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EFFECTS OF VARIOUS BVENT BUILDING TECHNIQUES 
ON DATA ACQUISITION SYSl’EM ARCHlTECTuRES 

Ed Barsotti, Alexander Booth & Mark Bowden 
Fermilab* 

P.O. Box 500, Batavia, IL 60510 

The preliminary specifications for various new detectors throughout the world 
including those at the Superconducting Super Collider (SW) already make it clear that 
existing event building techniques will bs inadequate for the high trigger and data rates 
anticipated for these detectors. In the world of high-energy physics many approaches 
have been taken to solving the problem of reading out data from a whole detector and 
presenting a complete event to the physicist, while simultaneously keeping deadtime to 
a minimum. This paper includes a review of multiprocessor and t&communications 
interconnection networks and how these networks relate to event building in general, 
illustrating advantages and disadvantages of the various approaches. It presents a 
more detailed study of recent research into new event building techniques which 
incorporate much greater parallelism to better accommodate high data rates. The 
future in areas such as front-end electronics architectures, high-speed data links, event 
building and online processor arrays is also examined. Finally, details of a scalable 
parallel data acquisition system architecture being developed at Fermilab are given. 

INTRODUCTION 

The demands on data acquisition systems for high-energy physics experiments are 
increasing at a rapid rate due to the higher luminosities and interaction rates. From the 
early days of high-energy physics to most present-day experiments, when readout of a 
physics event is initiated, triggering on subsequent events is disabled until readout is 
complete. Other factors in an experiment contribute to this experiment “deadtime” but 
readout time is the dominating factor. Typically “deadtime”, measured as a percentage, 
is held to less than 10% and is approximately equal to the ratio between event readout 
time and trigger rate times 100%. Now, with very high interaction rates and 
consequently very high trigger rates, readout time is an even larger fraction of the time 
between triggers. 

New techniques for physics event readout (“event building”) are now essential if we 
are to minimize deadtime. Several events worth of data must be buffered on or near the 
detector during triggering, such that when an acceptable trigger occurs, the buffered 
data for that event may be readout quickly, and without disabling the trigger. 

Event builders, the devices used to readout event data, have evolved from simple 
single channel ‘funnels’ through a minicomputer bus, to multiple parallel channels (each 
with their own ‘funnel’ or bottleneck characteristics) feeding arrays (farms) of 
processors. More and more experiments are implementing event builders with 
increased parallelism for higher throughput. When one considers particle beam 
crossing times of 16 nanoseconds and subsequent very high trigger rates, it is clear that 
SSC detector data acquisition systems will require the use of totally parallel event builders 
with no inherent bottlenecks in addition to much larger amounts of pre-event builder 
buffering in order to achieve minimal deadtime experiments. 
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This paper will give a brief overview of event building in general, followed by a more 
detailed study of recent event building techniques and how these techniques affect data 
acquisition system architectures and performance. Analogies between various 
multiprocessor interconnection and telecommunications switching networks such as 
shared busses, crossbars, hypercubes, etc. and event building techniques will bs detailed. 
Performance issues such as timing (synchronous or asynchronous), control (centralized 
or decentralized, data driven or data read), coupling (tight or loose) and buffering 
methods (store and forward or direct link) will also be detailed. Future techniques for 
event building such as opt.+electronic or totally optical interconnection networks will be 
discussed. The paper will conclude with a brief look at future system requirements and a 
proposed new data acquisition system architecture being developed at Fermilab. 

EVENT BUILDING OVJZRVIEW 

Only a small fraction of the total data from each event is available for use in the 
initial trigger decision. The remaining data is scattered over many front-end buffers and 
must be collected in one place for detailed analysis. An “event builder” is the device in a 
data acquisition system which provides a physical connection between the individual 
data sources (detector front-end electronics) and the data destinations (high-level event 
processors or online data storage). 

Regardless of the implementation, all event builders function as simple data 
multiplexers. If data rates are low, this multiplexing operation can take place over a 
single tie-shared bus using software controlled selection of source and destination. This 
is the technique used in the majority of data acquisition systems to date. High-speed 
event builders have not been necessary because the data rates which could be supported 
by the sources and destinations were liited. This situation is changing rapidly. The 
ability to acquire, digitize and buffer data using VLSI front-end circuitry has increased 
allowable trigger rates by a factor of at least 1000. Similarly, the performance of high- 
level processors and the density of on-line data storage have both improved by a factor of 
almost 1000 over the last fit&en years. Unfortunately, the speeds of standard busses used 
for event building have improved by only a factor of ten in the same time period. The 
event builder has become the bottleneck. 

There are two possible solutions to this problem, Either the trigger efficiency can be 
increased, limiting data rates to the bandwidth of the event builder, or the event builder 
bandwidth can be increased. Techniques for improving trigger efficiency are dependent 
on the experiment. Techniques for improving event builder bandwidth can be considered 
independently, as in the following comparisons. 

EVENT BUILDING & INTERCONNECTION NETWORKS 

Figure 1 shows a generic Interconnection Network (IN) used in multiprocessor 
and telecommunications systems. In high energy physics, the data source (S) is typically 
a detector subsystem and the destination (D) is a programmable processor. The IN and 
ita associated control is referred to as an “event builder”. Because the pattern of data flow 
is well defined (unidirectional and evenly distributed), a general-purpose IN can o&en be 
simplified for use as an event builder. An enormous advantage is gained for high energy 
physics if we are able to draw from both the computer and telecommunications 
industries when designing data acquisition systems requiring parallel event builders. 
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Figure 1: Generic Interconnection Network 

To better understand how both multiprocessor and telephone switching system 
interconnection network theory and technology can be applied to event building in high 
energy physics experiments, the following explains classifications of various 
interconnection networks Ill. An Interconnection Network is a set of busses, switches 
and/or data links that permit connection between two or more devices. In a 
multiprocessor environment, processors are usually connected to memory components 
and other processors. The method of interconnection can be classified by three distinct 
characteristics; timing, transfer and control mode. The effect of each of these 
characteristics on IN performance will be discussed in individual IN architecture 
SUbSectiOnS. 

A network is either “blocking” or “non-blocking”. Blocking occurs when 
information cannot be transmitted through the network due to competition for the same 
internal or external datapath. “Output” blocking occurs when two sources attempt to 
simultaneously transmit to the same destination. “Internal” blocking occurs when two 
sources are transmitting to different destinations (or the same destination), but the 
messages must cross the same internal node of the network. For effective use as a 
parallel event builder, a network should have little or no blocking. Many networks 
which are inherently blocking can be made non-blocking by correctly time-ordering or 
distributing data which enters the network. This is difficult in a general-purpose 
network with random traffic, but is much less difficult in event building where the 
connection patterns are well defined. 

There are two types of timing modes in an IN, synchronous and asynchronous. In 
a synchronous IN, a global or master clock exists and is used to lock-step actions within 
the IN. Asynchronous INS operate without a global clock. Communications occur via 
interlocked hand shaking. Asynchronous INS are more easily expandable and have the 
potential for higher throughput than synchronous INS but are more difficult to build and 
maintain. 

There are two types of message transfer modes in an IN, packet-switched and 
circuit-switched. In a packet-switched IN, messages are broken up into smaller 
“packets” which are transmitted through a network in a “store and forward” mode. No 
complete link through the network is made prior tc transmission of the first packet. The 
only requirement is that the next stage in the IN be ready to receive a packet. When a 
stage has received or “stored” a packet and a succeeding stage is ready to receive a 
packet, the first stage transmits or “forwards” the packet to this next IN stage. This 
action occurs until the message has reached its foal destination. Most packet switching 
INS are “self routing” in that there is no pre-selected path for the packet. Its “route” 
depends on header words in the packet. In a circuit-switched IN, a complete physical 
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path from source to destination is established before the message is transmitted. Circuit- 
switched INS are usually more suitable for long messages whereas packet-switched INS 
are usually more suitable for short messages. Combinations of these two techniques are 
possible (circuit switching of data packets). 

There are also two modes for controlling the flow of messages through an IN, 
centralized and decentralized control. All message flow control signals originate from a 
single source in a centralized control IN, quite often creating a funnel or bottleneck to 
message flow and adversely affecting the performance of the IN. This source of control 
must necessarily be complex to allow good system performance and still maintain 
centralized control. The understanding of the IN and ita maintenance are usually 
simplified when centralized control is implemented. In a decentralized control IN, each 
component performs its own control. Multistage interconnection networks (MINs) are 
almost always decentralized control INS and are quite often also self-routing INS. 
Crossbar switch INS are typically centralized control INS. Multiple bus INS can be either 
centralized or decentralized INS. 

Defining an IN by timing, transfer and control modes leads to eight possible 
classifications of networks. For example, a CSD interconnection network establishes a 
link from source to destination and then transmits the entire message (circuit-switched), 
operates with a global clock (synchronous) and has no central message flow control 
component (decentralized). 

The shared bus, shown in Figure 2, is the most common method of interconnecting 
multiple sources and destinations. Bus bandwidths of several tens of Megabytes/second 
can be supported during block transfers, but the average data rate is usually much less 
due to the overhead of processor setup and bus access protocols. 

A single shared bus has the advantages of simple control and low cost. It also 
provides bidirectional transfer capability for download and initialization. With repeaters 
it can scale indefinitely, although the total bandwidth does not increase and will usually 
decrease. The main cost element is the need for high-speed interface circuitry, which 
must be designed to support the full transfer rate of the bus even if each module is 
connected for only a small fraction of the total readout time. Failure of the bus itself will 
disable the entire system, but failure of an individual module is usually not critical. 

In most cases, data readout is controlled entirely by the processors. A processor will 
arbitrate for the bus and then read event data from each of the front-end buffers before 
releasing the bus to the next ready processor. In more complicated systems, an 
intermediate event builder will read the front-end buffers and then write data directly 
into the memory of a selected processor. In some architectures several independent 
busses may operate in a parallel tree structure to reduce deadtime at the front-end. 
However, without intermediate data compression, the net bandwidth in a tree structured 
system is always equal to that of a single bus. 
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Figure 2: Shared Bus Interconnection Network 

Great effort has gone into the development of both general-purpose and specialized 
busses for high energy physics applications. CAMAC [21, with bus transfer rates up to 
three Megabytes/second, has been in use since the early 1970s. FASTBUS [31, with bus 
transfer rates up to fifiy Megabytes/second, has been in use since 1979. The industry 
standard VMEbus [41, with bus transfer rates up to thirty Megabytes/second, is also 
found in many systems, but mainly at the higher levels where commercial modules are 
available. Designers of the next generation Futurebus expect to exceed one 
Gigabyt&econd with a very wide bus and self-timed data transfers. This is not likely to 
be realized in practice. 

In commercial multiprocessor systems, most of the “low-end” machines (Silicon 
Graphics [51, Solbourne 161, etc.) we a shared bus architecture. Local cache memory on 
each processor module limits the need for continuous bus activity. The same effect 
applies to data acquisition systems where the time to read out an event is usually much 
shorter than the processing time. 

One example of a shared bus system in high-energy physics is the event building 
and online processor farm sections of the data acquisition system for the Collider 
Detector at Fermilab (CDF) [71, as shown in Figure 3. The Event Builder reads out the 
front-end scanners,which have already read out ADC and TDC data, over two 
FASTBUS Cable Segments. After reformatting, the data is written over a single 
FASTBUS backplane to a VMEbus interface to a Level 3 online processor farm. Once a 
processor in the farm has processed the event by applying some filtering algorithm, it sets 
an attention flag which is read by a VAX [81 computer via FASTBUS and VMEbus. If the 
event is to be analyzed online, it is read out of the processor memory over VMEbus, then 
over FASTBUS and into one of the Consumer VAXs. 

One of the inherent bottlenecks of the CDF data acquisition system is the mixture of 
data and control over the same busses. The FASTBUS network is shared between many 
devices, some sending control messages to initiate readout of the “next” event from the 
front-end electronics, others reading and writing data, others polling devices to see if they 
have completed a set task, etc. 

The VMEbus in the Level 3 online processor farm is also shared by devices which 
write data, read data, and poll processors. This sharing is facilitated in both FASTBUS 
and VMEbus by arbitration mechanisms, but this sharing does bring with it significant 
implications in terms of reduced bandwidth and bottlenecks. 
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Figure 3: CDF Data Acquisition System 

The inherent bandwidth of the bus is not a limiting factor for many existing 
systems. Instead, the interfaces and buffers at the source and destination modules create 
much of the bottleneck. Recognizing that the cost and error rate of electronics increases 
exponentially with the operating speed, a better solution to the bandwidth limitation is 
parallelism. Parallelism relies on multiple, lower-speed connections or components in 
place of a single, less-reliable, high-speed path. Parallelism does not necessarily imply 
more hardware. A system built using many low performance components will often cost 
less and occupy less space than a single, complicated high-performance device. 

Many standard bus specifications and multiprocessor implementations define a 
second or third bus (Figure 4) which can operate in parallel with the main system bus. 
Additional bandwidth is gained only if processors do not contend for the same global 
resources. Examples include the VSB bus in VMEbus systems and the iLBX bus in 
Multibus [91 systems. This approach is usually limited to one or two additional busses by 
the physical packaging constraints of standardized systems. A multiple bus architecture 
can be very reliable since failure of any single bus has no adverse effect other than a 
reduction in total system bandwidth. 
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Figure 4: Multiple Bus Interconnection Network 

With multiple busses, several events can be read out simultaneously. If events are 
assigned to specific buffers, then simple bus arbitration can be used to control readout 
sequences. Otherwise, a small amount of centralized control is necessary. Aa in any 
parallel system, the front-end butTem must be able to hold more than one complete event. 

An example of a Multiple Bus Interconnect is the Heidelberg/Darmatadt Crystal 
Ball detector data acquisition system [lOI shown in Figure 5 and consisting of FASTBUS 
and CAMAC front-end electronics, the Heidelberg POLYP multiprocessor system and 
an online VAX computer. The POLYP multiprocessor system consists of thirty Motorola 
68000 microprocessors which are used to process the event data stream. The processors 
have their own local bus which is connected by bus switches to a the global POLYBUS. 
The data flows from the detector through the FASTBUS and CAMAC front-end 
electronics intO a set of POLYP input processors which also buffer the event data. From 
here the data is transferred to the POLYP online filter processor’s over the POLYBUS. 
Events which pass the filtering stage are again transferred over the POLYBUS to a 
POLYP I/O processor, where the data is read by the host interface and written to tape. 

Figure 5: HeidelbergDarmstadt Crystal Ball Data Acquisition System 
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Both the data sources and destinations in the multiple bus architecture are 
multiported, but the same bandwidth can be obtained with multiple ports on only one side 
of the interconnect as shown in Figure 6. Reliability is reduced because there is only one 
path from a particular source to a particular destination. Arbitration is handled by the 
multiport module rather than the bus. 

Figure 6: Multiport Memory Interconnection Network 

This approach is still limited by the number of physical ports which can be 
supported by a module. To allow greater expansion, multiport memories can be further 
subdivided into an array of independent dual-port, buffers as shown in Figure 7. Dual- 
port memory is easier to implement since it is available in the form of commercial 
integrated circuits (dual-port static RAMS, FIFOs or video DRAMS). 

D . M 
D 

M 
D 

F 
M 

D 
M 

s 

Figure 7: Dual-Port Memory Interconnection Network 

With dual-port memory, the limitation now becomes the total number of buffers 
required in a larger system instead of the number of connections per buffer. The number 
of buffers can be reduced by using higher speed output busses, (allowing a rectangular 
instead of square array) or possibly by implementing some kind of multistage memory 
architecture (see references to Clos networks later). 

In the dual-port memory architecture, the fragments of a given event are 
transmitted in parallel from the fro&end subsystems to buffers in a selected row. These 
fragments are then read out sequentially by a processor while the next event is being 
transmitted to another row of buffers. 

An example of a Multiport Memory Interconnection Network is the DO data 
acquisition system at Fermilab as shown in Figure 8. DO is really the reverse of the 
system described in Figure 6; each of N sources is connected to each of N destinations. 
Event building consists of bringing together the data from the Level 1 Trigger subsystem 
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and seven detector readout subsystems housed in VMEbua into one of several MicroVAX 
[81 computers. Data flows from VMEbus-based front-end electronics over eight cables 
which are in turn bussed to multiport memories in each MicroVAX computer of the 
online processor farm. In this experiment, the online processor farm is called the Level 2 
subsystem. If an event is accepted after a Level 2 filtering algorithm, it is passed to a 
“host” VAX computer over another input/output (I/O) cable. A special feature of the DO 
multiple bus system is the use of multiport memories, which eliminate. the overhead 
associated with unnecessary copying of data within the system. Events arriving at one 
port of each of eight multiport memories in each MicroVAX computer are copied to 
internal memory using the computer’s internal bus. This multi-port memory 
architecture allows events to be transmitted in parallel to the MicroVAX computers. 
However, the bottleneck is likely to be the three Megabytes/second transfer capability of 
the internal bus in the MicroVAX. 

F’igure 8: DO Data Acquisition System 

The dual-port memory architecture in Figure 7 is actually a form of buffered 
crossbar switch. A crossbar switch provides a complete, non-blocking interconnection 
between all inputs and outputs. It is an ideal interconnection network in terms of 
bandwidth eff%iency. Crossbars used in packet-switching networks can be classified by 
the location of the buffering (input, output or embedded) with respect to the switching 
matrix. If the buffers are moved to the inputs or outputs (Figure 91, the switching matrix 
itself can be conlined to a very small area, usually inside a few VLSI circuits. As an added 
advantage, only 2N large dual-port buffers are required if the buffers are positioned at 
the inputs and outputs, whereas N2 smaller buffers are required if they are embedded in 
the switching matrix. The total amount of memory required is the same regardless of 
where it is positioned, but as a practical matter it is easier and less expensive to 
implement a small number of large dual-port buffers compared to a large number of 
small dual-port buffers. 
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Figure 9: I/O Buffered Crossbar Interconnection Network 

The full crossbar requires N2 crosspoints, which may be impractical for larger 
systems, even in VLSI. A three stage Clos network, shown in Figure 10, is an example of 
a Multistage Interconnection Network (MIN). For systems with twenty or more data 
channels, a multistage network can provide essentially the same nonblocking 
characteristics as the crossbar switch, using fewer crosspoints. 

Figure 10: Three Stage Clos Interconnection Network 

The number of the center stage switches is calculated to provide at least one more 
path than would be used if all inputs to a first stage switch and all outputs to a third stage 
switch (except the selected input and output) were busy. For an N channel system, the 
optimum switch sizes are n x k for the first stage, N/n x N/n for the second stage and k x 
n for the third stage, where n is approximately -/(N/2) and k is 2n-1. In the example of 
Figure 10, N=8, n=2 and k=3. This yields a total of 96 crosspoints, which is actually more 
than the 64 required for a single stage crossbar. For a 512 channel system however, the 
three stage Clos network requires only one fourth as many crosspoints as the single stage 
crossbar. 

In a large network, a centralized controller is often used to determine the best 
network configuration for a given interconnection pattern. For a random combination 
of sources and destinations, the time required to calculate this optimum switch 
configuration could far exceed the actual data transfer time. Fortunately, this level of 
control is not necessary in event building applications. Event readout follows a fixed 
access sequence which makes simple arbitration schemes very effective. At startup for 
example, all sources will contain a fraction of the data from the first event and will all 
arbitrate for the same output channel and processor. Only one is successful in 
transmitting its data, while the others are blocked. As the second event is read out, the 
source that was successful on the first arbitration now sends its portion of the second 
event to a different processor, while the remaining sources contend again for the first 
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output channel and processor. If events are nearly equal in size, the system will 
automatically converge to a state where each source is accessing a different output 
channel and there is very little contention. In fact, because this arbitration sequence is 
known beforehand, there is no real need to place arbitration circuitry in the network. 
The sources can be. programmed to simply delay transmission by one time-slot with 
respect to the adjacent input, thereby avoiding contention altogether. 

Because of this predictable access pattern, configuration control of a crossbar 
switch can be greatly simplified. In general, a complete random interconnect capability 
is not necessary as long as all inputs can be connected to all outputs at least once during 
the transmission of each event. A “barrel shifter” is a device which provides this simple 
rotating interconnection pattern using a single control input. The data multiplexing logic 
of an N x N barrel shifter is identical to that of a unidirectional N x N crossbar switch but 
with far fewer possible configurations (N versus NY. Barrel shifters are often used as 
the “space division” stage (physical circuit switching stage) of a time-division multiplexed 
(TDM) switching system. A crossbar switch can be operated as a barrel &i&r by simply 
restricting the set of possible control inputs. This limited subset of available 
configurations is all that is necessary for event building, as illustrated in Figure 11. Here 
the events are assumed to be equal in length and evenly distributed. Non-uniform 
distributions of event data can be handled by the addition of Time-Slot Interchange (TSI) 
buffers on either side of the barrel shifter. TSI operation is explained in more detail later. 
This architecture closely resembles a typical telephone switching system (e.g., AT&T 
4ESS or 5ESS [111X 

Figure 11 illustrates an idealized example of a four-input, four-output barrel shift 
switch where the size of all the input event data fragments (e.g., event number 1, 
fragments lA, lB, 1C and 1D) are not only equal but are equal to the packet length. Data 
passes through the switch in fixed-length packets with each input channel delayed by 
one packet time slot relative to the adjacent channel. With the switch control set to logic 
state 00, the first data packet (1A) passes directly through the switch along with three 
empty packets. The switch control is then incremented by one to logic state 01 and 
packets 1B and 2A are transmitted through the switch. During the next time slot (switch 
control set to logic state lo), packets lC, 2B and 3A are transmitted. Finally, with the 
switch control set to logic state 11, packets lD, 2C, 3B and 4A are transmitted. A&r one 
rotation of the switch control, the system reaches a steady-state condition. Parallel event 
fragmenta are converted to assembled event streams with no loss of bandwidth. Four 
packets of data from four different events cross the switch during each packet interval. 
The bandwidth of data flowing through the event builder matches the bandwidth of data 
from the detector. 

The example given in Figure 11 is not only an idealized situation but shows the 
switch-based (barrel shift) parallel event builder IN working in a open-loop control mode 
whereby events are transmitted to sequential outputs. Final event destinations 
(processors in an online array of processors) are assumed to be ready to accept the next 
event. This mode of control for the barrel shift IN, along with three other modes of 
control, will be described in more detail later. 

The simplicity of operation of this particular IN is possible only because of the 
nature of physics event building. Messages are unidirectional with predefined 
destinations. The control of the barrel shift switch requires only a counter, whereas 
dynamic calculation and loading of switch routing information during switch operation 
is required with a generalized crossbar. A final point in favor of the barrel shift 
interconnect involves the expansion capability. For example, a 1024 x 1024 barrel shiR 
IN using currently available 64 x 64 integrated circuits would require only 32 ICs 
compared to 256 ICs for the equivalent crossbar. 
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Figure 11: Barrel Shift Interconnection Network 

Banyan or Delta networks are the basis of many self-routing packet networks. 
Under certain conditions, the total bandwidth of a Banyan network (Figure 12) matches 
that of a crossbar or Clos network, without the need for a centralized control mechanism. 
Each node of the network is a simple 2 X 2 switch designed for self-routing of data 
packets based on a destination header. To avoid blocking, this network is preceded by a 
sorting network or stage of time-slot interchangers which order the data packets in such 
a way that no contention for internal or external datapaths will occur. 

Because there is active circuitry in each node of the switch, data rates are generally 
lower. Without internode buffers, the entire network must be bit and packet 
synchronous. This type of network will probably find use in future telephone switching 
applications as represented by the AT&T Starlite project [121, and could provide a 
commercial alternative to specially designed event builders. 

FQure12: Banyan Interconnection Network 
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The mesh interconnection network (Figure 13) is popular in the construction of 
large multiprocessor systems (Intel Touchstone [131, Connection machine [141, Meiko 
transputer array [151). These INS are formed by overlaying an array of processors on 
the dual-port memory array of the buffered crossbar switch. Some cost reduction may 
be possible with this approach. The mesh also allows direct processor to processor 
communication, not normally a requirement in event building but potentially useful in 
analysis of overlapping events or methods of event building which divide the analysis 
software into stages with each stage resident in different processors. Reliability can be 
higher for a mesh interconnect since there are multiple paths for each packet transfer. 
In practice though, the control complexity and possibility of message deadlock allows only 
orthogonal routing. Otherwise a packet may inadvertently be routed into a circular path 
and lost or delayed. Intelligent buffered routers are necessary for event builder 
applications because there is nearly continuous traffic on all links in the network. If the 
processors managed the internode communication directly, there would be little time left 
for processing the data. 

The BCD detector collaboration at the SSC is investigating combining both the 
event building and online processor farm event reconstruction functions using a mesh 
interconnection network. It is hoped that by breaking down event reconstruction into a 
set of small functions, each of these functions can reside in the processors’ cache memory 
thereby increasing the power of each processor. A high-speed mesh interconnection 
network would be used to transfer results from one processor to the next processor until 
the event has been both built and reconstructed. 

Figure 13: Mesh Interconnection Network 

A star coupler is a device used to connect computers and computer peripherals to 
one another. In the past the communication path has been over relatively slow data links 
such as Ethernet. With the advent of fiber optic technology and emerging fiber data link 
standards such as the 125 Megabit/second Fiber Distributed Data Interface [161 standard 
(FDDI), the one Gigabyte per second High Performance Parallel Interconnect standard 
(HPPI; formerly “High Speed Channel”) [171, and the one Gigabyte per second fiber 
channel of the Scalable Coherent Interface [181 standard (SC1 1, star couplers are being 
developed with throughputs which will allow them to be used for many high energy 
physics experiments. 

An example of a commercially available star coupler is the Ultra Network 
Technologies, Inc. 1191 UltraNet 1000 Hub. Because fiber data link standards have not 
yet been finalized and integrated circuit support for these data link standards is not yet 
available, this company developed ita own proprietary fiber data link and a modular 44 
I/O channel device to get an early lead in the high performance, high throughput star 
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coupler market. This product, with its fifty Megabytes/second per I/O port effective 
throughput, is the highest performance commercially available star coupler network 
today. The performance is attained by putting software intensive communication’s 
protocols into silicon. The product is a packet-based multiple but not parallel bus 
interconnection network with little buffering (i.e., non store and forward mode 
operation). As shown in Figure 14, the UltraNet 1000 Hub has a single, one 
Gigabit/second primary bus and multiple, one Gigabit per second local busses (one for 
each quad I/O port module). At the local bus level, each I/O port module supports two 
simultaneous input to output links each capable of fifty Megabytes/second throughput. 
Thus, the maximum effective throughput of this star coupler is 1.1 Gigabyte&econd (i.e., 
150 Megabytes/second X 21 X 11 quad I/O port modules). 

Figure 14: UltraNet 1000 Network Hub 

Figure 15 illustrates the use of the UltraNet 1000 Hub as an event builder in a high 
energy physics experiment. Since each detector data source must pass through the Star 
Coupler to an online farm processor, the 1.1 Gigabyte/second effective throughput is not 
realizable. As shown in the Figure, given an experiment with forty data sources and two 
output links to online processors, in this case Silicon Graphics, Inc. workstations 151, the 
limiting factor in effective throughput is that event data from each data source must 
pass through the primary one Gigabit/second backplane. Including various overheads 
(e.g., communications protocols, arbitration times, etc.), the effective throughput through 
this star coupler when all messages must pass over the primary bus is approximately 50 
to 80 Megabytes/second ( -50% of l/g Gigabytes/second). 
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Figure 16: Data Acquisition System Using a Star Coupler as an Event Builder 

The main point in mentioning this technology for possible event builder applications 
in high energy physics applications is not necessarily the tens of Megabytes/second 
effective throughput realizable today with a commercial product but the explosive 
growth potential of this marketplace and the use of standard industry supported data 
links for the transmission of data. Using a switch-based interconnection network or 
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multiple primary backplanes instead of a single primary backplane and using 
Gigabit/second or even faster standard data links, within five to ten years a large, 
commercially-available Star Coupler might have an effective throughput approaching 
the few Gigabyte* per second needed for some SSC data acquisition systems. 

ARCHlTECTURAL CONSID~TIONS 

Several architectural considerations are common to all systems: 

Mixed Control/Data Paths: This has become an obvious weak point in many 
existing systems. Very few high bandwidth data acquisition architectures would now 
consider mining control and data on the same physical network. 

Push/Pull Data Transmission: A “pull” architecture implies a bidirectional 
datapath and some limited mixing of control and data. A “push” architecture implies 
greater intelligence at the source and increased buffering at the destination. However, it 
also allows the use of high bandwidth, unidirectional data channels (e.g., fiber-optics) and 
a loosely coupled control structure. At high data rates and greater source/destination 
distances, “pull” architectures are not practical. 

Centralized/Decentralized Control: There is always at least some centralized 
control in any data acquisition system. In particular, distribution of the low level triggers 
must be centralized to avoid moving unwanted data off the detector. Beyond the front- 
end, the need for centralized control is minimal. A global trigger rate control for the 
entire system or for individual output channels is sutfxient, and does not seriously affect 
system throughput. All common control points should be located in one logical device (an 
obvious choice is the Level 2 trigger system). There is no need for separate centralized 
controllers at the detector, event builder and processing farm. 

The ideal event builder architecture is one that provides the high bandwidth 
capabilities of a large IN, but without the complicated control mechanisms. Much of the 
complication in general-purpose INS result from the need to support random message 
traffic. A sophisticated controller is required, either centralized or distributed through 
the network, to avoid contention. In event building, much of this control can be 
eliminated by partitioning the system so that the average data rate between any 
combination of source and destination is nearly constant. This is similar to the advantage 
gained in designing a parallel processor interconnect when the processors are running a 
fixed algorithm with known interprocessor communication requirements. 

A shared bus provides a very simple control mechanism, but must be eliminated 
because of low bandwidth. Expanding to a multiple bus or multiple port memory 
architecture is physically awkward for more than three to eight channels. 

The dual-port memory array (crossbar with embedded buffers) is a good choice for 
systems with up to 32 channels, after which it becomes large and somewhat expensive. 
Moving the buffers to the inputs and outputs of the crossbar allows the system to expand 
linearly, but requires some additional control. Restricting the interconnection pattern 
(e.g., barrel shift instead of full crossbar) reduces the size of the switching network. 
Multistage networks are more efficient, in terms of number of crosspoints, but also more 
difficult to configure. The availability of VLSI crossbars and the limitations on data 
acquisition system size (typically less than 256 channels) make multistage networks 
unnecessary. 
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Some of the self-routing packet networks now being investigated for 
telecommunications use are overly complicated for event builder needs. This additional 
complication may be offset by the advantages of buying a standalone commercial 
product. 

ADDING FAULT lWLEXANCE To 
INTERCONNJWI’ION NETWORKS 

A fault tolerant interconnection network is one that provides service, in at least 
some cases, even when it contains a faulty component or components. A network is 
“single-fault tolerant” if it can function as specified by its fault-tolerance criterion despite 
any single fault conforming to its fault model[201. A network is “i-fault tolerant” if any set 
of “i” faults can be tolerated. A network that can tolerate some instances of “i” faults is 
“robust” although not “i-fault tolerant”. 

Two methods used to add fault tolerance (redundancy) to interconnection 
networks are dilation and replication [211. Dilation, as shown in Figure 16a, expands or 
“dilates” an IN stage or stage subsection. If one path through an IN stage subsection fails, 
an alternate path through the same stage subsection is used. Replication, as shown in 
Figure 16b, does not alter the IN stage subsection but adds identical or “replica” stage 
subsections. Additional stage subsections are used when their duplicate stage subsections 
fail. Both dilation and replication improve system performance (by reducing the 
probability of blocking) and reliability at a cost of increased price and complexity. A 
message arriving at any input of a 4 x 4 switch in Figure 16a or a 2 x 2 switch in Figure 
16b can be switched to any output. In both figures, normal message paths are shown in 
bold 

Figure 16x FigUE16lX 
Dilation Redundancy Replication Redundancy 

Another less obvious method for adding fault tolerance is by using an “extra stage 
cube” network [241 as shown in Figure 17. For each 2 x 2 switch, messages arriving at 
port “a” or port “b” can be sent to either port “c” or port “d” or to both ports “c” and “d” 
simultaneously (i.e., broadcast). The first (leftmost) and fourth (rightmost) stages can be 
enabled or bypassed. The first stage is enabled when it is being used and not “bypassed” by 
the multiplexers shown after each first-stage 2 x 2 switch. The fourth stage is enabled 
when it is being used and not “bypassed” by the demultiplexers shown before each fourth- 
stage 2 x 2 switch. Normal operation of the IN is with the first stage enabled and the 
fourth stage bypassed. If a fault occurs in the fourth stage, no reconfiguration of the IN is 
necessary. If a fault occurs in the first stage, it is disabled and the fourth stage is enabled. 
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If a fault occurs either in a link or in either of the inner stages, both the first and fourth 
stages are enabled. Multiple-fault tolerance is enhanced by individually enabling and 
disabling the first and fourth stage multiplexers and demultiplexers, respectively. This 
network is said to be “single-fault tolerant” and “robust” in the presence of multiple faults. 

In a specific application in high-energy physics, a decision whether to use either of 
these methods of fault tolerance would have to be based on the ease with which failures 
are diagnosed and repaired in a system without fault tolerance versus the added price 
and complexity of implementing and maintaining a system with fault tolerance. 
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Figure 17: Extra Stage Cube 8 x 8 Fault Tolerant Interconnection Network 

SELF-ROUTING TECHNIQUES 

Routing tags placed in message headers are used to describe a path through a self- 
routing network. In a fault-tolerant self-routing network, these tags specify a 
functioning path. There are three methods for sources to generate routing tags that 
specify a fault-free path. With “non-adaptive” routing, a source is notified of a 
malfunctioning path when a message it has initiated reaches a faulty component. This 
approach requires little hardware but usually has poor performance. There are two 
forms of “adaptive routing”. With “notification on demand” adaptive routing, a source 
maintains a table of faults it has encountered while attempting to establish paths. This 
table is used to derive routing tags for subsequent messages. With “broadcast notification” 
adaptive routing, each source is notified of any fault encountered by any message 
attempting to establish a path. With another method of routing, “dynamic routing”, 
routing tags are “dynamically” altered as messages pass through a network and faults 
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are encountered. This routing method will not be discussed any further in this paper. A 
few techniques for self-routing are discussed below. 

With circuit-switched INS, a complete path from source to destination is established 
prior to the initiation of message transmission. No buffers are required in any internal 
IN stages. With packet-switched INS, packets of fixed or variable sizes with routing tag 
headers are sent to and buffered in each succeeding stage a message passes through in 
the IN. Only links between two switches of two adjacent stages need to be established at 
any one time. Messages are “stored and forwarded” from (switch) stage to (switch) stage 
until reaching their destination. 

Wormhole routing differs fmm packet-switched routing in that only one word of a 
packet is forwarded to the next switch after the current switch has received and latched 
the next word of a message. Less buffering is required than in a packet-switched IN. 
Message transmission is halted if a downstream switch is busy passing another message. 
Messages are thus “pipelined” through the IN. 

Virtual cut-through routing is similar to wormhole routing except that when a 
message gets blocked at a busy switch, the remainder of the message is transmitted to 
and buffered in the busy switch. More buffering than in wormhole routing is required 
but effective throughput is increased by not keeping all upstream switches in a blocked 
message busy until the message is no longer blocked. 

Figure 18, an 8 x 8 Multistage Cube IN, will be used to describe three methods for 
defining routing tags in this self-routing IN. In all the examples, the message source ID 
is binary six (110) and the destination ID is binary three (011). Each 2 x 2 switch has four 
operating modes as shown at the bottom of the figure. Broadcast modes will not be 
discussed. 

With the first method, the routing tag is the destination (011). At each stage, the 
switch receiving the message examines its component of the routing tag (i.e., stage 2 
examines the 22 bit, stage 1 the 21 hit, etc.) to determine how to route the message. In a 2 
x 2 switch, the upper input port is port 0 and the lower input port is port 1. Routing is 
determined as follows. If the switch’s component of the routing tag is logic “A” and the 
input port receiving the message is port “A”, the switch operates in the “straight” mode as 
shown in the figure; ifthe port receiving the message is port “not A”, the switch operates 
in the “exchange” mode. 

The second method uses the rule that, with a 2 x 2 switch, the upper port is port 0 
and the lower port is port 1. The switch simply use8 ita component of the routing tag, the 
destination as in the first method, as a pointer to output port 0 or output port 1. Both this 
and the previous method allow verification by the destination that it was supposed to 
receive the message (i.e., destination ID equals routing tag). 

With the thiid method of routing, the routing tag is the logical bitwise “exclusive or” 
of the source and destination. If an input port of a 2 x 2 switch receives a message and its 
component of the routing tag is logic 0, the switch operates in the “straight” mode; if logic 
1, the switch operates in the “exchange” mode. The disadvantage of this self-routing 
technique is that the routing tag is more diff?cult to compute. The advantage is that a 
destination can derive the source of a message by doing an “exclusive or” of its address, 
the destination, and the routii tag. 

Combinations of the above self-routing techniques, along with error detecting and 
possibly correcting codes on the routing tag and even the data, allow the destination not 
only to identify the source of the message and to determine if it was supposed to receive 
the message but also guarantee data and message integrity. 
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Figure 18: Multistage Cube Interconnection Network 

INPUT AND OUTPUT QUEUEING IN 
AN INTERCONNECTION NETWORK 

Packet switching networks often employ input or output queues to regulate data 
flow in the network [223. Most methods of queueing assume that packets are fixed- 
length and that each packet has an equal probability (i.e., l/number of outputs) of being 
addressed to any given output. Input and output queueing implies FIFOs at the IN 
inputs and outputs, respectively. 

With input queueing, the number of message packets with the same destination 
sent through the IN during any one time slot is controlled. Potential bottlenecks at the 
IN outputs are minimized and throughput is actually increased even though the 
transmission of some message packets is delayed. The disadvantage is that some packets 
which could have been transmitted to an idle output are blocked by a preceding packet 
which is waiting for a different, busy output. 

With output queueing, it is assumed that the internal network links can operate at 
a much higher bandwidth than the input or output channels. Packets arriving 
simultaneously at the same output are queued until the output is ready. Output queueing 
is more efficient than input queueing because there is no blocking within the network 
itself. However, the assumption that the network links can operate at N times the single 
channel I/O bandwidth is not very realistic. 
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Time Slot Interchangers provide the advantages of output queuing while being 
physically located at the input of the IN. They act to resequence the input data so that no 
packet is blocked by preceding packets. This is equivalent to the input queueing model 
with a separate FIFO for each destination. Various other combinations of input, output 
and internal queueing (not mentioned in this paper) are also possible. 

A FUTURE DATA ACQUISITION SYSTEM 
ARCHITECTURE & SOME FUTURE TECHNOLOGIES 

Specified event building data rates for some of today’s existing, under development 
and proposed high energy physics experiments are given in Table 1. Note the two to 
three orders of magnitude increase in data rates in two of the proposed Superconducting 
Super Collider @SC) detectors from present-day experiments. This is due to expected 
particle interaction rates of 106 and 107 per second, respectively, for the Solenoid and 
BCD detectors. It is obvious that new techniques of event building, most likely entirely 
parallel, need to be developed. 

F t 
ALEPH (CERN) 1 Megabyte/second 
DELPHI (CERN) 2 Megabytea’second 

L3 KERN) 8 Megabytes/second 
CDF (Fermilab) 15 MegabytesJsecond 
DO (Fermilab) 27 Megabytes/second 
Solenoid @SC) l-10 Gigabyte&second 

BCD (SSC) lo-100 Gigabytedsecond 

Table 1: Present and Future Event Building Data Rates 

Figure 19 illustrates data acquisition and triggering data flow requirements for the 
proposed large solenoid detector at the SSC. 60 MHz beam crossings and 100 MHz 
interaction rates are reduced to trigger rates of 1 KHz a&r two levels of triggering. 
Substantial intermediate event data buffering during triggering is required. With 
average event sixes of one Megabyte, event data must pass from the intermediate buffers 
through a parallel event builder into an online processor farm CL3 Farm) at an average 
rate of one Megabyte every one millisecond, 1000 events/second or one Gigabyte /second. 
Designing the data acquisition system with a factor of ten higher throughput capability 
for future growth and possible higher trigger rates and larger event sizes, requires a ten 
Gigabyt&econd average throughput parallel event builder. 
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Figure 19: Trigger & Data Acquisition Dataflow for the SSC Solenoid Detector 

Figure 20 illustrates a proposed new data acquisition system architecture for the 
two SSC detectors. Two levels of triggers are proposed for the Solenoid detector; only one 
level of triggers is proposed for the BCD detector. The central component of the 
architecture is a parallel event builder or interconnection network. Extensive system 
simulations are needed to define the parallel event builder to be used on these detector 
data acquisition systems. The brief introduction to interconnection networks and various 
technologies described in this paper should aid in choosing an implementation method for 
the parallel event builder. 
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Figure 20: Proposed Data Acquisition System Architecture 

To achieve the needed high data rates through a parallel event builder in an SSC 
experiment, much of the front-end electronics needs not only to be mounted on the 
detector but needs to contain buffers for several events. Data and triggers must be 
pipelined to eliminate deadtime. Front-end electronics will contain mostly analog 
pipelined buffers to store data for a few microseconds at the sixteen nanosecond crossing 
rate of the detector during Level 1 triggers. Data will be stored for several tens of 
microseconds in analog or digital buffers during Level 2 triggers. A possible front-end 
and near detector architecture is shown in Figure 21. Standard readout ICs, Data 
Collection ICs, would also be mounted on the detector and would be used to read data 
from all front-end subsystems. For most and possibly all subsystems, event data will be 
stored in front-end ICs until a&r Level 2 triggers. Because of the extremely high event 
rates and widely varying distributions of data for a particular event within various front- 
end ICs, all of one event’s data will not necessarily be received at the Data Ordering logic 
before the data from events occuring later in time. Thus, the Data Ordering logic is a 
temporary buffer for several events. A parallel event builder operates most efficiently 
when approximately equal amounts of data arrive at each of its inputs averaged over 
several events. Data Balancing logic is used to help equalize the distribution of data being 
transmitted to each input of the parallel event builder. High-speed fiber data links are 
used to transmit data to the parallel event builder. 

Another approach to event building involves sending individual fragments of event 
data through a multistage interconnection network as they are read by the Data 
Collection ICs, without waiting until all local data for a specific event is collected. Both 
this technique and others described above need extensive simulation before the proper 
design can be decided upon. 

22 



To Parallel Event Builder 

Twlsted-Pair Copper 
or (future) Low-Power Optici? 

Data Collection 

I I I I I I- 
L---l L---l L----l 
Detector Detector Detector 

Subsystem 1 Subsystem 2 Subsystem 3 I-------J 
Detector 

Subsystem N 

Figure 21: Possible Future Front-End & Near Detector Architecture 

A major new technology for interconnecting multiple IC wafers with very large 
numbers of interconnections is “3-D” packaging (being developed by Hughes AircraR 1231 
and others). As shown in Figure 22, the technology stacks several silicon wafers 
separated by spacers, interconnects the wafers by thermally dissolving molten droplets of 
aluminum such that they “eat” through a wafer, and connects the wafers to the outside 
via conventional flat cable. A 32-input, 32-output five-wafer stack, having well over 
4000 feedthrough interconnections between the wafers, and able to withstand shock tests 
needed for military use has been successfully tested by Hughes. Each feedthrough has 
approximately twenty ohms of resistance. Present development plans include a “3-D 
computer” consisting of a 128~input, 128-output 15-wafer stack with nearly 250,000 
interconnections operational in 1990 and another consisting of a 512-input, 512-output 
25-wafer stack with over l,OOO,OOO interconnections operational in 1994. 

Data presently is fed into the wafer stacks in a digital serial format at relatively few 
tens of Megabits/second. The physical properties of the flat cable will lit the data rates 
on the I/O cables. In time, different cabling technologies will be used, both increasing I/O 
data rates and allowing analog and digital I/O. Wafer stacks under development 
presently contain only digital circuitry but there is no reason totally analog or combined 
analog/digital wafers couldn’t be used. 
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Figure 22: Three-Dimensional Integrated Circuit Packagir ‘g 

In high-energy physics, these wafer stacks have several applications such as track 
segment finding, silicon pixel preprocessing, combined preprocessing (i.e, calibrations) 
and event building, etc. Their compactness make them ideal for installation right on 
detectors. Their interconnectability makes them very suitable for interconnection 
networks and preprocessing at various stages of a data acquisition system. For example, 
top wafers could be partially processing physics event data while lower layers are 
receiving data on the flat cables to further process this data with the results of the top 
wafer stages of processing. 

The transfer of high-speed serial date over wire and/or fiberoptic cable will be 
required in many future data acquisition system architectures. Several commercially 
available VLSI chips such as the Advanced Micro Devices TAXI [241 and Gazelle HOT 
ROD [251 integrated circuits appear to be useful for these applications. Future Local Area 
Network (LAN) and data link standards such as FDDI, HPPI and SC1 must be studied to 
determine if they are appropriate to the proposed DAQ architectures. The major cost 
item in a fiberoptic data link operating at 250 Megabits/second or higher is the optical 
driver and receiver. The development of low-cost, high-speed (500 to 1000 
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Megabits/second) optical components represents a major effort. Thus far, the 
telecommunications industry has only concentrated on high-power optical components 
capable of signal transmission without repeaters over distances of miles. 

Research on optical or optoelectronic switching systems can be directly applied to 
parallel event builder design. A very good overview of current work is presented in [261. 
The use of AT&T’s recently developed self-electrooptic effect device (SEED) in high- 
speed switching networks, along with general information on optical switching is 
covered in [271 and 1281. 

Figure 23 illustrates two approaches to optical switching, using optical shutters and 
waveguides to form crossbar switches. Switches of this type have been proposed or 
implemented with up to 32 channels. Although a fully optical datapath would seem to 
have advantages over a system which converts from optical to electronic and back, there 
is the potential problem of resynchronizing the optical receivers for each change in 
transmitters. A more likely candidate for larger switches is opto-electronic integrated 
circuitry (OEIC) where the inputs and outputs are optical fiber, but the actual switching 
logic is conventional GaAs. Some decoupling of the inputs and outputs could take place in 
the electronic part of the switch so that the individual links remain synchronized. 
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Figure 23: Optical Switching 

To be cost-effective, future general-purpose processors must be highly integrated. 
Several major semiconductor manufacturers predict the availability of 50-100 million 
transistor ICs by the year 2000 1291. Figure 24 shows an example of the type of general- 
purpose architectures which will be made possible by this level of integration. Since most 
on-line physics applications tit easily into an eight Megabyte memory space, a single KC 
multiprocessor is ideal for use in a high level processor farm. Even with conservative 
specifications (80 nanosecond DRAM, 50 MHz clock), an eight processor IC could deliver 
250 MIPS at less than $5/MIP. This is the target cost/performance range which would 
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allow the use of general-purpose processors in a “million VAX-equivalent” processor 
farm. 

The Intel Touchstone project 1131 is an example of near-term technology in 
processor farms. This system is expected to deliver approximately 200,000 VAX- 
equivalents (floating-point) in a 2048 node configuration by 1992 and should be scalable 
to the million VAX-equivalent” range by the late 1990s. The Touchstone architecture 
uses a mesh interconnect, but allows direct routing between any two nodes without store- 
and-forward buffering. The network could be used for event building, as well as 
processing, if it were preceded by a stage of TSIs. Without TSIs, a significant portion of 
the processor local memory and I/O bandwidth may be needed for store-and-forward 
buffering since all input messages are contending for the same destination. 

100 Megabytelsec 1 Glgabytdsec 
Block Transfer Internal Bus 
External Bus (128 Byte Cache Line Size) 

64 Megabit 
DRAM 

(6 Megabytes) 

Figure 24: Integrated General-Purpose Multiprocessor 

FBRMILAB’S DATA ACQUISlTION SYSTEM ARCAI’I’ECTUBE 
&PARALLRLRVENTBUlLDERPROTUTYPR PRmm 

A new data acquisition system architecture called the Scalable Parallel Open 
Architecture Data Acquisition System 1301, is being developed at Fermilab. The goal of 
the project is to build a prototype system whose central component is a switch-based self- 
routing parallel event builder [311. In order to test the system, a crate of test modules 
representing physics event data sources will be used to provide high speed parallel inputs 
to the switch, while at the outputs of the switch a crate of electronics representing an 
online processor farm will receive high speed “built” events in parallel. Extensive 
behavioral modeling and simulation experiments are presently being undertaken with 
the goal of understanding not only individual components of the architecture but also 
how they interact in the system. The architecture is scalable, firstly, in so much as it is 
well suited for data acquisition systems in low to high-rate experiments, test beams and 
all SSC detectors. Secondly, as both technology and physics needs change, the 
architecture “scales” for higher throughput (by adding more channels and/or processors) 
without modifying the fundamental structure of the system. This last feature is also 
implied in the “Open Architecture” part of the project’s name. “Open architecture” 
means that new technologies (e.g., new online processors from several companies, newer 
and faster data links, etc.) can be added to the system (or replace existing elements) with 
little extra system development required. The prototype system at Fermilab will contain 
up to 64 channels, each operating at a nominal twenty Megabytes/second rata for a 
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combined throughput of approximately one Gigabyte per second. The parallel event 
builder is implemented using a barrel shift switch packaged in a single 9U Eurocard 
VMEbus crate and is expandable for higher data rate or additional data source 
requirements. The detector and processor farm are both emulated by test modules 
which transmit and receive simulated event data at full bandwidth. 

The main component in this new data acquisition system architecture is the barrel 
shiR switch, parallel event builder interconnection network (IN). It can be classified as a 
packet-switched, synchronous, centralized three-stage IN. The input of the first stage 
and output of the third stage operate in an asynchronous mode in that data are stored at 
the input of the IN at random intervals using FIFOs and totally assembled events are 
transmitted from the outputs of the IN asynchronous to the functioning of the switch 
component of the IN. Event fragments are synchronously transmitted in packets 
through the switch or middle stage of the IN by centralized control electronics. This 
parallel event builder can operate in either self-routing or non-self-routing modes. In the 
self-routing mode, input event fragments are received, then “tagged” with their final 
(processor) destination address. In the non-self-routing mode, input event fragments 
pass through the switch stage of the IN in the order they were received with no processor 
“tag”. Totally built events are transmitted to successive banks of processors and are lost if 
no processor in a bank is ready to accept an event. More will be said about these and 
other modes of control later. 

The operation of the barrel shift event builder IN can be best explained by 
describing the logical operation of the network. Figure 25 is an illustration of a four- 
input, four-output (4 x 4) parallel event builder. Tagged event data fragments arrive at 
each of the four inputs and are placed into “logical” FIFO buffers in the first stage of the 
IN, the Input Time Slot Interchangers 1321. There is one Input TSI for each input data 
source. One “logical” FIFO buffer exists for each output of the barrel shift switch. Each 
event data fragment entering the IN is placed into the FIFO buffer corresponding to the 
output port from which the particular event will be forwarded to a processor. Thus, if the 
IN is a 4 x 2 network, each Input TSI will contain two “logical” FIFO buffers, one for each 
IN output. The third stage of the parallel event builder IN, the Output Time Slot 
Interchangers, consist again of “logical” FIFO buffers, one for each input of the IN. The 
middle stage of the IN, the barrel shift switch, is depicted in this figure as parallel 
connections of Input TSIs to Output TSIs. Each FIFO buffer of each Input TSI has a 
single connection to a “mirror image” FIFO buffer in each of the Output TSIs. 

Figure 26 is a simplified illustration of the physical implementation of the parallel 
event builder IN being developed at Fermilab. The “logical” Input and Output TSI FIFO 
buffers are being implemented using dual-ported video dynamic RAMS logically divided 
into N circular buffers. At the Output TSI, a full event is assembled by concatenating one 
event fragment from each of the N buffers as the data is transmitted to a processor. The 
barrel shift switch is implemented using a programmable crossbar configured as one or 
more independent barrel shifters to allow system partitioning. A small Programmable 
Array Logic device (PAL) could have been used. 
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Figure 25: Barrel Shift IN Logical Operation 

The barrel shifter rotates through its N possible states, connecting every logical 
input buffer to every logical output buffer once during a full rotation. In this way, the 32 
logical buffers (four per TSI) and the sixteen logical interconnections shown in Figure 25 
are emulated by a single physical buffer in each TSI and a four channel barrel shifter as 
shown in Figure 26. For a four channel system, the savings are not significant. But in a 
fully connected 1024 channel system, two million independent buffers and one million 
cables (plus connectors, etc) would be required. Using a switch-based architecture 
reduces this to 2048 buffers and 2048 cables. 
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Figure 26: Barrel Shift IN Physical Implementation 
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Data crosses the switch in synchronous fixed-length packets. A single packet may 
consist of data from several events or a small part of a single event. There is no 
correlation between event and packet boundaries. The system emulates the logical 
operation of Figure 25 by moving small “time-slices” of data from the appropriate Input 
TSI buffers to Output TSI buffers based on the current interconnection provided by the 
barrel shifter. 

As mentioned previously, the barrel shift switch interconnection network is not 
limited to N x N operation. A N-input,M-output (N x Ml barrel shift switch IN differs 
from that of an N x N switch only in the number of “logical” buffers assigned (either 
dynamically or at system initialization time) to each Input and Output TSI. For the N x 
M switch, each Input TSI ia assigned M “logical” buffers and each Output TSI is assigned 
N “logical” buffers. 

The Input Time-Slot Interchanger packetixes the incoming data (event fragments.1 
and rearranges these packets such that, for any configuration of the switch, each packet 
has a unique destination. This guarantees non-blocking operation of the switch and also 
serves to average the data rate on the input and output data links for better efficiency. 
The Output TSI concatenates event fragments to form a complete event for output to the 
processors. A single dual-port video DRAM is used in each TSI channel and is partitioned 
(through software pointers) into any number of logical buffers. The Input TSI can also 
direct incoming data to a specific output buffer based on a packet header. This provides 
the self-routing capability of the network. 

The input and output TSIs are basically “mirror-images” of each other and reside 
on either side of the barrel shift switch which is implemented on a common backplane 
(Figure 27). 

Input TSI Shlft Matrix Output TSI 

Figure 27: Time-Slot Interchangers 

Figures 28 and 29 illustrate how the barrel shift switch parallel event builder IN 
integrates into existing and new systems, respectively. In Figure 28, Input and Output 
TSIs are integrated with the switch stage of the IN. Asynchronous, non-packeted data 
are sent to the IN over fiber cables from detector event data sources and asynchronous, 
non-packeted data are transmitted to an existing array of processors. In Figure 29, 

29 



Input and Output TSIs are near the detector event data sources and the array of 
processors, respectively. Data packets are sent from remote Input TSIs to the switch 
stage of the IN and transmitted from the switch to remote Output TSIs over fiber and 
copper cables, respectively. Figure 30 illustrates what the future holds when using 
switch-based parallel event builders for high-energy physics experiments. Both the 
computer and telecommunications industries are developing opt+electronic integrated 
circuit (OEIC) switches or totally optical switches that should be usable in high-energy 
physics parallel event building applications. 
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Figure 23: Integration Into Existing Systems 
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Figure 29: Integration Into New Systems 
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Figure 30: Possible Future Parallel Event Builder Configuration 

Four possible modes of operation of the barrel shift. switch parallel event builder IN 
are being investigated, two open and two closed loop modes. Refer to Figure 31 to aid in 
understanding the four modes of control. 
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Figure 31: Event Request Link & Trigger System Interface 

The first control mode, Open Loop Sequential, does not use the Event Request Link 
and automatically assigns events to the next sequential destination (i.e., output of the 
event builder). If a processor is not ready to accept an event, the event is lost. Accepted 
events can be delivered td the first available processor or to a specific processor designated 
by the event header. 

The second control mode, Open Loop Non-Sequential, again does not use the Event 
Request Link and automatically assigns events to destinations based on stored 
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distributions of processors or strings of processors and processing power loaded into the 
Trigger System Interface at system initialization time. 

The third control mode, Closed Loop Sequential, uses the Event Request Link to 
indicate whether a destination processor is ready. The Trigger System Interface assigns 
events to the next sequential ready destination. Event triggers are disabled ifthere is no 
ready processor connected to the next sequential output of the IN. 

The fourth and last control mode beiig investigated, Closed Loop Non-Sequential, 
also uses the Event Request Link to indicate whether a destination processor is ready. 
The Trigger System Interface assigns events of specific trigger types to the next ready 
processor interested in that particular type of event, and again does not generate a 
trigger accept if there is no available processor. 

The principle distinction between open and closed loop control is the point in the 
system where events are discarded when all processors are busy. In closed loop mode, 
events can be discarded at the front-end by not issuing a trigger accept or they can be 
redirected to a channel with a free processor. In open-loop mode, the data is transmitted 
but is not written to a processor. 

The purpose of modelling and simulating the switch-based Scalable Parallel Open 
Architecture Data Acquisition System is to provide a learning vehicle whereby the 
system designers can experiment with different architectures and control mechanisms 
to enable them to better understand the design. This better understanding will simplify 
decisions such as which operation mode provides for highest throughput, what extra 
electronics and software should be implemented to more efficiently diagnose failures and 
fix problems, etc. Modeling and system simulations assist system designers in 
determining throughput for different configurations, identifying potential bottlenecks, 
interfacing to “physics data” simulations, identifying busiest channels, selecting proper 
buffer sizes, determining the number of processors and processing power required, 
determining data rates, etc. 

With the ever-increasing complexity of detectors and their associated data 
acquisition systems, it is important to bring together a set of tools to enable system 
designers, both hardware and sol%ware, to understand the whole system including the 
behavioral aspects and the interaction of different functional units within the system. 
For complex systems, human intuition is inadequate since there are simply too many 
variables for system designers to begin to predict how varying any subset of them affects 
the total system. On the other hand, exact analysis, even to the extent of investing in 
disposable hardware prototypes, is much too time consuming and costly. Simulation 
bridges the gap between physical intuition and exact analysis by providing a learning 
vehicle in which the affects of varying many parameters can be analyzed and 
understood. In this way much time can be saved in the design process and one has 
significantly increased the probability of understanding not only the system as a whole 
but also the interaction of different sub-systems. 

The following is a partial list of simulations which are being undertaken as this data 
acquisition system architecture is being developed. Simulations are divided into normal 
system operation simulations (i.e., no errors) and system simulations with errors. Effects 
of variations in the number of detector channels, event size, event distribution, fro&end 
buffer size, number of data links, data link transfer rate, packet lengths, routing 
algorithms, number of processors, average processing time, processing time distributions, 
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processor and other system buffer sizes, event request delays, etc. will be investigated. 
Architecture improvements resulting from these simulations will be made. The effects of 
intentionally-induced errors in the system such as data errors, header errors, routing 
errors, buffer overflows, source failures, processor failures, switch failures, etc. will then 
be investigated. Architecture improvements resulting from the diagnostic simulations 
will then be made. 

Monte Carlo data will be used in both simulations of the architecture and actual 
tests of the prototype system under development. A report of all simulations and 
hardware tests should be completed early in 1991. 

Simulations are being performed using a Solbourne 161 UNIX workstation (SUN-4 
compatible) running the DataViews 1331 real-time graphical interface package. Links to 
an expert system (Nexpert 1341) for diagnostics are also being investigated. The 
architecture will be extensively modelled and simulated using Verilog-XL [351. The 
system will have the ability to switch between simulations and the prototype hardware 
from a common user interface. This development technique should result in a 
substantial part of the runtime so&ware needed to control an experiment using this 
architecture being written and tested as part of the simulations and testing of the 
prototype system. 

From the outset of the project the goal has been to provide an integrated systems 
engineering environment in which hardware and software development can proceed in 
parallel and actually complement one another. To achieve this, it was first necessary to 
bring together a set of tools to not only allow extensive exploration of all aspects of the 
design, but also provide building blocks that would encourage the close interaction of 
software and hardware engineers. This approach has had the very positive advantage 
that valuable information is constantly being communicated between hardware and 
software groups during the development process. The powerful tools which were set in 
place included a Computer Hardware Description Language (CHDL) and simulator, a 
high-speed graphics package and a knowledge-based expert inference system, all 
running on a very powerful work station. Although each of these is very useful when 
used alone, when they are combined with appropriate linking software the effects are 
even more powerful and versatile. For example, in order to configure, download, 
monitor and diagnose the “model” of the data acquisition system, a user interface is being 
developed which best accommodates these functions. The requirements of this interface 
are identical to those of the actual physics experiment. If the model is an accurate 
representation of the actual system, then everything that a user would like to do to his 
system, he would also like to do to his model. Therefore, as the model is developed, the 
actual software used to run the experiment is also being developed in parallel in an 
integrated fashion. 

Another example of integrated systems engineering is the development of system 
diagnostics and their integration into the hardware designs during the simulation 
process. Good systems diagnostics are crucial to minimizing downtime in a running 
experiment. In order to diagnose something, it helps to understand it. Before any 
hardware is actually built, diagnostic strategies are evolving and being tested on the 
“model”. At the same time, one should not require hardware engineers to learn the 
syntax of a rule-based expert system, but one can choose a medium, such as decision 
trees, as the common base for storing problem-solving knowledge. It is fairly trivial for 
hardware engineers to represent their problem-solving knowledge in the form of 
decision trees, just as it is fairly trivial for programmers to translate from decision trees 

33 



to “rules” in a knowledge-based or expert system. When the programmer tests these 
rules, he interacts with the model and the hardware engineer to verify their operation 
and effect. 

In the Scalable Parallel Open Architecture Data Acquisition System at Fermilab, 
we have already linked together the CHDL package, graphics package and knowledge- 
based package such that the user is now presented with an elegant “windowed” user 
runtime interface, in which he can select either simulated or real data taking. With the 
simulation mode, the user can start and stop runs, inject faults and observe their effect, 
and invoke diagnostic procedures to find the problem. The current technology is such 
that just “clicking” on a window invokes another process (e.g., simulation task), and 
causes rules to “fire” in the expert system, which in turn cause new “windows” or new 
“viewgraphs” to appear in the user runtime interface. This interface can be very 
conducive to narrowing down a problem, or guiding a technician or operator through 
problems. 

SUMMARY 

In the early 19808, when data acquisition systems for many of the current 
generation of high-energy physics experiments were designed, bandwidths greater than 
ten Megabytes/second were not economically practical. The detector electronics could 
not generate data, and high-level processors,if they existed, could not process data at 
those rates. Recent improvements in technology have allowed almost a thousand-fold 
increase in throughput for virtually every component of data acquisition systems. VLSI 
front-end logic now supports synchronous readout and triggering at detector interaction 
rates. Processors are now typically 100 times faster and 1000 times more cost effective 
(compared to the original PDP-11 class machines), and can be expected to improve by 
another factor of ten before the end of this decade. While the inherent bandwidth of 
copper cable has not increased, parallel switching techniques and high-speed serial 
interconnects based on fiber-optic technology now make data transmission and event 
building at rates of l-10 Gigabyte&second practical. 

Although the performance of these systems has increased by several orders of 
magnitude, they are still expensive. Wherever possible, a common architecture which 
can be used in many different experiments and for many different triggers within an 
experiment is strongly preferred. The low-level triggers and much of the detector 
electmnics are assumed to be system dependent, but beyond this point the data acquisition 
system should be designed for general-purpose use. General-purpose architectures do 
not preclude the use of special-purpose processors, which may still be more cost-effective 
in many cases. If possible however, both types of processing should be interchangeable. 

A major goal in developing a very high-bandwidth event builder is to reduce the 
need for fast inline processing. After an event is fully assembled, the “real-time” 
restrictions on processing throughput and time-ordering of events are mostly eliminated. 
Trigger decisions can be more reliable when a processor has access to all of the event 
data, without serious processing time limitations and with the ability to easily modify the 
trigger algorithms. For this reason, squeezing the highest possible rejection factor from 
the low-level trigger logic is not always the best approach. 
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