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ABSTRACT

The dynamics of chiral and scale symmetry breaking in quenched, pla-
nar QED is further examined. Particular attention is focused on the renor-
malization properties of the model and the relevance of the four-fermion
operators. In accord with our previous results, the scale symmetry is explic-
itly broken and the dilaton is not found at either strong or weak coupling.
An effective Lagrangian simultaneously realizing both spontaneously bro-
ken scale and chiral symmetries is constructed.



1 Ihtroduction

Nonperturbative phenomena such as dynamical symmetry breaking play
a central role in many current areas of physics research. Due to the in-
herent difficulties in attempting to study such phenomena, advances have
been limited to lattice sitmulations or certain crude analytic approximation
schemes. In this paper, we continue our investigations into the dynamical
structure of quenched, planar quantum electrodynamics.[1] The original
motivation {2] leading to the study of this model stemmed from the obser-
vation that gauge theories with slowly running coupling constants possess
an approximate scale symmetry. The dynamical breaking of chiral sym-
metry in such theories should therefore be accompanied by the dynamical
breaking of this approximate scale symmetry, resulting in the appearance
in the physical spectrum of the dilaton, the pseudo-Goldstone boson of the
spontaneously broken scale symmetry. QED in the quenched, planar limit
contains the basic dynamical structure of such gauge theories and thus
provides a useful laboratory for the study of chiral and scale symmetry
breaking in these theories. Recent numerical [3] and analytical [4] studies
have confirmed that the quenched, planar approximation is in many ways
a reasonable approximation to the full theory.

Unfortunately, the scale symmetry breaking in the quenched, planar
limit of QED was such that the dilaton did not emerge in the physical
spectrum.|[1] Recently, there have been claims concerning the existence of
the dilaton in this model.[5] We have thus reanalyzed the model and in-
deed found a spurious vanishing of the bubble sum scalar denominator.
However, this vanishing does not lead to a dilaton pole in the S-matrix
elements, consistent with our previous results. This and related topics will
be addressed in section 3.

In our earlier study {1] of quenched, planar QED, we found that con-
sistent chiral symmetry breaking solutions existed only if chirally invariant
four-fermion interactions were included in the analysis. This resulted in a
novel fixed point structure of the theory. The necessity for including the
four-fermion operators followed from their large anomalous dimensions at
strong coupling so that they become mass dimension four interactions at
the fixed point. It was subsequently realized {6} that such a nonperturbtive



fixed point with large anomalous dimensions provides a realization of an
earlier conjecture [7] to ease flavor changing neutral current problem in ex-
tended technicolor theories. This had led in turn to revived interest [8] in
technicolor theories. In section 4, we elucidate the role of these operators
by analyzing the renormalization flow of the four-fermion coupling. We
find that the running of this coupling is essential in order to give quenched,
planar QED a sensible interpretation.

Finally, in section 5, we construct an eflfective lagrangian that simulta-
neously realizes both scale and chiral symmetry in the Nambu-Goldstone
mode, thus explicitly demonstrating that no conflict arises between the low
energy theorems of scale and chiral symmetry.[9| This and other results
have been reported by one of us {(W. A. B.) in a recent workshop.[10]



2 Chiral Symmetry Dreaking

We begin by recalling the solutions of the Schwinger-Dyson equation for
the fermion self-energy, ¥(p), in quenched, planar QED. In Landau gauge,
this equation reads

3¢’ 4 Z(q) I
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where myg is the bare fermion mass. Solutions to the Schwinger-Dyson
equation (2.1) have been analyzed extensively over the years.[11, 12, 13]
It was estabished that nontrivial solutions to the homogeneous equation
(mo = 0) exist only in the strong coupling phase a 2> o, = z.12]
Tt is easiest to see this by transforming the integral equation (2.1) into
a differential equation with appropriate boundary conditions. Using the
scale symmetry, the solution can be written in the form (1, 12]

(p) = e'ult + to), t = log p, (2.2)
where £, is related to the dynamically generated fermion mass scale by
LO) =Sy =¢" (2.3)

and the function u(z) satisfies
u"(z) + 4u'(z) + 3u(z) + — =0 (2.4)

The infrared boundary condition is such that e*u(z) — 1 as z — —o0,
while the ultraviolet boundary condition is

A
m, = E[u'(tA + to) + 3ufts +1o)], ta =log A, (2.5)
with A being an ultraviolet cutoff. The ultraviolet behavior of u(z) depends
on the strength of the fixed coupling constant o. For strong coupling

(> o),

w(z) ~ Ala)e = sinjy/afa, ~ 1(z + 6(a)]/\/o/a. — 1, (26)



where _zi(a) =~ 1.04 and 6(a) =~ 0.715 for a =~ a., while for weak coupling
(a < @), .

u(z ) ~ A(a)e P sinh[\/1 — a/a.(z + 6(a))]/1/1 — a/a.. (2.7)

Note that“t_his solution is analytic in @ near e, for fixed x.
The weak coupling solution contains two terms and can be written as

L(p) = p u(log(p/To)) — m/p"+ < ¥ >, /p",  (2.8)

Yy=1-4/1-a/a. (2.9)

The first term corresponds to the explicit breaking of chiral (and scale}
symmetry, while the second term corresponds to the spontaneous break-
ing. Both have pure power behavior reflecting the scaling structure [14] of
the operator product expansion of the fermion propagator. Here v is the
anomalous dimension of the fermion mass operator, ¥1). The presence of
both terms in (2.8) confirms the result that there are no spontaneous chiral
symmetry breaking solutions in the weak coupling phase.

For strong coupling, there exists a massive solution in the chiral limit
(mo = 0). However, the resulting dynamical fermion mass scale is propor-
tional to the cutoff and given by

Do = e’ Ae~0Velat) 0<@<m. (2.10)

with

In order for this to be a dynamical chiral symmetry breaking solution, the -
mass scale £y must remain finite in the continuum limit. This can only
occur in the Miransky solution [15] which requires the coupling constant to
have a specific cutoff dependence given by

9?
log*(A/x)
Here & is an infrared mass scale proportional to Iy.

This required tuning of & with the cutoff immediately calls into question

the renormalization properties of the theory. This will be discussed in more
detail in Sec. 4. An important implication of such considerations is that

a=afd) = afl + l, 8§ — m as A — oo. (2.11)



one must take into account the induced four-fermion interactions in order to
study the continuum limit of the theory. To study the dynainical running of
the coupling constants, one integrates out the high momentuimn behavior of
the theory and studies the renormalization flow of the coupling constants.
Consider, for example, the ladder diagram in Fig. 1. }t is evident that
integrating out the high momentum part of a given rung will generate a
four-fermion interaction. These four-fermion interactions must be included
in the study of the renormalization flow of the coupling constants if they are
relevant operators. (This is analogous to the induced ¢*-interactions in the
n¢® theory in 2 + 1 dimensions [16]). Indeed, in the planar approximation,
the four-fermion operators have twice the dimension of the mass operator,
d(iw)’ =2(3 —v) —+ 4 as a — o, and are relevant (marginal) operators in
the continuum limit. We must include them in a chirally invariant fashion
in the study of dynamical chiral and scale symmetry breaking in quenched,
planar QED.

We are thus led to consider the lagrangian

L =iy Dy - po)d + %" [(B)* + (Pivse)?] (2.12)

which has the form of a gauged Nambu-Jona-Lasinio model (NJL). [17] The
bare fermion mass is now denoted by y,. This model has been studied in
Ref. 1. In the planar approximation, the addition of the four-fermion inter-
actions amounts to a simple modification of the Schwinger-Dyson equation
in which the bare mass term for the pure gauge theory receives an extra
contribution from the fermion tadpole so that

mo = pg — Go < P >, (2.13)
where
- A a
< l/)'l,b g = ﬁ "&" [u (tj\ + t{)) -+ 'U;(tA 4+ tg)]. (214)

Determining mg consistently with the boundary condition (2.5) yields the
gap equation

AZ

B= oA = ?[(1 + Gu'(ty + to) + (3 + Ghulta + L), (2.15)



where we have introduced the renormalized four-fermion coupling,
G = (GoA?/7?) (e /).
In the chiral limit, 4 = 0, the gap equation for a > «a, reads
G+1

tand = (E}—l) afea, -1 .(2.16)

with
§

= \aja, 1 log(A-;‘:J ).

The vacuum solution requires that 0 < § < n. Thus a nontrivial continuum
limit, A/Zy — oo, dictates that &« — .. On the other hand; for weak
coupling, o < a., the gap equation becomes

tanh§ = (g—ll) V31— a/tx; (2.17)

with

This equation exhibits nontrivial solutions provided G > 1. Thus, as em-
phasized by several authors (18], the Schwinger-Dyson equation admits
massive solutions even for weak gauge coupling when four-fermion interac-
tions are present. In fact, there is a critical curve along which a nontrivial
continuum limit exists. In this limit, § — oo, so that the gap equation
relates G to «a as

G::- = (14 /1-afe)? (2.18)

This curve extends from (o, G) = (., 1) to (o, G) = (0, 00), with the point
at a = 0 corresponding to the Nambu-Jona-Lasinio model. The physical
interpretation is that a weaker gauge interaction can be compensated by
a stronger, attractive (G > 0) four-fermion interaction in the gauged NJL
model. The fact that a finite A — oo limit is found at weak gauge coupling
is certainly unexpected since one anlicipates the four-fermion interaction
to be an irrelevant operator there. The behavior may in fact result from
the oversimplification of the quenched, planar approximation, although it
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may also indicate the existence of an interesting renormalizable phase of
the gauged NJL model.[19] We shall elaborate on this possibility a bit more
in the next section. It would be worthwhile to investigate this phenomenon
in lattice simulations.

A consequence of dynamical symmetry breaking is the appearance of
Goldstone bosons in the physical spectrum. To study the symmetry struc-
ture of the above solutions we look for the appearance of such Gold-
stone bosons (pion or dilaton) which would be magnifested as poles in
the fermion-antifermion scattering amplitudes. For the gauged NJL model,
we anticipate the Goldstone poles to appear in the induced bubble dia-
grams as zeroes of the renormalized denominator functions. Fortunately
these bubble diagrams including the ladder QED radiative corrections can
be evaluated at zero momentum transfer.|1]

The renormalized vertex function dressed with the QED ladders for
fermion matrix elements containing a pseudoscalar insertion at zero mo-
mentum transfer was computed to be

LF(p,p) = e u(t + 1) = Z,I'0(1), (2.19)

where T)(t) is the bare pseudoscalar vertex and

1
Z, = Ze(t“‘“)[u'(t;\ + o) + 3u(ts + to)]. (2.20)

Moreover the bare bubble integral was evaluated as

l « 1
0 _ . € (3ty+tn) ! _
BP(O) = 2r? o e A Zp [’U, (tA + to) + U.(tﬁ + to)] (2.21)
The Goldstone boson of chiral symmetry should then appear as a zero in
the renormalized pseudoscalar denominator function, I)f (0}). Following the
computation of Ref. 1, this is given by



D) = Z2G,' + B,(0)]

[.212/4%2)Eg(ac/a)q__{_[ﬁ_ii_lﬂ/\fa/ac —~ 1+ cos @]

><[(1—G)sin@/\/a/ac—1+-(1+G)cos(}], a>a,

(42/47%)Z2 (e, /0) G ' [sinh f/\/1 - o/ @, + cosh 6]
X[(I—G)sinhé/\/l—a/ach(1+G]cosha], a < a,.
(222)

Upon imposing the gap equations (2.16) and (2.17), we see that I)f(()]
does indeed vanish in the chiral limit for all @. We thus conclude that the
gauged NJL model exhibits dynamical chiral symmetry breaking for both
strong and weak gauge coupling.



3 Scale Symmetry Breaking

Since its perturbative beta functions vanishes, quenched planar QED pro-
vides an attractive arena to study the relationship between the dynamics of
scale symmetry breaking and chiral symmetry breaking. We have already
established that the gauged NJL model exhibits a phase in which chiral
symmetry is spontaneously broken and a fermion mass scale, X, is dynam-
ically generated. If the scale symmetry is not explicitly broken, it will also
be spontaneously broken by the dynamical generation of Lo. In this case,
the dilaton pole will appear as a zero in the renormalized scalar denomi-
nator function. Although the dynamical breaking of chiral symmetry can
occur for all values of & with G = G(a, A/X,), we expect the scale invari-
ance to be preserved only for specific values of the induced four-fermion
coupling, as is the case for the induced couplings in the scale invariant n¢°
theory.[16] We have analyzed the case for strong gauge coupling and did
not find such a scale invariant fixed point [1]. It seems that the apparent
scale symmetry of quenched, planar QED is expicitly broken even when the
induced four-fermion interactions are taken into account.

Recent claims have suggested the possible existence of a scale invari-
ant fixed point along the critical line for weak gauge coupling.[5] We have
thus reanalyzed the model for both strong and weak gauge coupling and
confirmed our previous result that the dilaton pole does not exist. There
18 a spurious vanishing of the scalar denominator function arising from the
bubble sum, but this is cancelled by a related pole in the ladder diagrams
yielding no overall dilaton pole in the fermion-antifermion scattering am-
plitudes.

By computations similar te that for the pseudoscalar case, the QED
ladder dressed renormalized vertex function for the fermion matrix elements
containing a scalar 110 insertion was obtained at zero momentum transfer
as [1]

ITf(pp) = —elH(t 4 t) = Z.T01), (3.1)

where I'} is the bare vertex and

1
Zy = —ze(t"“”)[u"(u +ta) + 3u'(ty + o). (3.2)



The zero momentum scalar bare bubble function was also evaluated as

1 6y pmpaen L,
BJ(0) = "o o; e(m“”")z [u"(ts + to) + u'(ts + to)]- (3.3)

With these ingredients, the renormalized scalar denominator function can
then be obtained as '

DF(0) = ZIG5'+ B(0)]

(}12/471-2)23%3(;-1[(1 + Zysin8/y/ajo, — 1+ cosb]
Q.

x{|(2 - 26) + (1 + G)(-O% —1)]sin8//a/a, ~ 1

+{1 + 3G) cos 0}, a > o
- %2 ia-2yse2 Xe et X, 1o 3
(A*/4m )LO--&..G 1+ a;)smhﬂ/\/l — o/ e, + cosh 8]
a ~
2 —-2G) - (1 +GY1 — —)|sinh@ - ¢
<{( ) (~ PG~ )lsinh8/y/1 - afe
+(1 + 3G) cosh 8}, a < o
(3.4}
"In the chiral limit, ¢ = 0, this takes the form
A? 2o
R . c -
DE(0) = (4772)23( , TG ") for all a. (3.5)

For attractive four-fermion interactions (G > 0}, DT(0) does not vanish at
either strong or weak gauge coupling. On the other hand, DF(0) does have
a zero for repulsive four-fermion couplings, G < 0. This zero in DF(0) is
due to the vanishing of the scalar vertex renormalization factor,
ASe a. g
—Z—TO(1-|~——}sm0/\/a/occ—l—t—cosﬁ], o> o
O

AL - .
E%\—O (1+ E-)sinh 0/\/1 - /o, +coshb], o<
o, .

which in the chiral limit is given by
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AEQ( G ) o (2ac 1) cos @, a > oo
- o IRl Sehe RN I ; ) 3.7
Ze 2A\G-1/a, \ & Hi G coshf, a < a, (3.7)

The vanishing of Z, when G = —1/(1 + 2¢, /) indicates the presence of a
pole in the bare scalar vertex function, I'(p,p) = 1'7(p, p)/Z., or equiva-
lently that the renormalized scalar vertex function satisfies a homogeneous
Bethe-Salpeter equation. But this vertex funciion is obtained from a sum
of ladder graphs only. Thus if a bound state pole exists, it must also appear
‘in the ladder diagrams for the fermion-antifermion scattering amplitude. In
the vicinity of the bound state, the ladder sum will be dominated by this
pole term and can be accurately approximated by the diagram of Fig. 2.
That is, _ )
Sys(ladder) — T3(p,p) B(0) e, p')
(3.8)
1
= I'{(p, p)mff(p’,ﬁ)-

When this pole contribution of the ladder diagrams is combined with the

scalar denominator of the bubble sum, the scalar channel of the full fermion-
antifermion scattering amplitude is detemined as

Su(rull) = T80 5 gy~ By @)

(3.9)
= TF(p,p)T(0) ;T3 (0, 7)),
where
T.(0);; = [GoB(0)D7(0)]™"
) . (3.10)
= [(A/ar?)Z3G +1-67)),

and the last equality holds in the chiral limit. We see that the spurious
zero in the bubble denominator has disappeared from the inverse S-matrix
element. Hence it does not correspond to a true dilaton pole.

It is interesting to note that the scalar denominator remains linite in
the continuum limit even in the case of weak coupling, &« < «o,.. For this
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coupling regime, using dimensional analysis and taking into account the
anomalous dimensions calculated in the pure gauge model (cf. Eq. 2.9),
the four-fermion interactions should be irrelevant for weak coupling. One
anticipates that the scalar denominator should diverge with the cutoff as

DR0) - AW L 00 o < o (3.11)

In' fact one finds that the leading A dependence in Z, which is of order
AVI=%/2=1 actually cancels against the same order term in GoZ.B%(0).
Since Df[O) = (Z,/Go){Zs + Go ZsB_?(())), it was this cancellation that
originally led the authors of ref. [5| to erroneously conclude that DF(0)
vanished- along the critical line [18]

G = (11— afa) (3.12)

R

This was in turn interpreted as the appearance of the dilaton. However,
when the subdomina_rﬁ_z}"\/:‘/a“"l terms in G,Z, B, and Z, are retained,
they cancel the AV1-a/ar dependence in Z,/G, yielding a finite DF(0).
This finiteness of D (0) for weak coupling may result simply as an arti-
fact of the factorization properties of the quenched planar approximation.
Alternatively, it may imply an interesting weak coupling, renormalizable
phase of the full theory. In fact, for the gauged NJL model at weak gauge

coupling and with G = (o, /a1 +\/l — a/o.)? so that the chiral symmetry
is spontaneously broken, there has recently appeared in the literature the
claim [19] that the anomalous dimension of the ¥¢ operator is given by '

T AN (313

If this is true, then the dimension of the fermion mass operator is

dyy =2 — \/f—— afa, (3.14)

and consequently the chirally invariant four-fermion operator would be a

relevant operator for & < . in this phase of the theory.

Let us scrutinize this claim a bit further. We thus compute the full
vertex function for a fermion matrix element containing the scalar 11 in-
sertion including both the QED ladders and the effects of the four-fermion
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interactions. The net effect of the extra graphs is to rescale the I'(p, p) ver-
tex so that at zero momentum transfer, the full bare scalar vertex, ['?(p, p),

is given by
1

I -;l = e T 1
\p,p) 17 GoB(0) +(p,P)

1 1

- .. L I'\R , .
1+%@@4*@m (3.15)

1
= T—Ff 3 .
Z‘@m

Using Egs. (3.2 - 3.3) in conjunction with the gap equation (2.17) gives

a

Z, = Z.+GyZ B{0)
(3.16)

AT,
= ) V(G —1)2 (G + 1)2(1 - a/a,).
It follows that in the spontaneous chiral symmetry breaking phase at fixed
weak gauge coupling we secure the result

d .

This is the quantity that the authors of reference [19] refer to as the
anomalous dimension of the 1) operator. We have already established
that in the unbroken chirally symmetric phase, the anomalous dimension

of the mass operator is 1 — \/1 — afa.. If, in the chirally broken phase,

this anomalous dimension is 1 + /1 — a/a,, then the function has a jump

discontinuity across the critical line G(a/a.) = (1 + \/1 — a/e)?. Such
a result is quite puzzling since the anomalous dimension should depend
on the operator structure but not on the particular vacuum configuration.
Thus the operator product expansion should be valid in both phases. From
the explicit weak coupling solution to the Schwinger-Dyson equation, we
constructed the operator product expansion for L(p) in Eq. (2.8). The
two terms appearing in the expression were identified with an explicit mass
term and a fermion vacuum condensate. The anomalous dimension, =y, of
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the 11 operator was then extracted. This identification was consistent
with the perturbative result. If, on the other hand, 4 is identified with the
anomalous dimension in the chirally broken phase, then since 4 = 2—+, the
form of the operator product expansion still holds except that now the roles
of the bare mass term and fermion condensate have to be interchanged. We
find this new interpretation to be rather unconventional.

Finally, let us note that there is also the somewhat remote possibility
that the observed behavior of the scalar denominator at zero momentum
represents a decoupled dilaton, much like the pion in the ordinary NJL
model [17]. In this case we could have F} — oo and m%, — 0 as A —
oo. Here Fp is the dilaton decay constant and mp is its mass. To check
this possibility, we must compute the momentum derivative of the scalar
denominator function, a,,sz(pz)L,z — o &~ F}, to see whether it is finite
or divergent. It is not possible to obtain an exact analytic expression for
the result, but a rough estimate of the diagrams indicates that F? remains
finite and the decoupled dilaton scenario is not viable.

To summarize, the scale symmetry in the ganged NJI model is explicitly
broken, #s in the pure gauge theory. No dilaton is observed. It is of course
possible that a scale invariant theory may exist beyond the quenched, planar
limit when additional relevant interactions are present.
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4 Renormalization

As mentioned before, the Miransky solution [15] for the pure gauge theory
requires the gauge coupling constant to have the specific cutoff dependence
given by Eq. (2.11). The origin of such a cutoff dependence is, however,
somewhat mysterious as the diagrammatic structure of quenched, planar
QED does not seem to allow for a dynamical running of the gauge coupling
constant. To clarify the situation we now study the renormalization prop-
erties of the theory. In the chirally broken phase of the strong coupling
theory, the four-fermion interactions are relevant operators in the contin-
uum limit. Moreover, the four-fermion coupling is renormalized even in the
quenched, planar approximation. It will be shown that it is this dynami-
cal running of the four-fermion coupling constant that leads to an infrared
sensible theory when G — 1 and a@ — . in the continuum limit. In this
sense, the four-fermion interactions play a similar role as the induced ¢*
interactions in the scale invariant n¢° theory [16], although the ensuing
ultraviolet fixed point, G — 1 as & — «, is not a scale invariant one.

The study of the renormalization properties of the theory is restricted
by our inability to compute explicitly the momentum dependence of spe-
cific diagrams. Fortunately, since the theory is defined with an ultraviolet
momentum cutoff, A, we can effectively study the renormalization flow of
the coupling constants by varying the cutolf while keeping the infrared be-
havior unchanged. The dynamically generated fermion mass scale, ¥, and
the renormalized fermion condensate are examples of such infrared stable
quantities. By holding low energy physics fixed, we must require ¥y and
< 1 >g to be invariant as A is varied. Moreover, for moderate momentum
Yo < p << A, and for gauge couplings near the critical value, the fermion
self energy has the nearly universal behavior (cf. Egs. 2.6 - 2.7)

+6(a)]. (4.1)

Thus it also can be treated as a low energy quantity..
Consider the pure gauge theory. The renormalized fermion condensate
is given for all o as

<P >p = Zy < PP o= —(A/20) (. /)53 (4.2)
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where we have used (2.14), (3.2), and the gap equations (2.16) and (2.17)
with G = 0. An identical result is obtained in the presence of non-vanishing

four fermion coupling. In that case, the fermion condensate is renormalized
using Z, = Z, + G,Z.B? (cf. Eq. 3.16) so that for all a we again find

<Y >r = Zo<Ph > = —(A)20%) (/)55 (4.3)

The right hand side of Eq. (4.3) has the explicit a dependence A%(@)(a, /).
Fitting the coefficient ;l(a) to a numerical integration of the Schwinger-
Dyson equation for E(p} yields, in the vicinity of a., the form Az(a)(ac/a) o
1.086 — 1.083(ct/ s — 1) -+ 1.050( e/ r, — 1)?. Hence A*(a)(a./ ) does indeed
vary with o and since £¢ and < ¥ >p can both be chosen as fixed low
energy quantities, it follows that the bare o is in fact physical and is not
renormalized in ladder approximation of the gauged NJL model. This is
in accord with the diagram structure of this model. The non-running of «
also follows if one calculates an observable which probes only high partial
waves. Such a quantity is insensitive to the contact [our-fermion interaction
but does depend on the gauge coupling. For it to correspond to fixed low
energy physics, a must remain constant.

As a final comment with regard to the possible running of the gauge
coupling in quenched, planar approximation, we note that since, in this
approximation, the wave function renormalization of the photon is trivial,
Zs = 1, then the gauge coupling gets renormalized only if the Ward iden-
tity relating the fermion propagator to the QED vertex function is violated.
Indeed there is a weak violation of the gauge Ward idenlity in the chirally
broken phase. However, we do not believe this is responsible for the run-
ning of a required for the continuum limit in the strong coupling phase.
There is no physical mechanism which has been proposed to achieve this.
The collapse phenomenon introduced by Miransky et al. {15] occurs at
asymptotic momentum scales and thus would not account for any running
of the coupling at intermediate momentum scales.

On the other hand, the four-fermion coupling is renormalized and a
physical running ensues. The renormalization flow of the four-fermion cou-
pling can be computed from the gap equations. For & = .. and fixed cutofl
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A, tanf ~ 0 {or tanhf ~ 8) and the gap equations (2.16) and (2.17) give

To = 661\ e—ﬂh/a/u,ﬁl

(4.4)
5 P A e EHV/E-D tang ~ @
or
G = (tand/\/aj/a.—1+1)/{tanb/\/afa. —1—1)
N (4.5)
1+ tanf ~ @.
7 Mgty o1 "

From this, we can define a 8 function describing the running of the four-
fermion coupling as

dG 1 .
Ba(G) = A", = — (G- )" (4.6)
This renormalization flow of the four-fermion coupling is shown in Fig. 3
where G = G - (a/a.) is plotted as a function of the inverse log of the
cutoff. The flow is given for various values of the gauge coupling o which,
as stated above, does not run with the cutoff. 1t indicates the existence
of an apparent ultraviolet fixed point, G — 1 as a — a, which is also
reflected in the beta function of Eq. (4.6). _

We see that a physical running of the four-fermion coupling is required
in order to maintain fixed low energy physics and that when G — 1 for
a = a,, this is sufficient to obtain a smooth continuum limit. On the
other hand, there does not appear to be a smooth continuum limit for
0< @G < 1and a=a, For a> o, the curves terminate at G = —1 where
@ obtains its maximum value of § = 7. As seen in Fig. 3a, this occurs for 2
finite value for A. Thus the renormalization flow cannot be maintained to
the continuum. This is due to short distance effects which destabilize the
vacuum.

Tt is interesting to compare Eq. (4.4) with Eq. {2.10) in the Miransky
limit where @ = #. In the pure gauge case, an infrared sensible theory
requires Lo to remain finite in the continuum limit, which in turn requires
the running of the gauge coupling constant, Eq. (2.11). When the induced
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four-fermion interactions are incorporated, Fq. (4.4) indicates that only
the running of the four-fermion coupling constant is required for a sensible,
finite low energy behavior. The strong gauge coupling continuum limit
corresponds to the fixed point, G =1 and a = a,. The Miransky solution
[15] which requires the tuning of & to a, as A — oo can thus be viewed
as an attempt to mock up the effect of the physics arising from the four-
fermion interaction. When this interaclion is properly accounted for, the
gauge coupling need no longer be required to vary.

In addition to the strong coupling fixed point, the quenched, planar
model also appears to exhibit a weak gauge coupling continuum limit along
the critical curve [18] G(a/ac} = (1 + /1 - a/a;)?. This is indicated by
the flow of G in Fig. 3b. However, further study of the renormalization
properties of this solution is required to establish whether il is a new renor-
malizable phase of the theory or merely an artifact of the quenched planar
approximation.
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5 Effective Lagrangian for Spontaneously
Broken Chiral and Scale Symmetries

As mentioned in the introduction, our original motivation leading to the
current investigation stemmed from the possibility that in certain gauge
models the spontaneous breaking of chiral symmetry may trigger the spon-
taneous breakdown of a scale symmetry. Although this does not turn out
to be the case in quenched, planar QED), it remains a viable possibility for
other models. For such a gauge model which does realize the simultaneous
spontaneous breakdown of both chiral and scale symmetry, it should be
possible to construct an effective Lagrangian solely in terms of the Nambu-
Goldstone bosons of these spontaneously broken symmetries which satisfies
~ the associated (spontaneously broken) Ward identities.

In particular, we envision an underlying fermionic gauge theory in which
the only explicit scale and chiral symmetry breaking arises from a soft
fermion mass term. In that case, the scale and SU(N) axial current softly
broken conservation laws take the term

3. D" = (1 +7)pmy (5.1)

~ _A® .
0,4 = (" ;mbist, (5.2)

where m is the fermion mass matrix and ~ is the anomalous dimension
of the fermion mass operator. The model exhibits the flavor symmetry
chiral SU(N)L x SU(N)g as well as scale invariance, which is assumed
to be dynamically broken by fermion condensate formation to a vectorial
SU(N)v. The A*/2,a = 1,2, ..., N* 1 appearing in Eq.(5.2) are the SU(N)
generators in the representation carried by the fermions.

The Nambu-Goldstone bosons resulting from the spontaneously broken
scale and chiral symmetries, the dilaton (D(z)) and the pions (n°(z)), will
carry scale dimension and chirality. Following standard techniques, we
introduce the combinations

S(D) _ eDfﬂﬂ)/Fn (5_3)

U(r) = X" (2)/Fs (5.4)
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so that U(n) is a dimensionless matrix with SU(N); x SU(N)gr flavor
symmetry, while the chirally invariant S(I)) carries scale dimension one.
if the Nambu-Goldstone bosons are to saturate the low energy theorems,
then the fermion bilinear operator will have a Nambu-Goldstone realization
given by

Drybr., = —roF2[S (D) (U ()]s (5.5)

Here the §* 7 factor generates the correct scale dimension and U (7) gives
the correct chirality, while the coefficient r, is the order parameter for
dynamical symmetry breaking and is given by ro = — < ¥t >, /(2F}).

. The effective Lagrangian which satisfies the softly broken scale and chi-

ral Ward identities takes the form

1
L = %Fga,,sa“s + ZF:SZtr(auU*B“U) 5.0
(5.6
— %roF:(B —~ 7)Sttr(m) + ro FES3 "tr(U* m + mU). '

The soft symmetry breaking arises only from the term ro F25* "tr(Utm +
mU) which corresponds to a fermion mass term ymy (cf. Eq.(5.5)). On
the other hand, the scale and chiral invariant term proportional to S* with
its specified coefficient is needed to insure that the classical vacuum corre-
sponds to the Nambu-Goldstone realization, namely, < D >o=< 7% >¢=0
or equivalently < Sy >=1,< U;; >= 4. Building on this vacuum, we see
that the pseudo-Goldstone boson masses are given by

m2 = 2ro(m; + m;) = —Fl,z- (mg + mj) < Py >0 (5.7)

2 Fr o 1 -
iy = 2ro(FE)*(3 = )1+ erlom) = =5 (3= 3){1 +er(rm) < B >0
(5.8)

where m;, m; are eigenvalues of the fermion mass matrix m.

The fact that the coeficient of the scale and chirally invariant $* term
in the Lagrangian (5.6) depends on the explicit breaking mass parameter,
m, may appear somewhat puzzling and thus warrants some further elabo-
ration. If we had taken an arbitrary coefficient A so this term appears as

20



AS* then the resulting vacuum configuration is given by < U;; >¢= §;; and
< 8§ >=(3- Y)rofitr(m)/(2A). However, a rescaling of the field S 1o
give < § >¢= 1 accompanied by a rescaling of the dimensionful parame-
ters in £ fixes the §* coupling constant and reproduces the Lagrangian of
Eq.(5.6). The necessity for this value of the S* coupling can also be estab-
lished by expanding £ in powers of the dilaton field . The elimination of
the term linear in D is then accomplished by fixing A = 7o f2(3 — A)tr(m)/2
as in Eq.(5.6). As we have noted, the S* coefficient is proportional to the
scale and chiral symmetry breaking parameter m even though §* is a scale
and chirally invariant operator. This dependence is dictated by requiring
a Nambu-Goldstone realization of the symmetry. The vanishing of the $*
coupling in the chiral limit, m — 0, is required since a potential of the
form AS* with A nonvanishing gives a classical vacuum corresponding to
< § >p= 0 which drives < 1) >;— —oo. This instability signals that
the corresponding effective Lagrangian realizes the symmetry a la Wigner-
Weyl. Consequently, a Nambu-Goldstone realization of the symmetry re-
quires that the coefficient of the S* term vanishes in the chiral limit as is
the case in Eq.(5.6). We cannot simply ignore the S* term entirely since in
its absence, the dilaton becomes tachyonic for m # 0. Such a mode! was in
fact considered by Miransky et al. [9] who then concluded that spontaneous
scale symmetry breaking was inconsistent with PCAC dynamics. We now
see that the inclusion of the S* term as in Fq.(5.6) alleviates this difficulty
and provides a consistent effective Lagrangian.

To study the properties of the effective theory given by the Lagrangian
of Eq.(5.6), we compute the symmetric energy-moinentum tensor as

1
8,, = F}(8,58,S — EguVBASBAS)
1
+ZFﬁSZtr(auU+avU +8,U*0,U — ¢,,0, U0’ U)
wgwroF,fSS_"’tr(Uﬁ'"m + mU) (5.9)
1
+ =G0 FL (3 — 4)Sttr(m)
ﬁgFg(auay — gud?)S?,
where the last term is a necessary improvemeni lactor.

Defining the dilatation current as D" = z,0*” and using the classical
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field equations derived from the Lagrangian (5.6), we secure the trace of
the energy-momentum tensor as '
D" = 64 =—-(1+ 'y)roF:S?’""’tr(U*m + mU)
(5.10)
= (L+v)ymy

in agreement with Eq.(5.1). It can also be shown that using the classical
field equations also produces the divergence of the axial current as given
by Eq.(5.2).

We are now ready to verify the low energy theorems for both the scale
and chiral symmetries. Using the axial current divergence to interpolate
for the pseudoscalar Goldstone bosons, we can evaluate matrix elements of
both the energy-momentum tensor trace of Eq.(5.9) and the divergence of
the scale current as given by Eq.(5.10). Defining the pseudoscalar field

§* =

Fom?2
we compute the insertion of 8% in the ¢" two-point function from the dia-
grams of Fig. 4 to be

I = <¢(p)o(r')0,(p' — p) >0

&{g,m}vsw — [l + Fi(s —~)D + ... (5.11)
D

= (p7 ~mi) P’ —my) H{(4mz — 2p P (5.12)
—g*(¢* —mp) (3 — y)mz — 2p-p']} '
-8 =" ~my) ¢ (¢* —mp) 7
—(8 = P* —m3) (¢~ mp) T,
where ¢* = (p' — p)* and mp, m, are given in Eq.(5.7-5.8). Note that it is
essential to keep the contributions of the dilaton poles.
The matrix elements for the divergence of the scale current are also
obtained using Fig. 4 to be

Tm = <¢(p)¢(p) (1 +7)dmd(p' —p) >0

= (pfz . mi)_l(p2 _ mi)—l{(l + 7)m12r
—mL(q® —mb) U3 —q)mi-2p-p)} (5.13)
@A) ) (e - m3)

—(3 =~ 9)(p* — m2)"'mb(¢" — mp)"!
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Using Eqgs.(5.12) and (5.13), the scale identity is determined as

B-7v) (38-1)
p?—mi p'-mb

[ =T, - (5.14)
Since (3 — ) is the scale dimension of the pseudoscalar field ¢, the identity
(5.14) takes precisely its expected form.

We can use these results to evaluate the on-shell meson matrix elements
yielding

<#(@)0iix(p) > = | lm (" —ml)(p’ —ml)r

p2p%m2
= (g" +2m?) - ¢*(¢* — m}) M * + (1 — v)m?]

— <)L+ ) Pmplr(p) >
(5.15)
Clearly, the inclusion of the dilaton pole is essential to the consistent eval-
uation of the low energy theorems for the meson matrix elements.

We have constructed an effective lagrangian for which the low energy
theorems for both scale and chiral symmetries are satisfied. Furthermore,
there appears to be no constraint on the value of the anomalous dimen-
sion of the fermion mass operator.[20] Hence, there is no inconsistency
for the simultaneous Nambu-Goldstone realization of the scale and chi-
ral symmetries. The results of the previous sections have shown that the
spontaneously broken chiral symmetry phase of quenched, planar QED is
associated with a hard, explicit breaking of the scale symmetry. Thus the
scale current algebra cannot be applied to this system.
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Figure Captions

Diagrammatic origin of four fermion coupling.

Ladder diagram contribution to fermion-antifermion
scattering amplitude near bound state.

Renormalization flow of G = G(a/a.), @ > a,.
Renormalization flow of G = Glafa,), a< o.

Feynman graphs contributing to matrix elements containing
the trace of the energy-momentum tensor.
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field equations derived from the Lagrangian (5.6), we secure the trace of
the energy—moméntum tensor as
a.D* = ¢t =—(1 +'y)r0F2S3 r(Utm + mU)
(5.10)
= (1+7)¢Ymy
in agreement with Eq.(5.1). It can also be shown that using the classical
field equations also produces the divergence of the axial current as given
by Eq.(5.2).

We are now ready to verify the low energy theorems for both the scale
and chiral symmetries. Using the axial current divergence to interpolate
for the pseudoscalar Goldstone bosons, we can evaluate matrix elements of
both the energy-mormentum tensor trace of Eq.(5.9) and the divergence of
the scale current as given by Eq.(5.10). Defining the pseudoscalar field

¢" = F, m2
we compute the insertion of 8} in the ¢* two-point function from the dia-
grams of Fig. 4 to be

I = <¢(pep)0u(r' —p) >

o = 7lL 7@MD+ (5.11)

= (p? —ml)"'(p* — ml) {(4m] - 2p-p)
2 2 2y-1 2 ' (5.12)
—¢'(¢° —mp) " [(8 —v)m, —2p-p'}}
—(B8=(p* —m3) ¢ (¢" ~ mp)~!
| @B = - mi) ¢’ (¢’ —mb),
where ¢* = (p' — p)* and mp, m, are given in Eq.(5.7-5.8). Note that it is
essential to keep the contributions of the dilaton poles.
The matrix elements for the divergence of the scale current are also
obtained using Fig. 4 to be

T = <¢(p)o(p) (1 +7)dmi(p' — p) >0
= (" = m) 7 p" — mi) {1+ v)my (5.13)

-mp(q® - TE)"121(3I— ’27)";,3 - 213 : p:)l}
I - .

~(3 ~ ’7)(1’2 - mzﬁ) . sz(qz - sz) 1

—(3 =) p° —mz) "mp(e® —mp)”
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Using Eqgs.(5.12) and (5.13), the scale identity is determined as

(3B-v) _ (3-7)

2 2 2
p _m?r pT - my

I'="T,.— (5.14)

Since (3 — ) is the scale dimension of the pseudoscalar field ¢, the identity
(5.14) takes precisely its expected form.

We can use these results to evaluate the on-shell meson matrix elements
yielding

<n(P)tn(p) > = lim (5 —m2)(p" — m)r

pz,przﬁmg
= (¢ +2ml) — ¢*(¢* — m}) 7 [¢® + (1 — v)ml]

= <)+ Emla(p) >
(5.15)
Clearly, the inclusion of the dilaton pole is essential to the consistent eval-
uation of the low energy theorems for the meson matrix elements.

We have constructed an effective lagrangian for which the low energy
theorems for both scale and chiral symmetries are satisfied. Furthermore,
there appears to be no constraint on the value of the anomalous dimen-
sion of the fermion mass operator.[20] Hence, there is no inconsistency
for the simultaneous Nambu-Goldstone realization of the scale and chi-
ral symmetries. The resulis of the previous sections have shown that the
spontaneously broken chiral symmetry phase of quenched, planar QED is
associated with a hard, explicit breaking of the scale symmetry. Thus the
scale current algebra cannot be applied to this system.
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Figure Captions

Diagrammatic origin of four fermion coupling.

Ladder diagram contribution to fermion-antifermion
scattering amplitude near bound state.

Renormalization flow of G = G(a/e,), a > a..
Renormalization flow of G = G(a/a,), a < a,.

Feynman graphs contributing to matrix elements containing
the trace of the energy-momentum tensor. .
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