
A Fermi National Accelerator Laboratory 

mm-conf-90/20 

Neural Networks for Triggering’ 

B. Denby 
Fermi National Accelerator Laboratory 

P.O. Box 500 
Batavia, Illinois 60510 

M. Campbell 
University of Michigan 

Ann Arbor, Michigan 48104 

F. Bedeschi 
INFN Sezione di Pisa 

Pisa, Italy 

N. Chriss and C. Bowers 
University of Chicago 
Chicago, Illinois 60637 

F. Nesti 
Scuola Normale Superiore 

Pisa, Italy 

January 1990 

* Invited talk presented by B. Denby at the 1989 IEEE Nuclear Science Symposium, San Francisco, January 15-19, 
199 
al& w Operated by Univerriller Research Association Inc. under conlract with the United States Department of Energy 



Neural Networks for Triggering 

B. Denby, Fermi National Accelerator Laboratory f 
M. Campbell, University of Michigan 

F. Bedeschi, INFN S&one di Piso, Italy 
N. Chris& C. Bowers, Univercrity of Chicago 

F. Nesti, Scuola Normale Superiore, P&a, Italy 

Abstract 

Tao types of neural network beauty trigger architecturn, 
based on identification of electrons in jets and recognition 
of secondary vertices, have been simulated in the environ- 
ment of the Fermilab CDF experiment. The efficiencin for 
B’s and rejection of background obtained are encouraging. 
lf hardware tcsk arc mccesaful, the dectron identification 
archikcturc will be tated in the 1991 run of CDF. 

1 Introduction 

A trigger in a high energy physics experiment is a device 
which decidn whether an event is ‘interesting’ or ‘not- 
inkrating’ bwd upon the configuration of the various 
pieces of data which make up the event. The trigger thus 
can be considered IY implementing a binary function of 
many variables. If the function haa value ‘l’, the event is 
accepted, and if it hu v&e ‘O’, the event is rejected. 

Level-l triggers based upon rather simple linear func- 
tions, w41 aa totd energy, total transverse energy, and 

. 
rrmang transverse momentum, provide large rejection fac- 
ton. However, in moat experiments it in also neceenary to 
provide two additional levels of trigger which implement 
the more sophisticated pattern recognition algorithma nec- 
essary to bring rata down to levels suitable for storage on 
recording media. Since levels-2 and S an normally implc 
mented with some combination of special purpose hard- 
ware and arrays of programmable processora, it may seem 
strange to think of the triggex here ea a ‘device which im- 
plementa a binary function of many variables’, but let ns 
retain this definition. The function implemented can be 
wkcmdy complicated. 

2 Beauty Triggers 

Let us consider the erample of beauty triggers. The two 
meat promising methods of triggering on beauty are detec- 
tion of an electron (or muon) from the semileptonic decay 
of a beauty meson and the detection of secondary vertices 

t Fe.md.h i. opdcd I,, Unirenities Rne.rch Amd.tion, 
Inc., an&r contract with the U.S. Department of En-. 

from the beauty decay. In the first cacx the pattern recog- 
nition task is that of identifying an electron shower which 
will in general be contained within a jet. The input vari- 
abla are the energy deposits in a calorimeter, and, based 
on these, the trigger implements a function whose value is 
‘1’ if an electron is present and ‘0’ if no electron is found. 
In the second case, the trigger operata upon the locations 
of hik in a vertex detector, finds tracks, and determinen 
whether thcae tracka emanate from one or multiple vu- 
tica. The trigger function haa vdue ‘0’ for a single vertex, 
and ‘1’ for multiple vertices. The complexity of the trigger 
function in these two cuea can be appreciated by noting 
that of the order of several hundred linn of code would be 
n-y to implement them on a computer. 

3 Developing Trigger Algorithms 

Txigger algorithms are uwJly developed with the aid of 
MontcCsrlo data sets, which contain ‘interesting’ (signal) 
events and ‘not-interesting’ (background) events. There 
are typically a number of paramekm in the algorithm 
whome optimum vdnea are learned by pawing repeatedly 
through the Monte-C&o ‘training set’ and varying their 
vdua no aa to achieve maximum acceptance of signal and 
njection of background. An iterative method of learning 
the optimum parameter vdua is necessary since there is 
no straightforward way of cdculating them. 

This in the traditional method of developing trigger dge 
rithms. A novel method would be to attempt to determine 
the form of the function which the trigger implements and 
simply calculate the value of this function for every event. 
An arbitrary function of many variables can be approxi- 
mated with good accnraey by representing it M a linear 
combination of known functions and then ascertaining the 
codaeicnts of these functions in the linear combination. 
One example is to represent the function aa a Fourier se- 
ries. Another would be to nsc the program MUDIFI [l] 
developed at CERN. This program allows the riser to ap- 
proximate an arbitrary function by a linear combination of 
polynomials in the input variables. The coefficients in the 
linear combination, the number of polynomid~, and the 
degrm of the polynomidn are parametem which arc de- 
termined by an iterative fitting procedure. The program 
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Figure 1: A weighted sum of the vi appears at the input 
to this ‘neuron’, which is just a” amplifier with B ‘sigmoid’ 
response. 

effectively constructs the desired function out of known 
polynomials by constraining it to give the correct answer 
for each of a set of ‘training events’ consisting of the values 
of the input variables and the desired function value. This 
“se of training samples to approximate unknown probabii- 
ity distributions is a standard technique in patter” recog- 
nition [z]. Although it is ‘novel’ to attempt to develop 
a trigger function in this way, is there any edvsntage to 
doing so? 

4 Neural Networks 

Using a standard computer to evaluate a function which 
mimics an algorithm is probably not advantageous over 
simply running the algorithm on that computer. The ad- 
vantage of the function evaluation lies in that it may be 
possible to build a device which evaluates the function elec- 
tronicdy, and, hence, very much more quickly than the al- 
gorithm running o” a standard computer. Electronic gcn- 
eration of simple functions is certainly feasible, but how 
can we generate the very complicated functions required 
for experimental triggers? The (~“swer, oddly enough, 
cornea Gom biology. Animal nervous system8 construct 
sophisticated pattern recognition circuits Gom networks of 
many simple processing elements called neurons. I” the 
paat few years enormous advances have been made in the 
field of artificial neural networks which seek to imitate the 
style of computing architecture found in animal nervous 
system. 

Figure 1 shows the b&c element of a neural network, 
i.e., a neuron. Each neuron is a” analog device which sum8 
sign& Gom many other neurons (in this case, the three 
K in the figure) at its input. Associated with each pair 
of neurons is a weight, encoded in the resistors shown in 
the figure, which multiplies the sender’s signal before it 
poses to the receiver. In most models, neurons have a 
‘sigmoid’ response function which is simply a ‘rounded-off’ 
step function. 

Figure 1 is also familiar from high energy physics. It 
is just the diagram of a discriminator circuit. We could 
treat a set of calorimeter cells as ‘input’ “enrons, encod- 

Figure 2: Generic 3-layer feed-forward network of neurons 
(circles). Weights reside on the linea connecting neurons. 

ing the energies they contained by voltages. These volt- 
ages are transformed into currents in passing through the 
resistors. If we make the resistor values proportional to 
one over the cosine of the polar angle of the cell, the sum 
formed at the neuron/discriminator input will be just the 
summed transverse energy in the cahimcter. We could 
choose the amplifier gain such that saturation (i.e., output 
= ‘1’) occurs for transverse energies above some threshold. 
This ‘calculation’ of C ET is very tbt since it takes only 
as long as it takes the signals to propagate through the 
circuit. Alternatively, we could use paddle counters in a 
beam line telescope IM the input neurons. I” this case all 
the resistors would have the same value, and we can ar- 
range that saturation occ”~s when all paddles have bee” 
hit. These kinds of techniqua have bee” used for decades 
in castructing fast trigger logic. 

These an examples of rather simple functions implc 
mcnted by our ‘neural network’. Much more complicated 
functiona can be implemented by using many more “eu- 
ro”s interconnected in complicated waya. I” the field of 
artificial neural networks, it is traditional to consider two 
basic types of architectures, the feed forward network and 
the recurrent network. We turn now to a” example ofeach 
of these types on network drawn Gom current research on 
neural networks for high energy physics applications. Both 
examples deal with beauty triggers. 

5 Calorimetry Based B Trigger 

5.1 Feed-Forward Nets 

The basic feed forward architecture is shown in figure 2. 
The first layer is called the input layer, the second layer 
the ‘hidden’ layer, and the third layer the output layer. 
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NormalIy there is also an extra ‘bias’ neuron with a co”- 
atant value of 1 which connecta via weights to all hidden 
and output units. The resistive connection weights are un- 
derstood to reside on the lines in the figure connecting the 
units together. 

It haa been show” [3] that any well behaved function 
mapping n real variables to m real variables ca” be approx- 
imated to 8” arbitrary degree of accuracy by a feed-forward 
network of sigmoid units comprised of n input units, m out- 
put units, and a single layer of hidden units. The neural 
network approximate. arbitrary functions by “sing many 
shifted, scaled sigmoids to build up the desired function 
piece by piece. The shifting in provided by the bias units, 
and the scaling in provided by the multiplicative weights. 
Thug, the action of the network behavea in II way qoalita- 
tively similar to a Fourier series expansion or a” expansion 
in polynomials as in MUDIFI, except that the expansion 
is in terms of sigmoids. The sigmoid is a good choice for 
an upmuio” which in to be real&cl with headware corn- 
poncnts dnce all the active elements (neurons) can be the 
same, and need only be accurate ovez a relatively small 
range of inputs. Dnigning hardware components which 
represent an ensemble of polynomiala accurately over their 
entire range would be considerably more ditlicult. 

5.2 Trigger Simulation 

The ISAJET (41 Monte-Carlo wan used to generate events 
of the form @ + b6 + X where one of the II’S decaya 
semilcptonicdly, i.e., b --t WC. A sample of real mini- 
mum bisJ events Born the most recent run of the CDF [S] 
experiment was used aa the background sample. The ef- 
fective tower sise of the sign& used in the dmulatio” wru 
Ar) = 0.2 by A4 = 15 degrees. A twining Ale of evenly 
mixed signal and backpound eventa (about 150 tiglnal and 
300 background) was created from the ISAJET data and 
the minimum bilu data after applying identical cuts on to- 
tal ET and the sire of the largest electromagnetic toner to 
signal and backglonnd samples. For the remIts presented 
here, the cut used was: C & 2 lg. GeV or largest elec- 
tromag”etic tower 1 4. GeV. Thin cut reduced the back- 
ground by about a factor of 100 and the dgnd by about 
a factor of 2. The tasL was to identify, in the training 
fle, those events which contained B’s by identifying e”- 
e*gy clusters which contained a” electron. 

The network used in the B trigger simulation had 128 
input units and 2 output unitr. The number of hidden 
units was varied between 50 and 126 in step of 25 to ace 
the effect of thin on trigger performance. The input qua”- 
titiea were the cnergiea contained in a” 8 by 8 cell region 
of interest take” Gom the calorimeter. The region of inter- 
est was selected by finding the cell in the calorimeter with 
the largest electromagnetic energy deposit and taking a” 
8 by 3 cell block around this cell. A typical event before 
selecting the region of interest is show” in figure 3. The 
two output units encode whether the event is signal, i.e., 
(0 l), or background, (1 0). 

The network was trained using a standard training alge 
rithm called ‘back-propagation’ [6]. Backpropagation per- 
forms gradient descent with respect to the weights on an 
energy function that mea~urcs the deviation, summed over 
the training set, of the network response Gom the desired 
response. 

After training, the network wm tested on a “en ~unple 
containing signal and background events (about 50 of each) 
not contained in the training sample. The network car- 
rectly identified 65% of the B-jets, while rejecting 95% of 
the background. This result was independent of the num- 
ber of hidden units within the statistics of the samples 
used. When tested o” the tmining sample, the network 
identified 95% of the B-jets correctly, which may indicate 
that the network established a rule for identifying 65% 
of the events and simply ‘memoriaed’ the remaining 30%. 
This points out the importance of testing the network on 
a” independent data sample. 

These results, though promising, are preliminary. Work 
is continuing to improve the acceptaxe and rejection of 
the trigger. Once the optimum parameters of the network 
arue determined, it is intended to build the network aa a 
hardware device and test it during the next run of CDF in 
1991. The input to the network will be the analog levels 
provided by the existing cluster finder in the CDF trigger. 

The trigger decision time for this circuit depends only 
“po” the propagation time of rig”& from the input layer 
to the output layer. As only ptive components and sim- 
ple amplifiers are involved, this cam be expected to be of 
the order of neveral hondred “rumseconds. A few prote 
type neural network chips have already been produced in 
research labs and in industry. Propagation times for these 
chip, which have not bee” designed with the needs of high 
energy phytics in mind, are nonetheless of order one mi- 
croaecond (7l. Thou is appean u though the neural net- 
work trigger will provide a way of significantly enhancing 
the data sample with beauty events while adding only an 
i&gniRcant amount to the trigger decision time. 

8 Secondary Vertex Trigger 

0.1 Recurrent Nets 

The basic recurrent network architecture is ahow” in figure 
4. A single layer of nenrons serves as input and output. 
The connection strengths M usually taken to be symmet- 
ric, i.e., the weight from neuron i to neuron j is the same o 
that Gom j to i. With this prescription, it can be shown [g] 
that the activations, w, approach a state which minimises 
an energy function E = -f Cd, W‘~CQCZ, where “~9 is the 
weight between neurons i and 1. Initial values are placed 
on the input lines, and the Anal values appear there after 
the the circuit settles. Although back propagation alge 
rithms exist for recurrent networks, they are complicated 
by the fact that signals may pass several times through the 
network before settling. It in more common to “se intuition 
to devise appropriate weights for recurrent networks. 
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Figure 3: ‘Lego’ plot of simulated b$ event in CDF calorimeter, with one b decaying scmileptonicdly. 
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Figure 4: Recurrent neural network. Initial values (LZC put 
at the inputs (lower large dots), which are tied to the sig- 
maid outputs, and final values appear there after circuit 
settles. Weights reside on lines connecting upper large dots 
to neurons (circles). 

6.2 Trigger Simulation 

The ISAJET Monte-Carlo was again used to generate ar; 
events and (L sample of 2 gluon jet background events of 
comparable pt. The B particles (ore allowed to decay into 
their secondary decay products. The geometry used wm 
that of the SVX detector to be installed in the CDF ex- 
periment. This is a r - .$ tracking device consisting of four 
layers of 60~ pitch silicon microstrip detectors arranged in 
II cylindrical geometry around the beam pipe. 

We sasume the presence of associative memories which 
give fast track parameters for tracks in the SVX. Such 
memories are currently being fabricated at INFN Piss [Q]. 
We also assume a fast track processor based on the outer 
tracking chamber which provides pt information for tracks 
down to .5 GeV/c. It is necessary to have this pt infor- 
mation in order to retain sufficient accunuzy in projecting 
tracks back to the region of the primary vertex. Without 
it, it is necessary to put B cut at about 3 GeV/c on tracks, 
which effectively annihilates the B signal. 

The tracks generated by the Monte-Carlo are approxi- 
mated by tangent straight lines in the vicinity of the origin, 
and parametrized by D, the distance of closest approach to 
the origin, and 4, the azimuthal angle of the track. The cal- 
c&ted parameters are then smeared with smearing func- 
tions based upon the known properties of the CDF central 
tracking chamber and the expected properties of the SVX. 
It can be shown that in this parametrisation, tracks Gom 
the primary vertex will lie on II horirontsl line in D - r$ 

Bottom Jets: 
30 < pt(GeV) < 100 ] efficiency for B’s: ] 70% 

] background accepted: ( 0.26% 
50 < pt(GeV) < 100 1 efficiency for B’s: 1 61% 

Ton .lrtst 

it&, = 100 GeV 1 --l;iii-c-iiy for B’s 1 50% 
Mt, = 120 Get’ efficiency for B’s 1 66% 
a&,, = 150 Get’ efficiency for B’s I 74% 

Table 1: Recurrent neural network trigger efficiency and 
rejection figures for B events. Background ample con- 
tained 1500 events. 

space, and tracks from secondary vertices will lie on lines 
at scune angle to ho&or&al (the angle is proportional to 
the distance from the origin of the vertex). An example 
is shown in figure 58. The sisc of the beam spot is small 
compared with the D resolution in this plot. This means 
that we can remove all primary tracks by simply cutting 
around D = 0. The actual cut used required the distance 
of the track from D = 0 to be more than 3 times the error 
on D, which is a function only of pt. (A straight cut on 
D of 175 microns only slightly worsens the performance of 
the trigger.) 

After deletion of all primary tracks, a recurrent network 
was used to try to find the remaining lines. In the neural 
network approach, which is similar to one used earlier for 
track finding [lo], pairs of tracks define a link which is 
identified with II neuron. The neurons reinforce each other 
to the degree that the angler of their links (UC similar, i.e., 
wcj w ezp(-A@,--BAq5’), where wduij is the weight between 
neurons i and j, A and B are positive constants, 8, is the 
absolute angle in D - 4 space between links i and j, and 
A4 is the difference between the 0 intercepts (D = 0) of 
the two neurons. There is also a leakage term which causes 
the neurons’ activations to decay to sero in the absence of 
reinforcement Gom other neurons. In the initid state, the 
neurons for all possible links are activated. As the network 
evolves only those links which have neighbors of similar 
orientation will remain activated. In figure 6, the network 
has found secondary vertices coming from both B’s in the 
event (neurons indicated by links between tracks). 

The trigger requirement is at least 2 ncumns on at end 
ofevolution. The efficiency and rejection of this trigger are 
summarised in table 1. Also presented sre the results for 
B’s coming from top jets which were produced in separate 
runs of ISAJET for three values of the top quark nmss. 
The figures presented are baaed upon a fixed interaction 
point at the center of the interaction region. Allowing 
a more realistic 35 cm. r.m.s. spread in the I position 
of the interaction point reducea the trigger acceptance by 
about 8 factor of Z., both for B and top jets. The back- 
ground acceptance figure, based on 1500 events, excluder 
background Gom charm, which amounted to an additional 
1.1% (this figure is given for completeness, it should not be 
used, to deduce the charm to strange ratio in the sample, 



6 

- 

+ 

++s 

1 

E 
,+ 0.0 g E z 

1 

-0.1 s 
x 

E 

-0.2 

I 
2 

Azimuthal Angle k 

’ l-O.3 
6 

Figure 5: Tracks appear aa points in D - 4 space. Primary tracka lie nem D = 0, while tracks from secondary vertices 
lie on angled lines. Solid lines are ‘valid’ neurons, dotted lines are neurons which faded away. a) and b) are explained 
in the text. 
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for instance). Division. CERN. 1211 Geneva 23, Switzerland. , 
In B decays, there often are at least two secondary vu- 

tica, one from the B, and one from a charmed particle [2] Hrury C. Andrcws, Introduction to Mathematical 

produced in the decay of the B. In theK cases. the tracks Technique8 in Pattern Recognition, New York, Wiley 

will lie on two separate lines in D - 4 space. Because of Interscience, 1972. 

relatively low multiplicities of the decays and inefficiencies, 
the resultant can look more Iike a cluster of nearby points 

[3] Robert Hecht-Nielsen, Theory of ihc Bockpmpago- 

than two lina (figure Sb). Nevertheless the network dis- 
tion Neural Network, proceedings of the International 

tinguinhes such events well from background events. The 
Joint Conference on Neural Networks, v&me I, pp. 

reason is that in the background events, although there 
593-606, Washington, D.C., 16-22 June, 1969, IEEE 

can be a s&able number of high impact parameter tracks, 
Catalog no. 89CH2765-6. 

they seldom form either lina or clusters, 80 that all neurona 
(links) formed fade away. For the signal events. whether in 

[4] F. Paige, S.D. Protopopeacu, ISAJET Monte Carlo, 
BNL 36034(19661. Brookhaven National Laboratory. 

the form of a line or a cluster, th& are norm~ally enough 
, I. 

linka of similar orientation pment that reinforcement oc- [S] F. Abe et al., (CDF Collaboration), Nucl. hut. bfeth 

curs. A271, (19.36) p. 387. 

The efficiency and background rejection figures look ex- 

of this device, the calculations it doa M straightforward 

tnmely promising. It is clear that a secondary vertex trig- 

and parallel, so that it should not present my major con- 

ger based upon thin technique, if it can be redised, will 
be an extremely valuable tool. As in the case of the feed 

stmction challenges nor increase significantly the trigger 

forward network, a hardware implementation of the neural 
net trigger should be extremely Gut since it is only neea- 
sary to allow- the circuit to settle. As mentioned earlier, 
prototype circuits have settling times of order 1 micrcaec- 
ond [7j. In addition to the neural net, it will be neces- 
srq to have some sort of preprocmsor which calculstn 
the neuron parsmeten and connection strengths for each 
event. Although we do not discensr here the architecture 

[6] David E. Rumelhlut, James L. McClelland, et al., 
Pmalkl Dirtributed Pmcemtng, Ezplomttoru in the 
hficrortructum of Cognition, MIT Press, 1966, volume 
1: Foundations, chapter 8:Leaming Intend Repro- 
rent&mu by Emr Propagation 

[8] J.J. Hopfield and D.W. Tank, Biological Ct(&emetic~ 

[7] M. HoUer, S. Tam, II. Cartro, R. Benson, An E&&m- 

62 (legs) p. 141. 

icollg lMnsble Atiifiial Neud NetwmS (ETANN) 
with 10240 “Pleating Gate” Synoprer, proaedinga of 
the International Joint Conference on Neural Net- 
works, voh.me II, pp. 191-196, Washington, D.C., 1E 
22 June. 1969. IEEE Catalog no. 69CH276b6. 

decision time. 
[Ql M. Dell’Ono and L. Ristod, VLSI Structurer for 

!lkck Finding, proceedings of the International Con- 
ference on the Impact of Digital Micmelectmnics and 
Mieroproccron on Particle Phytiu, Trieste, Italy, 25 
30 March 1988, published by World Scientific Pub. 
Co. ISBN 9971-50-742-O. 

7 Conclusion 

Becent developments in research on artificial neural nct- 
works have created a renewed interest in computing archi- 
tectures which mimic animal nervons ryatenu and brainn. 
Neural architectures cm accurately approximate arbitrar- 
ily complex functions, including the Linda of functions im- 
plemented by trigger systerm in high energy physics uperi- 
mats. Large scale neural networks implemented in silicon 
arc beginning to appear, and the small settling times of 
these circuits, of order 1 microsecond, make them highly 
appropriate for incorporation into trigger systems. We 
have used examplea of the two most pop&u neural ax- 
&it&urea, feed-forward and recurrent, to illustrate how 
neural networks can be applied to beauty triggers. Work 
is continuing on these two application8 with the intent to 
in&Jl them for testing in upcoming runs of the CDF er- 
periment at Fermilab. 

[lo] B. Denby, Computer Phyaica Communications 49 
(1986) pp. 429-448. 
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