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Feed forward neural networks have been tralned, UslnQ back-propagation, 
to find the slopes of slmuleted track segments In a straw chamber and to find the 
vertex of tracks from both simulated and real events In a more conventlonal drift 
chamber geometry. Network architectures, tralnlng, and performance are pre- 
3ented. 

I- 

Fast pattern recognition is desirable in high energy physlcj for two rea- 
sons. Firstly. In many hlgh energy experiments. events are produced at very high 
rates (e.g. 100Mhz expected at the SSC), and the triggering systems, which accept 
or reject events upon the basis of characteristic patterns in the data, must operate 
at these rates. Secondly, even though trigger rejection factors are large, the final 
data samples can stllf be extremefy large, and the more detailed ‘offfine’ pattern 
recognitbn performed on these data can lead to processing times, using conventlon- 
al techniques, of several years. 

Neural networks have been proposed for a wide variety of pattern recogni- 
tion applications, such as analysis of sonar returns [l] and automatic target recog- 
nition [2j. Neural networks are particularly suited to these applications due to 
their inherent parallelism and potential reallzatlon in hardware, which should 
allow solutions to pattern recognition problems ‘In real time’. 

A number of papers have suggested applicatbn of neural networks to spe- 
cific problems In high energy physics, such as track reconstruction 131, electron 
identification [4], B-jet recognltlon [5j, secondary vertex finding [5]. Here we 
discuss the application of feed-forward neural nets to the problems of quickly 
finding slopes of stiff track segments and locations of production vertices, starting 
from hits in drift chambers. The results presented here are encouraging but In- 
complete. More work will be necessary to realtstically address the issues of noise 
and track crowding, to examlne hardware implementations for specifc cases, and to 
optimize the network architecture. 

TRACK SEGMENT FINDING 

‘Track dictlonary’ techniques, in which hit patterns for all possible tracks 
are stored in a memory, have been used, both In software IS] and hardware [7j 
Implementations. as a quick way of transforming from hits to tracks. A disadvan- 
tage of thls method Is that in large, high resolution systems, the number of possible 
tracks can be very large. A more compact representation can be had by represent- 
ing each hit as an analog quantity, the drift time, associated with a wire number. 

Feed-forward neural networks are able lo perform arbitrary mappings of 
analog quantities from one representation to another [6], and so should be abt8 to 
perform the mapping from the hits to the parameters of the tracks that produced 
them, e.g., the slope antior intercept of track segments. 
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TRACK SLOPES IN STRAW CHAMBERS 

A section of a straw tube drift chamber is shown in fig. 1. It consists of a 
hexagonal close packed array of cylindrical straws, each enclosing an active drlff 

volume with a sense wire at the center. 
A particle which traverses the drift 
volume of a particular straw will pro- 
duce at its sense wfre a slgnal delayed 
by a time proportional to the distance 
of closest approach of the particle to 
the wire. The data for a single track 
will be a set of times ranging from 
tmax. the maximum drift time, to 
tmin, for those wires touched by the 
track. These anafog data are used as 
input to the neural network. Note that 
the net must solve the left-rlght am- 
biguity itself using the half cell 

Fig.1. Section of straw tube drfff cham- shfft of alternate layers. 
ber with track. Dots indicate drift The network architecture Is 
distances from sense wires (x’s). shown in flg. 2. This is a feed-forward 

netwont arcnttecture (see r8f. [S] for 
a detailed dfscusslon of this architecture). The tnput unlts correspond to the 14 
straws of fig. 1. Twenty-five hidden units were used. The track angle was repre- 
sented in the 14 output units by a Gaussian histogram of r.m.s. one bin (6 degrees) 
and mean equal to the angle. 

At the input of each neuron, the sum Is formed of the outputs of neurons in 
the preceding layer, each mulllplled by a weight. The output of the neuron is a non- 
linear, slgmoidal function (e.g. tanh) of this sum. 

Initially, a training set was made of 500 ‘events’, each with a single 
straight track randomly distributed in angle between 230 degrees from the vertl- 
cal and wlth random horfzonlal offsets. Valld tralnlng events were required lo pass 
through al least 4 straws lo avoid edge effects. Each training event consisted of 14 
input times and 14 target values which were zero except for three contiguous blns 
which formed a Gaussian histogram of r.m.s. one bln and with a mean equal to the 
angle of the training track (fig. 2). After a training session, the performance of the 
net was tested using a new independent set of 500 random tracks. A plot was made of 
the difference between the angle found by the network and the true angle of the 
track. After 2 million presentations. the r.m.s. deviation was about 1 degree but 
the distribution had large nonGaussIan tails. Thea8 were found to be pathological 
cases in which the track just grazed the 8dges of the straws and ambiguous cases due 
to the left-right ambiguities of the straws. 

The training sample was increased from 500 lo 5000 events to allow the 
network to see a wider variety of tracks. The result after an additional one million 
presentations on the larger training set (tested on an independent set of 5000 
events) is shown in Rg. 3. The central Gaussian has a sigma of 0.5 degrees. The net 
no longer makes very bad mistak8S. but tails are still present. 

No noise or drift smearing was used In this simulation. (These are intro- 
duced in the following sections on vertex finding). For a perfectly tralned net- 
work, the network angle should agree perfectly with the true angle, except for 
those cases in which the left-right ambiguity causes the track angle lo be ambigu- 
ous. The relative contributions to the observed width from ambiguities and inade- 
quacies in training or network architecture are not known. 
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NEURAL NETWORK: STRAW CHAUBER -> TRACK SLGPE 

Input I 14 Sense Wire Drift Thea 
Output I 12 6.0. Bin8 from -36. to +36* 

+ 1 Bln Slopes<-36* + 1 Bin Slopeo+36* 

Example Target: 

lkample output: 

output units . . . . . . . . . . . . 

Hidden Units . . . . . . . . . . . . . . . . . 

Input Units . . . . . . . . . . . . 

wire y: . . . . . . . . . . . . 

Fig. 2. Neural network to find straw chamber track slopes with drift times 
as input. The output units (values 0.0-I .O) correspond to 6O bins 
in angle. All hidden units are connected to all input and output units. 
Only a few connections are shown for clarity. Also a bias unit (value 
fixed to 1 .O ) is connected to all hidden and output units but not shown. 

Degrees 
Fig. 3. Differences between target slope and 

net slope for 5000 independent tracks. 
Fit gives r.m.s of 0.5 degrees. 
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PRIMARY VERTEX FROM A 4-LAYER DRIFT CHAMBER 

A network can also be trained lo find the intercept of a track on a particular 
axis. Fig. 4 shows simulated events in a more oonventlonal drift chamber design 
having 4 layers of 5 wires each. The sense wires are spaced 1 .lcm apart and are 
separated by field wires which define the sensitive area for each cell. The drift dis- 
tance is defined as the distance from the point where a track crosses the sense wire 
plane to the nearest sense wire. The layers are spaced by 1 .lcm, wlth the bottom 
layer being 13.lcm above a “b8amlin8” from which simulated tracks originate. Two 
of the layers are shlfted by One-half cell relative to the other two. The goal Is to 
have the net determine. using only the drift distances, ~the primary vertex on the 
beamline from which the tracks in a given ‘event* originate. 

(4 (b) . , . , . . . ,.I .,.I. . 
. , . , . . . ,.I . . I.0 . 

. I.( . . . ,.I . * . . 

. . q . . I., . I., . . 

4 n+ + 
-5OIO 0. +5Om -3zT-r-Y~m 

Fig. 4. Sample events in 4-layer drift chamber simulation: (a) 1 track 
and (b) two track events. Points indicate sense wires, and vertical 
lines are drift distances to tracks (with left-rlght ambiguity). 
Tracks originate from i5cm rang8 of ‘b8amlln8’. Box is the target 
vertex and plus sign is the neural net vertex (here the vertex is given 
as lh8 posltlon of the output bln with largest value, see flg. 2). 

The net architecture here is similar to that in fig. 2. except 20 Input units 
represent 20 sense wire cells, with the inputs proportional to the drift distances, 
and 20 output units correspond to 0.5cm bins along the 1 Ocm range of the beamline 
where vertices are distributed. Instead of 25 hidden units, 50 were used. 

Uke the straw chamber case, the net Is trained by comparing the net’s 20 
output values to 20 ‘target” values for each event. Back-propagation minimizes 
these differences over a set of 5000 one track plus 5000 two track events (two 
tracks were not allowed to cross the same cell). A target distribution indicated the 
vertex positions with Gaussian distributions whose means were the vertex posi- 
lions and r.m.s. of 3mm. In fig. 4 the target and net vertices are shown as the posi- 
lions of the bins with the largest values (see also example distributions in fig.2). 
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After about a million iterations through these events. the net was tested on 
independent events. The difference between the average of the target distribution 
and the average of the net’s output distribution is shown in fig. 5. A Gaussian fit 
shows an r.m.a,. of about 0.2cm. As with the straw chamber track slopes, there are 
nonGaussIan tails. These are again believed due lo the ‘resolution” of the net with 
this number of hidden units and amount of training, as well as ambiguities. 
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Fig. 5. Differences between target vertex and neural network vertex for 
an independent set of events. The fit gfves r.m.s of 0.2crn. 

In the examples shown so far, there was no smearing of the drffl distances 
lo simulate a ffnite resolution. In a test, the vertex resolution was found to worsen 
roughly linearly with the drift resolution, giving a resolution of 0.3cm with a 
smearing of 20Oum. Even though trained only on non-smeared cases, the net’s 
performance degrades smoothly rather failing dramatically when presented with 
this new situation. 

The effect of noise &as also studied by superimposing a random hit on nor- 
mal 1 and 2 track events in a cell not crossed by a track. Afler another million it- 
erations of training the accuracy for events without noise remained 0.2cm and with 
noise decreased lo 0.6cm due to the increased ambfgufties, especially with 2 tracks 

TRACK VERTEX FROM 3-LAYER DRIFT CHAMBER DATA 

To test these techniques with events from an actual drift chamber, data from 
a chamber used In experiment E-735 [lo] at the Tevalron proton-antlproton 
Collider was obtained. The “Z-Chamber” is a small 3 layer planar chamber with 96 
wires per layer, 1 Ocm long wires, and about 1 .Om wide [l I]. The chamber (see 
schematic in fig. 6a) sat next to the beampipe with the wires vertical and normal to 
the beam-line. The cell geometry is slmllar to that used in the 4-layer simulation 
above - the wire spacing and layer spacing is l.lcm and the 1st layer is 13.lcm 
from the beamline (however, ambiguous cases increase with 3 rather than 4 lay- 
ers). The chamber was used both to assist in tracking particles entering an adja- 
cent spectrometer and to determine the primary event vertex. 
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Fig. 6 Tracks in the Z-Chamber from proton-anllprolon collision. (a) hits 
in the 3 layers of the chamber are shown as X’s and the points are 
sense wires. Box indicates the vertex as found by a conventbnal 
pattern recognition and fitting routine. (b) The first cluster of hits 
lo the left in (a) have been fed into a net which looks at 15 wire 
sections and finds the track vertex within *20cm range from the 
center of that sectlon. The plus sign is the net vertex. 

A net with 3 x 96 input units and enough output units to cover about a 1 Sm 
vertex range is too large for rapid simulation so here we only dealt with a small 
section of the chamber. Ffg. 6b shows a section of the Z-chamber with 5 wires in 
each layer for a total of 15 wires. (The whole chamber can be dealt wlth by partl- 
lionlng it into small subunlls. each wfth Its own neural network, whose outputs are 
in turn superimposed such that the primary event vertex(ices) appear as peaks in 
a global output histogram. Studies are In progress on prlmary event vertex finding 
using this technique). 

The network was again similar lo fig. 2, except with 15 input units for 15 
sense wires, 100 hidden units, and 42 output units, where units 2-41 represent 
vertices in forty lcm bins along the beamline. Bin 1 represents all vertices lo the 
left of this range and bin 42 represents all vertices lo the right of this range. 

Using conventlonal tracklng and pattern recognltlon methods as dlscussed In 
[Ill, tracks and vertices were found for each event. Although the drift resolution 
was IOOum for optimum running conditions, It was run at a lower than optimal 
voltage, so as to extend chamber Ilfetime, which gave 6OOum resolution. This re- 
sults In about lcm vertex resolution. Note also that the drift times are for the dis- 
tance of closest approach to the wfre rather than the distance from crossing the 
wire plane as was done for the 4-layer slmulatkrn. 

To train the net to find the vertex of a track, a selection was made of events 
with only one track found by the tracking program. For such events, beginning 
from one end of the chamber, 5 wire wide sections were examined lo find If the 3 
hits used in the track fit were within the section. If thls wasn’t the case then the 
next section was examined, stepping in 1 wire increments. This stepping through 
the chamber continued until all 3 track hits were inside the 5 wire wlde section. 
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Fig. 6a shows such an event. Here a track with a background hit is seen in 
the first cluster of hits on the left. The 5-wire wide section of the chamber con- 
taining the cluster is shown in fig. 6b. The target vertex (as found by the tracking 
program) for this case is translated Into the +/-20cm range of the net for the five 
wire sectlon. The 15 drift distances (from calibrated drift times) and the target 
position along the 40cm wide range for this event and others like it were saved in a 
lrainlng set of 10000 events. In about 15% of the events there were background 
noise hits (i.e. hits not used by the fitting program) in the 5-wire wide section. 

After a million itera- 

800 

800 

lions through the tralning set, 
the net was tested on an inde- 
pendent data set. The resulting 
dlstrlbutlon is shown In fig. 7. 
The difference between the av- 
erage target and net output vaf- 
ues gives an r.m.8. of about 
0.6cm. Here the tails are quite 
wide and are due to (1) the 
bwkgmund noise events where 
the resolution degrades lo 
i .5cm; (2) the greater chance 
of ambiguities with only 3 lay- 
ers; (3) the 500um drift res- 
olution; (4) possible inadequa- 
cies in the training or number 
of hidden units. 

Fig. 7. Difference in fitted track vertex and neural 
net track vertex for hits in 15 wire sections 
of the Z-chamber. Fit gives r.m.s. of O&m. 

We have shown that using drift chamber information, a neural net can: (1) 
be trained lo find the slopes of single tracks; (2) find the vertices of 1 and 2 track 
events: (3) work wllh typlcal drift chamber resolutions: (4) work In presence of 
noise: (5) be trained lo handle new types of input, showing adaptability. The 
technique was found to work for both simulated and real data from a collider exper- 
iment, The latter included such complications as 500um drift resolution, drift 
times which were for the distance of closest approach rather than from the hori- 
zontal crossing point, presence of background hits. and training sets made from 
data events so that the “targets’ were smeared by the resolution of conventional 
tracking methods (i.e. the “true’ vertex wasn’t known but was given by the extrap- 
olated track fit). 

The results may already be accurate enough for some applfcatfons, espe- 
cially in triggering. For more demanding applications, such as secondary vertex 
finding, however, further study must be done to improve the accuracy of the nets. 
Topics of interest include: (1) understanding non-Gaussian tails to the resolution; 
(2) Improving the performance in presence of noise: (3) studying effects of over- 
lapping tracks; (4) determining the optimum level of hidden units and training. 
Although back-propagation training has been an area of intense study by the neural 
networks community, there is still no way known to determine, a priori, the num- 
ber of hllden units needed for a given application. In the cases here, we chose the 
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number of hidden units lo be roughly similar lo the total number of input and out- 
put units. We found for the vertex finding tests that the accuracy improved by in- 
creasing the number of hldden units However, the amount of training time needed to 
reach a given level of accuracy increased rapidly as well. 

The neural network chip ETANN [15] developed by Intel is also being exam- 
ined. It allows conflguralions of 64 inputs, 64 hidden and 64 output units. A setup 
is being prepared lo find if this chip can reproduce the results found here with 
simulations. 

We thank Theo Alexopoulos for Z-Chamber information and also thank Chfho 
Wang for programmIng assistance. Thanks also to E. W. Anderson. Tftls research 
supported In part by DOE Contract DE-AC02-65ER40193 and Fermi National 
Accelerator Laboratory. 
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