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ABSTRACT

Feed forward neural networks have been trained, using back-propagation,
10 find the slopes of simulated track segments In a straw chamber and to find the
veriex of {racks from both simulatad and real events in & more convantional drift
chamber geometry. Network architectures, training, and performance are pre-
sentsd.

INTRODUCTION

Fast pattern recognition is desirable in high energy physics for two rea-
sons. Firstly, in many high energy experimeants, events are produced at very high
rates (e.g. 100Mhz expected at the SSC), and the triggering systems, which accept
or reject events upon the basis of characteristic patterns in the data, must operate
at these rates. Secondly, even though trigger rejection factors are iarge, the final
data samples can still be extremsly large, and the more detailed ‘offtine’ pattern
recognition performed on these data can lead to processing times, using convention-
al techniques, of several years.

Neural networks have been proposed for a wide variety of pattern racogni-
tion applications, such as analysis of sonar returns {1] and automatic target recog-
nition {2]. Neurai networks are particuiarly suited to these applications due to
their inherent paralleliam and potential realization in hardware, which should
allow solutions to pattern recognition problems ‘in real time’.

A number of papers have suggested application of neural networks to spe-
cific problems in high energy physics, such as track reconstruction (3], electron
identification [4], B-jet recognition [5], secondary vertex finding [5]. Here we
discuss the application of feed-forward neural nets to the problems of quickly
finding slopes of stiff track segments and locations of production vertices, starting
from hits in drift chambers. The resuits presented hare are encouraging but in-
complete. More work will be necessary to realistically address the issues of noise
and track crowding, to examine hardware implementations for specific cases, and to
optimize the network architecture.

TRACK SEGMENT FINDING

‘Track dictlonary' techniques, in which hit patterns for all possible tracks
are stored in a memory, have been used, both In software [6] and hardware [7)
implementations, as a quick way of transforming from hits to tracks. A disadvan-
tage of this method Is that in large, high resoiution systems, the number of possible
tracks can be very large. A more compact representation can be had by represent-
ing each hit as an analog quantity, the drift time, associated with a wire number.

Feed-forward neural networks are able to perform arbitrary mappings of
analog quantities from one representation to another [8], and so should be able to
perform the mapping from the hits to the parameters of the tracks that produced
them, e.g., the slope and/or intercept of {rack segments.
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TRACK SLOPES IN STRAW CHAMBERS

A section of a straw tube drift chamber is shown in fig. 1. It consists of a
hexagonal close packed array of cytindricat straws, each enclosing an active drift

Fig.1. Section of straw tube drift cham-
ber with track. Dots indicate drift
distances from sense wires {x's).

volume with a sense wire at the center.
A particie which traverses tha drift
volume of a particular straw will pro-
duce at its sense wire a signal delayed
by a time proportional to the distance
of closest approach of the particle to
the wire. The data for a single track
will be a set of times ranging from
tmax, the maximum drift time, to
tmin, for those wires touched by the
track. These analog data are used as
input to the naural network. Note that
the net must solve the left-right am-
biguity itself using the haif cell

shift of alternate layers.

The network architecture is

shown in fig. 2. This is a feed-forward

network architecture (see ref. [9] for
a detalled discussion of this architecture). The input units correspond to the 14
straws of fig. 1. Twenty-five hidden units were used. The track angle was repre-
sented in the 14 output units by a8 Gaussian histogram of r.m.s. one bin (6 degrees)
and mean equal to the angle.

At the input of each neuron, the sum is formed of the outputs of neurons in
the preceding layer, each multiplied by a weight. The cutput of the neuron is a non-
linear, sigmoidal function (e.g. tanh) of this sum.

Initially, a training set was made of §00 'events’, each with a single
straight track randomly distributed in angle between +30 degrees from the verti-
cal and with random horizontal offsets. Valid training events were required to pass
through at least 4 straws to avoid edge effects. Each training event consisted of 14
input times and 14 target values which were zero except for three contiguous bins
which formed a Gaussian histogram of r.m.s. ong bin and with a mean equal to the
angle of the training track (fig. 2). After a training session, the performance of the
net was tested using a new independent set of 500 random tracks. A plot was made of
the difference between the angle found by the network and the true angle of the
track. After 2 million presentations, the r.m.s. deviation was about 1 degree but
the distribution had large non-Gaussian tails. These were found to be pathological
cases in which the track just grazed the edges of the straws and ambiguous cases due
to the left-right ambiguities of the straws.

The training sample was increased from 500 to 5000 events to allow the
nelwork to see a wider variety of tracks. The result after an additional one million
presentations on the larger fraining set (tested on an independent set of 5000
events) is shown in fig. 3. The central Gaussian has a sigma of 0.5 degrees. The net
no longer makes very bad mistakes, but tails are stlll present.

No noise or drift smearing was used In this simulation. (These are intro-
duced in the following sections on vertex finding). For a perfectly trained net-
work, the network angle should agree perfectly with the true angle, except for
those cases in which the left-right ambiguity causes the track angle to be ambigu-
ous. The relative contributions 1o the ocbserved width from ambiguities and inade-
quacies in training or network architecture are not known,



NEURAL NETWORK: STRAW CHAMBER —> TRACK SLOPE

Input = 14 Sense Wire Drift Times
Output = 12 6.0° Bins from —38° to +36°
+ 1 Bin Slopes<-38° + 1 Bin Slopes>+36°

Example Target:
" Example Output:

Cutput Units:
Hidden Units:

Input Units:

Wire §:

Fig. 2. Neural network to find straw chamber track slopes with drift times
as input. The output units {values 0.0-1.0) correspond to 6° bins
in angle. All hidden units are connected to all input and output units.
Only a few connections are shown for clarity. Also a bias unit (value
fixed to 1.0 ) is connected to all hidden and output units but not shown.
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Fig. 3. Differences between target slope and
net slope for 5000 independent tracks.
Fit gives r.m.s of 0.5 degrees.




PRIMARY VERTEX FROM A 4-LAYER DRIFT CHAMBER

A network can also be trained 1o find the intercept of a track on a particular
axis. Fig. 4 shows simulated events in a more conventional drift chamber design
having 4 layers of 5 wires each. The ssnse wires are spaced 1.1cm apart and are
separated by field wires which define the sensitive area for each cell. The drift dis-
tance is defined as the distance from the point where a track crosses the sense wire
plane 10 the nearest sense wire. The layers are spaced by 1.1cm, with the bottom
fayer being 13.1cm above a "beamline” from which simulated tracks originate. Two
of the layers are shifted by one-half cell relative 1o the other two. The goal Is to
have the net determine, using only the drift distances, the primary vertex on the
beamline from which the tracks in a given "event” originate.
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Fig. 4. Sample events in 4-layer drift chamber simulation: (a) 1 track
and (b) two track events. Points indicate sense wires, and vertical
lines are drift distances o tracks (with left-right ambiguity).
Tracks originate from t5cm range of "beamiine”. Box is the target
vertex and plus sign is the neural net vertex (here the vertex is given
as the position of the output bin with largest value, see fig. 2).

The net architecture here is similar 1o that in fig. 2, except 20 input units
represent 20 sense wire cells, with the inputs proportional to the drift distances,
and 20 cutput units correspond to 0.5cm bins along the 10cm range of the beamline
where vertices are distributed. Instead of 25 hidden units, 50 were used.

Like the straw chamber case, the net is trained by comparing the net's 20
output values to 20 “target values for each event. Back-propagation minimizes
these differences over a set of 5000 one track plus 5000 two track events (two
tracks were not allowed to cross the same cell). A target distribution indicated the
vertex positions with Gaussian distributions whose means were the vertex posi-
tions and r.m.s. of 3mm. In fig. 4 the target and nat vertices are shown as the posi-
tions of the bins with the largest values (see also example distributions in fig.2).



After about a million iterations through these events, the net was tested on
independent events. The difference between the average of the target distribution
and the average of the net's output distribution is shown in fig. 5. A Gaussian fit
shows an r.m.s. of about 0.2cm. As with the straw chamber track slopes, there are
non-Gaussian talls. These are again believed due 1o the "resolution” of the net with
this number of hidden units and amount of training, as well as ambiguities.
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Fig. 5. Differences between target veriex and neural network vertex for
an independent set of events. The fit gives r.m.s of 0.2cm.

In the examples shown so far, there was no smearing of the drift distances
io simulate a finite raesolution. In a test, the vertex resolution was found to worsen
roughly linearly with the drift resolution, giving a resolution of 0.3cm with a
smearing of 200ym. Even though trained only on non-smeared cases, the net's
performance degrades smoothly rather failing dramatically when presented with
this new situation.

The effect of noise Was also studied by superimpasing a random hit on nor-
mal 1 and 2 track events in a cell not crossed by a track. After another million it-
erations of training the accuracy for events without noise remained 0.2cm and with
nolse decreased 10 0.6cm due to the increased ambiguities, especially with 2 tracks.

TRACK VERTEX FROM 3-LAYER DRIFT CHAMBER DATA

To test these techniques with events from an actual drift chamber, data from
a chamber used In experiment £-735 [10] at the Tevatron proton-antiproton
Collider was obtained. The "Z-Chamber” is a small 3 layer planar chamber with 96
wires per layer, 10cm long wires, and about 1.0m wide [11]. The chamber (see
schematic In fig. 6a) sat next 1o the beampipe with the wires vertical and normal to
the beam-fine. The cell geometry is similar to that used in the 4-layer simuiation
above - the wire spacing and layer spacing is 1.1cm and the 1st layer is 13.1cm
from the beamline (however, ambiguous cases increase with 3 rather than 4 lay-
ers). The chamber was used both to assist in tracking particles entering an adja-
cent spactrometer and to determine the primary event vertex.
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Fig. 6 Tracks in the Z-Chamber from proton-antiproton coflision. (a) hits
in the 3 layers of the chamber are shown as X's and the points are
sense wires. Box indicates the vertex as found by a conventional
pattern recognition and fitting routine. (b) The first cluster of hits
to the left in (a) have been fed into a net which looks at 15 wire
sections and finds the track vertex within +20cm range from the
center of that section. The plus sign s the net vertex.

A net with 3 x 96 input units and enough output units to cover about a 1.5m
vertex range is too large for rapid simulation so here we only dealt with a small
section of the chamber. Fig. 6b shows a section of the Z-chamber with 5 wires in
each layer for a totat of 15 wires. (The whole chamber can be dealt with by parti-
tioning it Into small subunits, each with Its own neural network, whose outputs are
in turn superimposed such that the primary event veriex(ices) appear as peaks In
a global output histogram. Studies are in progress on primary event vertex finding
using this technigue). .

The network was again similar to fig. 2, except with 15 input units for 15
sense wires, 100 hidden units, and 42 output units, where units 2-41 represent
vertices In forty 1cm bins along the beamline. Bin 1 represents all vertices to the
left of this range and bin 42 represents ali vertices o the right of this range.

Using conventlionat tracking and pattern recognition methods as discussed In
{11], tracks and vertices were found for each event. Although the drift rasolution
was 100pm for optimum running conditions, it was run at a lower than optimal
voltage, so as to extend chamber lifetime, which gave 500um resolution. This re-
suits In about 1cm vertex resolution. Note also that the drift times are for the dis-
tance of closest approach to the wire rather than the distance from crossing the
wire plane as was done for the 4-layer simuiation.

To train the net 1o find the vertex of a track, a selection was made of avents
with only one track found by the tracking program. For such events, beginning
from one end of the chamber, 5 wire wide sections were examined to find if the 3
hits used in the track fit ware within the section. If this wasn't the case then the
next section was examined, stepping in 1 wire increments. This stepping through
the chamber continued until all 3 track hits were inside the 5 wire wide section.



Fig. 6a shows such an event. Here a track with a background hit is seen in
the first cluster of hits on the left, The 5-wire wide section of the chamber con-
taining the cluster is shown in fig. 6b. The target vertex (as found by the tracking
program) for this case is transiated inlo the +/-20cm range of the net for the five
wire section. The 15 drift distances (from calibrated drift times) and the target
position along the 40cm wide range for this event and others like it were saved in a
training set of 10000 events. !n about 15% of the events there were background
noise hits (l.e. hits not used by the fitting program) in the 5-wire wide saction.

After a million itera-
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Fig. 7. Difference in fitted track vertex and neural
net track vertex for hits in 15 wire sactions
of the Z-chamber. Fit gives r.m.s. of 0.6cm.

DISCUSSION

We have shown that using drift chamber information, a neural net can: (1)
be trained 1o find the slopes of single tracks; (2) find the vertices of 1 and 2 track
events; (3) work wlith typical drift chamber resolutions; (4) work In presence of
noise; (5) be trained to handle new types of input, showing adaptability. The
tachnique was found to work for both simulated and real data from a collider exper-
iment. The latter included such complications as 500um drift resolution, drift
times which were for the distance of closest approach rather than from the hori-
zontal crossing point, presence of background hits, and training sets made from
data events so that the "targets” were smeared by the resolution of conventional
tracking methods (i.e. the “true® vertex wasn't known but was given by the extrap-
olated track fit).

The resulls may already be accurate enough for some applications, espe-
cially in triggering. For more demanding applications, such as secondary vertex
finding, however, further study must be done to improve the accuracy of the nets.
Topics of interest include: (1} understanding non-Gaussian tails to the resolution;
(2) improving the performance in presence of noise; (3) studylng effects of over-
lapping tracks; (4) determining the optimum level of hidden units and training.
Although back-propagation training has been an area of intense study by the neural
networks community, there is still no way known to determine, a priori, the num-
ber of hidden units needed for a given application. In the cases here, we chose the



number of hidden units to be roughly similar to the totat number of input and out-
put units. We found for the vertex finding tests that the accuracy improved by in-
creasing the number of hidden units However, the amount of training time needed to
reach a given level of accuracy increased rapidly as well.

The neural network chip ETANN [15] developed by Intel is also being exam-
ined. !t aliows configurations of 64 inputs, 64 hidden and €4 output units. A setup
is being prepared to find if this chip can reproduce the resuits found here with
simulations.

ACKNOWLEDGEMENTS

We thank Theo Alexopoulos for Z-Chamber information and also thank Chiho
Wang for programming assistance. Thanks also to E. W. Anderson. This research
supported In part by DOE Contract DE-AC02-85ER40193 and Ferml National
Accelerator Laboratory.

* Present address: Advanced Photon Source, Argonne-Bld 360, 9700 S.Cass Ave.,
Argonne 1l. 60439.

** Operated by the Universities Research Association, Inc under contract with the
U.S. Dept. of Energy.

**« Talk presented by C. S. Lindsey. Present address: £-735, MS-219, Fermilab,
P.O. Box 500, Batavia Il. 60510.

REFERENCES

R. Gorman & T.Sejnowski,"Neural Networks",vol.l,pp.75-89 (1988).

M. Oyster, Hughes Alrcraft, in "“The DARPA Neural Network Study”, AFCEA

International Press, Fairfax, VA (1988), p.451.

B. Denby, "Computer Physics Communications® 49(1988) pp.429-448.

C. Peterson, Nucl. !nst. Meth., A279(1989) pp. 537-545.

D. Cutis et al., "The Use of Neural Networks in the DO Data Acquisition System"®,

presented at the conference REAL-TIME '89, Willlamsburg, VA (May 1989), 1o

be published.

5. B. Denby et al., FERMILAB-CONF 90/20, Neural Networks for Triggering,
presented at 1989 IEEE Nuclear Science Symposium, San Francisco, CA, to be
published In IEEE Trans. Nucl. Sclence.

6. J.J. Becker et al., Nucl. Inst. Math. A235 (1985) 502.

7. M. DellOrso and L. Ristori, VLSI Structures for Track Finding, proceedings of
Int. Conference on the Impact of Digital Microelectronics and Microprocessors
on Particle Physics, Trieste, ltaly, 28-30 March, 1988, World Sci. Pub. Co.

8. Robert Hecht-Nleisen, Theory of Backpropagation Naural Networks, proc. of
the International Joint Conference on Neural Networks, vol |, pp. 593-605,
Washington, D.C., 18-22 June, 1989,IEEE Catalog no. 89CCH2765-6.

9. D. Rumeihart et al., Parallel Distributed Processing, Explorations in the
Microstructure of Cagnition, vol. I, ¢ch. 8, MIT Press, Cambridge, Mass.

10.Bannerjee et al., Nuc. Instr. Meth., Phys. Res. A26 1211(1988).

11.T. Alexopoulos, A. R. Erwin, C. Findeisen, K. Nelson, M. Thompson, "A One
Mater Long Low-mass Mini-Drift Vertex Chamber used at the Tevatron
Collider", in preparation.

12.M. Holler, S. Tam, H. Castro, R. Benson, "An Electronically Trainable Analog

Neural Network (ETANN) with 10240 ‘Floating Gate' Synapses”, proc. Int.

Joint Coni. on Neural Networks, vol. I1, pp.191-196, Wash., D.C,, 22

June,1989, IEEE Catalog 88CH2756-6.

Pl A\



