of the more 
common Ethernet network connection. The diskless processors also use 
the boot server for any virtual memory paging that they require. Of 
course, there is a potential bottleneck if too many network requests are 
made by the diskless nodes to the boot server. As long as the steady state 
online process running in each processor is memory resident and does 
not read disk files, this is not an issue. If an abnormal condition is 
detected by an online process, the full power of UNIX (virtual memory 
paging, disk file references, symbolic debuggers, crash dumps, etc.) are 
available. If one processor has a problem, it can be probed by logging on 
to it over the network and this will have minimal impact on the other 
running processors. 

Online Tool% Finally, some tools were constructed to support 
online use of UNIX on the ACP/RSOOO. Two important examples of 
these tools are a set of UNIX system calls for physical memory mapping 
and the implementation of a fast interrupt service mechanism. 

Memory Mappine: First, a set of UNIX system calls was lvritten that 
provides a way for an ordinary UNIX process to map a range of its virtual 
memory space to a fixed range of physical addresses. This mapping will 
not be changed by UNIX if virtual memory paging or process swapping 
occurs. A process can establish such a mapping and then communicate its 
physical address to an e;*ent builder. The event builder can then pass a 
stream of events to the process by placing them in the buffer. Because the 
ACP/RSOOO has a window to the VME bus that appears as a range of 



6 

physical addresses, a process can also use the system calls to establish a 
memory mapped window to the VME bus. 

Fast Interrupt Service: An issue of great concern to online 
applications of a processor is the interrupt service time. The version of 
UNIX for the ACP/R3000 allows implementation of a fast, simple 
interrupt service routine. This was done by adding a new system call to 
the the UNIX kernel. By using this call, an interrupt service routine can 
be 

V 
M 
E 

-I ACP/R3000 1 

4 ACP/R3000 I 

Boot server ----------- 
I 

Ethernet 

Figure 2. Mostly “diskless” UNIX farm 

attached to an interrupt. Using this mechanism, the minimum time to 
service an interrupt is approximately 5 microseconds. 



7 

CONCLUSIONS 

A fully supported general purpose computer has a great many 
potential advantages for use in an online processor farm. The 
combination of UNIX with a high performance RISC processor makes an 
attractive candidate for building online farms. The work that the 
Fermilab Computer Research and Development Department has done in 
porting UNIX to its ACP/RSOOO VME processor module has explored 
many of issues involved in constructing a successful online farm. 


