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Abstract

Two types of neural network beauty trigger architectures,
based on identification of electrons in jets and recognition
of secondary vertices, have been simulated in the environ-
ment of the Fermilab CDF experiment. The efficiencies for
B’s and rejection of background obtained are encouraging.
If hardware tests are successful, the clectron identification
architecture will be teated in the 1991 run of CDF.

1 Introduction

A trigger in a high energy physics experiment is a device
which decides whether an event is ‘intcresting’ or ‘not-
interesting’ based upon the configuration of the various
pieces of data which make up the event. The trigger thus
can be considered as implementing a binary function of
many variables. If the function has value ‘1%, the event is
accepted, and if it has value ‘0’, the event is 1ejected.

Level-1 triggers based upon rather simple linear funec-
tions, such as total energy, total transverse energy, and
missing transverse momentum, provide large rejection fac-
tors. However, in most experiments it is aiso necessary o
provide two additional levels of trigger which implement
the more sophisticated pattern recognition algorithms nec-
essary to bring rates down to levels suitable for storage on
recording media. Since ievels-2 and 3 are normally imple-
mented with some combination of special purpose hard-
ware and arrays of programmable processors, it may seem
strange to think of the trigger here as a ‘device which im-
plements a binary function of many variables’, but let us
retain this definition. The function implemented can be
extremely complicated.

2 Beauty Triggers

Let us consider the example of beauty triggers. The two
most promising methods of triggering on beauty are detec-
tion of an electron (or muon) from the semileptonic decay
of a beauty meson and the detection of secondary vertices
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from the beauty decay. In the first case the pattern recog-
nition task is that of identifying an electron shower which
will in general be contained within a jet. The input vari-
ables are the energy deposits in a calorimeter, and, based
on these, the trigger implements a function whose value is
‘1" if an electron is present and ‘0’ if no electron is found.
In the second case, the trigger operates upon the locations
of hits in a vertex detector, finds tracks, and deiermines
whether these tracks emanaie from one or multiple ver-
tices. The trigger function has value ‘0’ for a single vertex,
and ‘1’ for multiple vertices. The complexity of the trigger
function in these two cases can be appreciated by noting
that of the order of several hundred lines of code would be
necessary to implement them on a computer,

3 Developing Trigger Algorithms

Trigger aigorithms are usually developed with the aid of
Monte-Carlo data sets, which contain ‘interesting’ (signal)
events and ‘not-interesting’ (background) events. There
are typically a number of parameters in the algorithm
whose optimum values are learned by passing repeatedly
through the Monte-Carlo ‘training set’ and varying their
values 50 a8 to achieve maximum acceptance of signal and
rejection of background. An iterative method of learning
the optimum parameter values is necessary since there is
no straightiorward way of calculating them.

This is the traditional method of developing trigger algo-
rithms. A novel method would be to attempt to determine
the form of the function which the trigger implements and
simply calculate the value of this function for every event.
An arbitrary function of many variables can be approxi-
mated with good accuracy by representing it as a linear
combination of known functions and then ascertaining the
coefficients of these functions in the linear combination.
One example is to represent the function as a Fourier se-
ries. Another would be to use the program MUDIFI [I]
developed at CERN. This program allows the user to ap-
proximate an arbitrary function by a linear combination of
polynomials in the input variables. The coefficients in the
linear combination, the number of polynomials, and the
degrees of the polynomials are parameters which are de-
termined by an iterative fitting procedure. The program
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Figure 1: A weighted sum of the V; appears at the input
to this ‘neuron’, which is just an amplifier with a ‘sigmoid’
response.

cffectively constructs the desired function out of known
polynomials by constraining it to give the correct answer
for ench of a set of ‘training events’ consisting of the values
of the input variables and the desired function value. This
use of training samples to approximate unknown probabil-
ity distributions is » standard technique in pattern recog-
nition [2]. Although it is ‘novel’ to attempt to develop
a trigger function in this way, is there any advantage to
doing so?

4 Neural Networks

Using a standard computer to evaluate a function which
mimics an algorithm is probably not advantiageous over
simply running the algorithm on that computer. The ad-
vantage of the function evaluation lies in that it may be
possible to build a device which evaluates the function elec-
tronically, and, hence, very much more quickly than the al-
gorithm running on a standard computer. Electronic gen-
eration of simple functions is certainly feasible, but how
can we generate the very complicated functions required
for experimental triggera? The answer, oddly enough,
comes from biology. Animal nervous systems construct
sophisticated pattern recognition circuits from networks of
many simple processing eclements called neurons. In the
past few years enormous advances have been made in the
field of artificial neural neiworks which seek to imitate the
style of computing architecture found in animal nervous
systems.

Figure 1 shows the basic element of a neural network,
i.e., a neuron. Each neuron is an analog device which sums
signals from many other neurons (in this case, the three
V; in the figure) at its input. Associated with each pair
of neurons is a weight, encoded in the resistors shown in
the figure, which multiplies the sender’s signal before it
passes to the receiver. In most models, neurons have a
*sigmoid’ response function which is simply a ‘rounded-off*
step function.

Figure 1 is also familiar from high energy physics. It
is just the diagram of a discriminator circuit. We could
treat a set of calorimeter cells as ‘input’ neurons, encod-
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Figure 2: Generic 3-layer feed-forward network of neurons
(circles). Weights reside on the lines connecting neutrons.

ing the energies they contained by voltages. These voli-
ages are transformed into currents in passing through the
resistors. If we make the resistor values proportional to
one over the cosine of the polar angle of the cell, the sum
formed at the neuron/discriminator input will be just the
summed transverse energy in the calorimeter. We could
choose the amplifier gain such that saturation (i.e., ontput
= ‘1") occurs for transverse energies above some threshold.
This ‘calculation’ of 3 Er is very fast since it takes only
as long as it takes the signals to propagate through the
circuit. Alternatively, we could use paddle counters in a
beam line telescope as the input neurons. In this case all
the resistors would have the same value, and we can ar-
range that saturation occurs when all paddles have been
hit. These kinds of techniques have been used for decades
in constructing fast trigger logic.

These are examples of rather simple functions imple-
mented by our ‘neural network’. Much more complicated
functions can be implemented by using many more neu-
rons interconnected in complicated ways. In the field of
artificial neural networks, it is traditional to consider two
basic types of architectures, the feed forward network and
the recurrent network. We turn now to an example of each
of these types on network drawn from current research on
neural networks for high energy physics applications. Both
examples deal with beauty triggers.

5 Calorimetry Based B Trigger
5.1 Feed-Forward Nets

The basic feed forward architecture is shown in figure 2,
The first layer is called the input layer, the second layer
the ‘hidden’ layer, and the third layer the output layer.



Normally there is also an extra ‘bias’ neuron with a con-
stant value of 1 which connects via weights to all hidden
and output units. The resistive connection weights are un-
derstood to reside on the lines in the figure connecting the
units together.

It has been shown (3] that any well behaved function
mapping n real variables to m real variables can be approx-
imated to an arbitrary degree of accuracy by a feed-forward
neiwork of sigmoid units comprised of n input units, m out-
put units, and a single layer of hidden units. The neural
network approximates arbitrary functions by using many
shifted, scaled sigmoids to build up the desired function
piece by piece. The shifting is provided by the bias units,
and the scaling is provided by the multiplicative weights,
Thus, the action of the network behaves in & way qualita-
tively similar to a Fourier scries expansion or an expansion
in polynomials as in MUDIFI, except that the expansion
is in terms of sigmoids. The sigmoid is a good choice for
an expansion which is to be realised with hardware com-
ponents since all the active elements (neurons) can be the
same, and need only be accurate over a relatively small
range of inputs. Designing hardware components which
represent an ensemble of polynomials accurately over their
entire range would be considerably more difficult.

5.2

The ISAJET {4] Monte-Carlo was used to generate events
of the form pf — bb + X where one of the b's decays
semileptonically, i.e., b -~ eve. A sample of real mini-
mum bias events from the most recent run of the CDF (5]
experiment was used as the background sample. The ef-
fective tower size of the signals used in the simulation was
An = 0.2 by A¢ = 15 degrees. A training file of evenly
mixed signal and background events (about 150 signal and
300 background) was created from the ISAJET data and
the minimum bias data after applying identical cuts on to-
tal Er and the sise of the largest electromagnetic tower to
signal and background samples. For the results presented
here, the cut used was: 3 Er > 18. GeV or largest elec-
tromagnetic tower > 4. GeV. This cut reduced the back-
ground by about a factor of 100 and the signal by about
a factor of 2. The task was to identify, in the training
file, those events which contained B’s by identifying en-
ergy clusters which contained an electron.

The network used in the B trigger simulation had 128
input units and 2 output units., The number of hidden
units was varied between 50 and 125 in steps of 25 {o see
the effect of this on irigger performance. The input quan-
tities were the energies contained in an 8 by 8 cell region
of interest taken from the calorimeter. The region of inter-
est was sclected by finding the cell in the calorimeter with
the largest electromagnetic energy deposit and taking an
8 by 8 cell block around this cell. A typical event before
selecting the region of interest is shown in figure 3. The
two output units encode whether the event is signal, i.e.,
(0 1), or background, (1 0).

Trigger Simulation

The network was trained using a standard training algo-
rithm called ‘back-propagation’ [6]. Backpropagation per-
forms gradient descent with respect to the weights on an
energy function that measures the deviation, summed over
the training set, of the network response from the desired
response.

After training, the network was tested on a new sample
containing signal and background events (about 50 of each)
not contained in the training sample. The network cor-
rectly identified 66% of the B-jets, while rejecting 95% of
the background. This result was independent of the num-
ber of hidden units within the statistics of the samples
used. When tested on the érgining sample, the network
identified 95% of the B-jets correcily, which may indicate
that the network established a rule for identifying 65%
of the events and simply ‘memorised’ the remaining 30%.
This points out the importance of testing the network on
an independent data sample.

Theac results, though promising, are preliminary. Work
is continuing to improve the acceptance and rejection of
the trigger. Once the optimum parameters of the network
are determined, it is intended to build the network as a
hardware device and test it during the next run of CDF in
1891. The input to the network will be the analog levels
provided by the existing cluster finder in the CDF trigger.

The trigger decision time for this circuit depends only
upon the propagation time of signals from the input layer
to the output layer. As only passive components and sim-
ple amplifiers are involved, this can be expected to be of
the order of several hundred nanoseconds. A few proto-
type neural network chips have already been produced in
research labs and in indusiry. Propagation times for these
chips, whick have not been designed with the needs of high
energy physics in mind, are nonetheless of order one mi-
crosecond [7). Thus is appears as though the neural net-
work trigger will provide a way of significantly enhancing
the data sample with beauty events while adding only an
insignificant amount to the trigger decision time.

8 Secondary Vertex Trigger
6.1 Recurrent Nets

The basic recurrent network architecture is shown in figure
4. A single layer of neurons serves as input and output.
The connection strengths are usually taken to be symmet-
ric, i.e., the weight from neuron i to neuron j is the same as
that from j to i. With this prescription, it can be shown [8]
that the activations, a;, approach a state which minimizes
an energy function E = ——1’- 2‘J wija;a; where wy; is the
weight between neurons i and j. Initial values are placed
on the input lines, and the final values appear there after
the the circuit settles, Although back propagation algo-
rithms exist for recurrent networks, they are complicated
by the fact that signals may pass several times through the
network before seitling. It is more common to use intuition
to devise appropriate weights for recurrent networks.
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Figure 3: ‘Lego’ plot of simulated b% event in CDF calorimeter, with one b decaying semileptonically.
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Figure 4: Recurrent neural network. Initial values are put
at the inputs (lower large dots), which are tied to the sig-
moid outputs, and final values appear there after circuit
settles, Weights reside on lines connecting upper large dots
to neurons (circles).

6.2 Trigger Simulation

The ISAJET Monte-Carlo was again used to generate bb
events and a sample of 2 gluon jei background events of
comparable 7. The B particles are allowed to decay into
their secondary decay products. The geometry used was
that of the SVX detector to be installed in the CDF ex-
periment. This is a r — ¢ tracking device consisting of four
layers of 60u pitch silicon microstrip detectors arranged in
a cylindrical geometry around the beam pipe.

We assume the presence of associative memories which
give fast track parameters for tracks in the SYX. Such
memories are currently being fabricated at INFN Pisa [9].
We also assume a fast track processor based on the outer
tracking chamber which provides p; information for tracks
down to .5 GeV/c. It is necessary to have this p; infor-
mation in order to retain sufficient accuracy in projecting
tracks back to the region of the primary vertex. Without
it, it is necessary to put a cut at about 3 GeV/c on tracks,
which effectively annihilates the B signal.

The tracks generated by the Monte-Carlo are approxi-
mated by tangent straight lines in the vicinity of the origin,
and parameirized by D, the distance of closest approach to
the origin, and ¢, the asimuthal angle of the track. The cal-
culated parameters are then smeared with smearing func-
tions based upon the known properties of the CDF central
tracking chamber and the expected properties of the SVX.
It can be shown that in this parametrization, tracks from
the primary vertex will lie on a horizontal line in I} — ¢

Bottom Jets:

30 < p,(GeV) < 100 | efficiency for B's: 0%

background accepted: | 0.26%

50 < pi(GeV) < 100 efficiency for B's: 81%
Top Jets:

Mop = 100 GeV efficiency for B’s 50%

Meop = 120 GeV efficiency for B's 68%

Miop = 150 GeV efficiency for B's 74%

Table 1: Recurrent neural network trigger efficiency and
rejection figures for B events. Background sample con-
tained 1500 events.

space, and tracks from secondary vertices will lie on lines
at some angle to horizontal (the angle is proportional to
the distance from the origin of the vertex). An example
is shown in figure 5a. The sixe of the beam spot is small
compared with the D resolution in this plot. This means
that we can remove all primary tracks by simply cutting
around D = 0. The actual cut used required the distance
of the track from D = 0 to be more than 3 times the error
on D, which is a function only of p;. {A straight cut on
D of 175 microns only slightly worsens the performance of
the trigger.)

After deletion of all primary tracks, a recurrent network
was used to try to find the remaining lines. In the neural
network approach, which is similar to one used earlier for
track finding [10], pairs of tracks define a link which is
identified with a neuron. The nenrons reinforce each other
to the degree that the angles of their links are similar, i.e.,
wy ~ ezp(-—AG"J —BA@?), where w;; is the weight between
neurons § and j, A and B are positive constants, 8;; is the
absolute angle in D — ¢ space between links i and j, and
Ag¢ is the difference between the ¢ intercepts (D = 0) of
the two neurons. There is also a leakage term which causes
the neurons’ activations to decay to sero in the absence of
reinforcement from other neurons. In the initial state, the
neurons for all possible links are activated. As the network
evolves only those links which have neighbors of similar
orientation will remain activated. In figure 5, the network
has found secondary vertices coming from both B’s in the
event (neurons indicated by links between tracks).

The trigger requirement is at least 2 neurons on at end
of evolution. The efficiency and rejection of this trigger are
summarized in table 1. Also presented are the results for
B's coming from top jets which were produced in separate
runs of ISAJET for three values of the top quark mass.
The figures presenied are based upon a fixed interaction
point at the center of the interaction region. Allowing
a more realistic 35 em. r.m.s. spread in the z position
of the interaction point reduces the trigger acceptance by
about a factor of 2., both for B and top jets. The back-
ground acceptance figure, based on 1500 events, excludes
background from charm, which amounted to an additional
1.1% (this figure is given for completeness, it should not be
used, to deduce the charm to strange ratio in the sample,
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Figure 5: Tracks appear as points in D — ¢ space. Primary tracks lie near D =0, while tracks from secondary vertices
liec on angled lines. Solid lines are ‘valid’ neurons, dotted lines are neurons which faded away. a) and b) are explained
in the text.



for instance).

In B decays, there often are at least two secondary ver-
tices, one from the B, and one from a charmed particle
produced in the decay of the B. In these cases, the tracks
will lie on two separate lines in D — ¢ space, Because of
relatively low multiplicities of the decays and inefficiencies,
the resultant can look more like a cluster of nearby points
than two lines (figure 5b). Nevertheless the network dis-
tinguishes such events well from background events. The
reason is that in the background events, although there
can be a siseable number of high impact parameter tracks,
they seldom form either lines or clusters, so that all neurons
(links) formed fade away. For the signal events, whether in
the form of a line or a cluster, there are normally enough
links of similar orientation present that reinforcement oc-
curs,

The efficiency and background rejection figures look ex-
tremely promising. It is clear that a secondary vertex trig-
ger based upon this technigue, if it can be realized, will
be an extremely valuable tool, As in the case of the feed
forward network, a hardware implementation of the neural
net trigger should be extremely fast since it is only neces-
sary to allow the circuit to settle. As mentioned earlier,
prototype circuits have settling times of order 1 microsec-
ond [7]. In addition to the neural net, it will be neces-
sary to have some sort of preprocessor which calculates
the neuron parameters and connection strengths for each
event. Although we do not discuss here the architecture
of this device, the calculations it does are straightforward
and parallel, so that it should not present any major con-
struction challenges nor increase significantly the trigger
decision time.

7 Conclusion

Recent developments in research on artificial neural net-
works have created a renewed interest in computing archi-
tectures which mimic animal nervous systems and brains.
Neural architeciures can accurately approximate arbitrar-
ily complex functions, including the kinds of functions im-
plemented by ttigger systems in high energy physics experi-
ments. Large scale neural networks implemented in silicon
are beginning to appear, and the small settling times of
these circuits, of order 1 microsecond, make them highly
appropriate for incorporation into trigger systems. We
have used examples of the two most popular neural ar-
chitectures, feed-forward and recurrent, io illustrate how
neural networks can be applied to beauty iriggers. Work
is continuing on these two applications with the intent to
install them for testing in upcoming runs of the CDF ex-
periment at Fermilab.
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