
a Fermi National Accelerator Laboratory

FERMILAB-cod-90187

Cooperative Processes Software (CPS)’

Chip Kaliher
Fermi National Accelerator Laboratory

P.O. Box 500
Batavia. Illinois 60510

April 1990

* Presented at the 1990 Conference on Computing in High Energy Physics, Santa Fe, New Mexico,
April 9-13, 1990.

orated by Universities Research Association Inc. under contract with the United Stales Department of Energy

COOPERATIVE PROCESSES SOFlWARE (Cl51

Chip Kaliher
Fermi National Accelerator Laboratory

Batavia, IL

ABSTRACT

Cl5 is a package of software tools for splitting a computational task,
called a job, among a set of processes distributed over one or more
processors. It is designed to function as a tool for solving computing
problems which require many computing cycles per I/O byte, and is well
suited for computing platforms consisting of “farms” of processors,
operating in parallel. This paper describes three essential features of CPS:
data transfers between cooperating processes, remote subroutine calls,
and process queues.

INTRODUCTION

CPS is a software product developed by the Computing R&D
Department (formerly known as the ACP Dept) at Fermilab. It is a
package of software tools that make it easy to split a computational task,
called a job, among a set of processes, operating on one or more
processors. Apart from considerations of execution speed, the processes
operate identically executing on one single processor, or on multiple
processors. Each process executes its own private copy of the user’s
program. See Figure 1.

CPS is designed to function as a software tool for solving a certain
class of computing problems, especially those which require many
computing instructions and operations per I/O byte. The software is most
useful for problems in which there is a “course granularity” (event
parallelism) of the input data, and is well suited for computing platforms
consisting of farms of processors, operating in parallel.

Much HEP event reconstruction computing is done using offline
RISC-based processor farms, running various flavors of the UNIX
operating system. Typically, these problems consist of many
independent, uncorrelated physics events, (>200 GB), and often require
more raw computing capacity than is available in a single “box.” The
necessity of using multiple processors of course implies the use of
multiple processes, (at least one process per processor). Multiple
processes can be configured independently or can be either loosley or
tightly coupled (Figures 2, 3, 4). Topology C often has several advantages
over Topology A and/or Topology B. Fewer external media are required.
It is considerably easier to manage. It is also faster and more efficient,

2

since there are fewer data moves, and the number of processes in each
class can be optimized for each problem. Finally, it is integrated. All the
processors function as a single, logical compute server, working together
on a problem.

Compute Server

C
0

m P
m r
u 0
n t
i 0
c c
a 0
t 1
i s
0
n

Comuute Server

I

1
r

Compute Server
I

Figure 1. CPS Process Distribution

Topology C is often referred to as the cannonical event
reconstruction example. There are three classes or ranks of processes.
All processes within a class run the same program. The class 1 process
gets an input event from some external media (e.g. 8mm tape), then
dequeues a class 2 process from the ready queue. Next, the class 1 process
transfers the event data from its own virtual address space, to the address
space of the class 2 process. Finally, the class 1 process issues a remote
subroutine call to the class 2 process, causing the latter to perform the
computing operations necessary to reconstruct the event. As part of the
call, the class 2 process is directed to place itself on the done queue when
the remote subroutine call completes.

3

. . . 0 Process

Figure 2. Topology A

CFS EXAMPLE

The class 1 process repeats this sequence of operations: get an input
event, dequeue a class 2 process, transfer the data, call a remote
subroutine, until the supply of input events has been exhausted, at which
point it will initiate the end-of-job operations (summation,
histogramming, etc). If it is unable to dequeue a class 2 process at any
point during the job, (the ready queue is empty), the class 1 process
simply waits until a class 2 process become available. The class 2
processes receive blocks of event data, reconstruct the event, then enter
the done queue, as directed by the class 1 process. The class 3 process
dequeues a class two process from the done queue, then transfers the
reconstructed event data from the latter’s virtual address space to its own.
It re-queues the class 2 process back to the ready queue, then puts the
reconstructed event data onto some external output medium (8mm tape).
The class 3 process repeats this sequence of operations: dequeue a class 2
process, transfer the data, re-queue the class 2 process, write the output
reconstructed event, until it encounters an end-of-queue condition,
signalling the end-of-job. At the start of each job, after performing all the
required declaration and initialization functions, all the processes in the
job synchronize with each other, to establish reliable cooperation.

CPS TOOLS

Each CPS process calls routines for initialization and declaration.
A process first calls the acp-init routine, to establish the necessary
communication links, initialize local variables, etc. If a process will serve
as a source or destination of data for block transfers between cooperating
processes, the process must call acp-declare-block, specifying the address,

4

length in bytes, and the block number for each transferrable data block in
the process virtual address space. If the process will be placed on process
queues, it must call the acp-declare-queue routine, specifying the queue
number, and optional queue arguments, for each process queue on which
the process may be placed. If the process will function as a server,
allowing other processes to issue remote subroutine calls to its local
routines, it must call the routine, acp-declare-subroutine, specifying the
entry point address, the remote subroutine number, the number of
arguments, and their individual byte counts, for each of the process local
routines which will be remotely callable. Lastly, each CPS process calls
acp-sync, to allow all processes in all job classes to complete their various
individual process declarations, before real cooperative processing begins.

A process which will function as the destination of a block transfer
could declare the destination of the transfer as follows:

integer*4 destination(1000)

call’ acp_declare_block(destination,4000,23)

where 4000 is the length in bytes of the destination block, and 23 is a
unique number that another process can use to refer to that block.
Another process could send a block of data as follows:

integer*4 source(1000)

call’acp_send(process,source,4000,23,0)

where process is the number of the process to which the data is to be sent,
4000 is the number of bytes to be sent, 23 is the number of the block where
the data will be sent, and 0 is the offset within the destination block
where the first byte of the transfered data is placed. A server process
could place itself on a process queue as follows:

call acp~declare~queue(ACP$THIS~l?ROCESS,27)

where 27 is the queue number. A client process could dequeue the server
process as follows:

call acp_dequeue_process(process,27)

where process is a return argument which will contain the process
number of the dequeued process when the call completes and 27 is the
queue number from which the process is to be dequeued. A server
process could declare a remote subroutine as follows:

5

program server
external x

call’ acp_declare_subroutine(x,73,2, 4,4)
. . .
call acp-service-calls
end
. . .
subroutine x
integer+4 a, b
. . .
return
end

where x is the remote subroutine which is declared, 73 is a unique
number that another process can use to refer to that subroutine, and there
are two arguments, each 4 bytes long. A client process could call the
remote subroutine as follows:

infieger*4 a, b

call. acp_call(process,action,73,a,b)

where process is the process number of the server process, action is wait,
no-wait, or a queue number, 73 is the number of the remote subroutine
which is called, and a and b are the arguments.

JOB MANAGER

The Job Manager reads the user’s job description file (JDF) at the
start of the job. This file specifies the number of processes to be created in
each job class, the name/location of the program which the processes in
each class will run, and the type of processor on which the processes in
each class are to be created. The Job Manager starts all the required
processes, creates and manages the process queues required by the job,
and provides I/O services (tape mounts, etc). The Job Manager monitors
each process in the job (Figure 5), and stops all the processes at the end of
the job.

HARDWARE

CPS is supported on MIPS M500 and Ml20 systems, and also on
Silicon Graphics SGI 4D/xxx systems. It has been test ported to DEC
VAX/VMS, DEC ULTRIX, SUN and Apollo systems.

6

I I Input
Tape

Class 1

Class 2

Class 3

Process

/Q

Process (J

r Process

Figure 3. Topology B

Class 1

Class 2

Class 3

r-l output
Tape

Figure 4. Topology C

a

Class 1

Class 2

Class 3

Job Manager Process

cl output
Tape

Figure 5. Job Manager

