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Abstract 

By integrating out the auxiliary metric in the Polyakov string path inte- 

gral, we derive 8 path integral for the Nambu action complete with measure. 

We show how to gauge fix this Nambu form of the partition function. This 

involves an intermediate partial gauge king step. Our result is the Polyakov 

path integral in conformal gauge with the correct measure. The intermediate 

step lnay enjoy off-shell BRS symmetry by a generalization of the standard 

procedures. We show how the Teicbmiiller parameters arise in the Nambu for- 

malism for general genus. These results allow us to make some observations on 
the physical characteristics of typical atring world-sheets. 

a Operated by Universities Research Association Inc. under contract with the United States Department of Energy 
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I. Introduction 

Part of the beauty of string theory is that it is founded on a simple generalization 

of Einstein’s postulate: that free particles follow geodesics, equivalently that their 

action is just the world-line length. Thus string theory is based on the Nambu 

action[l] which is just the world-sheet area: 

jab = &Xr&,i$ (1.1) 

(where @(a = 1,2) are world-sheet coordinates. &,b is the induced metric: the metric 

the world-sheet inherits from being embedded in space-time. z“(p = l,...D) are 

space-time coordinates. Space-time and world-sheet will be taken to be euclidean. 

The string tension has been set to &, i.e.: cx’ = 1). 

Actually, essentially all modern advances in the quantum theory of strings have 

been based on the Polyakov action, 

SF&J @u&i 9ab&“‘ab”r , (1.2) 

which introduces an auxiliary field g,&(u) that plays the role of a world-sheet metric. 

The main benefit of this approach has been the ability to calculate covariantly and on 

arbitrary world-sheet topologies using path integral methods (first demonstrated by 

Polyakov [“I). While it is a straightforward exercise to prove the classical equivalence 

of the two formulations[s’3], this is not sufficient to imply their quantum equivalence. 

Indeed it is sometimes believed to be otherwise. It would be a pity if the link with 

world-sheet area was thus lost at the quantum level. In this paper we will show this 

is not so: we will show that the path integral formulations based on (1.1) or (1.2) are 

completely equivalent. In the process, we will demonstrate how to calculate directly 

with a path integral employing the Nambu action. 

We were motivated to investigate this question by some recent research’[4]. We 

suggested a second quantized formulation of strings which is based on the Nambu 

action and cannot be based on the Polyakov action. The present work thus demon- 

strates that such a basis does not preclude our proposals, ref. [4], from being an 

*I would like to thank Cliff Burgess for pressing me on this point. 
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appropriate generalization of first quantized treatment#]. 

There are two reasons why the classically equivalent theories, using actions (1.1) 

or (1.2), need not be equivalent quantum mechanically. One reason is that classical 

theory depends only on the stationary points of the action, whereas quantum theory 

explores values of the action over the full function space. The other reason is that 

the action itself is not sufficient to define the quantum theory: In the path integral 

formulation, this ambiguity manifests itself in the need to define the (functional) 

measure. To be more specific, the Polyakov string path integral is given by 

zp = I &p(%b, z’)e+ 

where the integration over the fields is written dpp to indicate that it is not just the 

nai’ve measure[61: 

Z)gc,b=I’ = r]: 89 (~7) d=‘z (d (1.4) 
0 

and similarly for the Nambu action and path integral: 

ZN = 
I 

dpN(zp)e-sN . (1.5) 

It is clear here that the measures 8re not just the nCve ones because these would 

not be invariant under (2 dimensional) diffeomorphisms. However it is also true that 

invariance of the measure (under all symmetries of the quantum theory) is not of 

itself sufficient to define the measure either. [‘I In general, the measure must further 

be chosen to obey unitarity. This usually needs making 8 direct comparison with 8 

hamiltonian formalism in 8 manifestly unitary gauge; and, needless to s&y, there are 

still, in geneml, 8 number of inequivalent choices depending on polarization of the 

phase space (i.e., choice of variables and conjugate momenta) and operator ordering. 

Fortunately, in the Polyakov c&se, 8 prescription for the measure exist&q which has 

proved successful.[sl As reviewed in Section II, this boils down to the measure being the 

n&e one times * power of &g(a). (I nvariance would have 8lso allowed for example 

some power of &i(g), jab being the induced metric; however, by comparison with 

the hamiltonian formalism, we know the measure must reduce to the ndive one in 

the gauge g.b = 6-b in order that (1.3) reduce to the partition function of 8 free field 

theory+). 

IWe are ignoring the issue of counterterms and anomalies. This is discussed later in the paper. 



-3- FERMILAB-Pub-89/251-T 

Note that the above implies that Zp (1.3) involves a functional integral over only 

undifferentiated g,&) which factorizes (on a surface of any topology) into an infinite 

product of three dimensional integrals (using (1.4): @g(c) z dgll(~):)dgll(a)dg,,(a)). 

As explained in Section II, it is then a simple matter (up to some subtleties) to 

explicitly perform the integral. The result turns out to be of the form (1.5) and 

provides us with an explicit expression for the measure. Up to constants it is the 

na’ive measure times n, [i(g)]-““. 

At first sight this measure seems a little peculiar: It cannot be derived from analo- 

gous methods to refs. [2,7] and it does not appear to be diffeomorphism invariant. (At 

least na’ively the power of i is wrong). Also, the method of derivation assumes a reg- 

ularization (lattice regularization) that explicitly breaks diffeomorphism invariance. 

Another reason for misgivings is the very dissimilar nature of the two formulations 

(1.3) and (1.5). On the one hand in the critical dimension the Polyakov formalism can 

be gauge fixed to a free theory except, on a general topology, for some finite number 

of remaining degrees of freedom in the auxiliary metric (the Teichmiiller parameters). 

Outside the critical dimension the Polyakov partition function develops an anomaly 

which is generally attributed to a loss of local Weyl invariance. On the other hand, it 

would not at first sight seem possible that the Nambu formalism could be gauge fixed 

to a free theory since the action (1.1) is not even bilinear in derivatives. Indeed, it has 

not previously to our knowledge been demonstrated that such a partition function is 

calculable directly. On a general topology surface, the Nambu formalism would have 

to be equivalent to a free theory for zY plus Teichmiiller parameters, but it is not im- 

mediately clear where these parameters would come from, there being apparently no 

extra degrees of freedom in (1.5) whose remnants could yield these parameters. And, 

finally, we would expect some feature of the anomaly outside the critical dimension 

to be demonstrable, but in this case there is no analogue of local Weyl invariance. 

For the above reasons, we analyze in Section III our derived form for the Nambu 

path integral directly and without resorting to a discretization of the world-surface. 

We show that by first fixing only right-handed diffeomorphisms we can derive an 

action which is essentially that of Siegel6 chiral bosons.[sl It is also equivalent to the 

Polyakov action in a (partial) chiral gauge. In the process we are led to a change 

of variables that exactly cancels the previously mentioned measure factor. We then 

choose a gauge for the left-handed diffeomorphisms which, on a sphere, eliminates 

the first gauge fixing Lagrange multiplier field. Th e result is precisely the Polyakov 
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partition function with the required free field measure and standard ghosts. 

The anomaly that appears in the resulting BRS algebra outside D = 26 is now 

attributable to a loss of diffeomorphism invariance (as indeed it could have been 

chosen to be in the Polyakov case). 

In order to better understand the intermediate partial gauge choice, we investigate 

BRS symmetry and gauge invariance of the action at each step. By introducing some 

generalization into standard BRS procedures, we show that it is possible to find an 

intermediate gauge fixed action that preserves the full left-handed gauge invariance 

while also enjoying a right-handed BRS invariance that is nilpotent off-shell. The 

next gauge fixing step is shown to be consistent with the right-handed BRS invariance. 

In Section IV, the emergence of Teichmiiller parameters, on a general genus, is 

demonstrated. The equivalence of Nambu and Polyakov partition functions allow 

us to physically interpret Teichmiiller parameter dependence, and dependence of the 

partition function on string tension, in terms of physical qualities of the string world- 

sheet. We show that, with probability one, string world-sheets consist of zero area 

infinitely thin tubes. In Section V, we present a summary, our conclusions, and men- 

tion possible future directions. 

II. From Polyakov to Nambu* 

In this section we will perform the integration over the auxiliary metric in the Polyakov 

partition function (1.3), to obtain a partition function of the form (1.5). Our first step 

is to determine the measure in Z,. We follow refs. [2,7]. The essential point is that 

we can define a diffeomorphism invariant measure from a diffeomorphism invariant 

norm on the tangent space to the fields. For example, writing the measure for a single 

scalar field C(C) as 

4-J(z) = ZJz P* (2.1) 

where pz is, in principle, a functional of r(c) and g.&(a), and norm on the tangent 

space as 

~~6r~~~ = J&7&62 , 

tPart of this section has been used aa a basis for (L M.Sc. thesis by Majid Al-Sarhi.[lol 
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we can determine ps from the diffeomorphism invariant condition 

This implies 

1= d/L(&s)e- J 
2)(6c)p2 e-ll6=ll2 (24 

pz = vett &j. (2.3) 

Here Vet is a functional determinant. We will drop all constants that appear multi- 

plicatively in the measure since these contribute only to the overall normalization of 

the partition function. (Actually, the choice 1 in (2.2) and the dropping only of con- 

stants c that appear as an infinite product: cm = &c, seem to give always the right 

normalization in string theory.[‘*sl Polchinski has argued that such infinite products 

may always be renormalized into the cosmological counterterm (which we introduce, 

see eq. (2.7)). In the course of this paper we will in fact only drop constants which 

are of the form of these infinite products). 

It is worth noting that we can verify (2.3) d irectly, confirming the above trick and 

showing that it is convenient but not necessary: Under an infinitessimal diffeomor- 

phism ufa = CT’ - e”(c) we have 

Vx’ = 2)x 1 g I= vx vet (1+ pa,) 

vetfi = vet (J5 + Bl,P&il) 
= Z)et& Del* (1 -PO,) (2.4) 

where we have expanded the commutator in the penultimate line and assumed reality 

of the determinants containing [. The above expressions confirm that choice (2.1) 

with (2.3) is invariant. 

Proceeding similarly for gob we define [2,7](c > --i for positivity): 

lbhbli’ = / @cJTj (gaa’gw’ + cgnbg’=lb’) 6g,,b6g,,,b, 

implying 

which can readily be confirmed by a similar analysis to above. Thus altogether we 

have 

zp = 2)g.b2)2’ Z)et’g eeSP 
I (2.5) 
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where p = $(D - 3). Actually all we will need to know is that the measure factor is 

Vet g to some power and not the precise power. 

Now replace the continuum integral (Vg) by one over some arbitrary dense discrete 

lattice of points {a}, so (2.5) factorises into 

zp = Vx~ n Z;,(a) J W-9 
e 

Z;(a) = / d”g gp exp -Elii [gab&b (ST) + A] (2.7) 

Here we have factored out the integral over zF, which plays no further role in the 

analysis in this section. &(a) is the area element which can depend on a, and &s(c) 

is the induced metric (1.1). The A term is a cosmological constant counterterm to 

absorb any ultra violet divergences. With this regularization, this is the only possible 

counterterm since differentials of the metric cannot be generated; in principle certain 

diffeomorphism violating counterterms could be generated, but we will see that they 

are not needed. 

Note that (2.7) is not a free integral over the elements g.s because g-6 must be 

positive definite. This is true if and only if the eigenvalues of the matrix g = [g,,s] are 

strictly positive. Noting that (2.6) is invariant under SO(2) rotations, we rotate to a 

basis in which &,s is diagonal &s = &Sob (a not summed) and change variables to 

g = RART 

where R is the familiar SO(2) rotation matrix parametericed by an angle 6’. R -+ -R 

symmetry implies the range 0 5 9 < rr. A is the diagonal matrix of eigenvalues 

0 < Xr, Xr < 00. The result is: 

Z;, = 
I 

dAldXadO IAl - X21 (AJ#’ x 

X exp -2 [co? 9 (Al/o + &) + sin’0 (Al/a + ~4,) + A&] 

where a = & 

Note that although the original partition function (2.5) has an infinite degener- 

acy associated with diffeomorphism invariance it does not cause a problem in the 

analysis because it only appears if we also integrate over z”(c). However the local 
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Weyl invariance of the original action (1.2) d oes need care. A local Weyl transfor- 

mation corresponds here to the scaling A; + flX; and the invariance is reflected in 

the appearance of the ratio c?. Note that the measure and the counterterm are not 

invariant under local Weyl Transformations. Changing variables to the Weyl invari- 

ant a and /3 = m allows us to factor out the non-invariant Weyl group integral 

(over p) which is finite for counterterm A > 0. (Without the counterterm, a choice 

of Weyl dependent variable p other than some function of the product XIX2 gener- 

ates diffeomorphism anomalies). It is helpful to use a remaining discrete invariance: 

cr-+l/a 8~8fn/2,andtowrite;\*=~,f~2. Dropping all constant multiplying 

factors (c.f. discussion below (2.3)) we obtain 

2; = J,‘*&JJ~~ &x(1--$) exp-g[X+(a+k)+i-(&a)cosd] 

/ ( ar dq5 4n 
= 

0 6?7(i+ - x- cos lj) 
- 2 + 0 (6%)) 

a * (1-+m-),0(6~~) 
1 a 

Finally forming the product (2.6) and taking the limit 6% -+ 0 we obtain 2~ = 2~ 

with 

(2.8) 

establishing the equivalence between the Polyakov path integral and the Nambu path 

integral (1.5) (with (l.l)), and determining the Nambu measure. Note that it is 

not trivial that the result can be expressed at all in terms of covariant quantities, 

or that it contains the exponential of an action. Note also that the measure is not 

one predictable by the methods explained at the beginning of this section (i.e., by 

choosing a suitable norm 116~11s). Indeed from (2.4) it follows that (2.8) is not (na?vely) 

diffeomorphism invariant. Nevertheless, in the next section we will see that this 

measure is precisely the one required. 

III. Gauge Fixing the Nambu Path Integral 

In this section we show how to gauge fix the path integral (2.8) to a tractable 

form; in fact, the free path integral equal to Polyakovs in conformal gauge.13] For this 
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it is helpful to introduce the usual complex coordinates: 

We will restrict our analysis in this section to world-sheets with the topology of a 

sphere. The general case will be analyzed in Section IV. In terms of these coordinates, 

the determinant of the induced metric takes the form 

3 = 4 @:- - 6++6--) (3.1) 

where 

ij++ = ax .ax 

fj- = Bx .Bx 

Lj+- = ax.82 (3.2) 

(We suppress the space-time indices. We take the space-time metric to be flat for 

simplicity. The analysis could be readily generalised to curved metrics.) Our first 

observation is that choosing a gauge such that the second term vanishes in (3.1) 

causes the Nambu action (1.1) to collapse to the usual free action for z (obtained in 

the gauge Q~S cx 6.b in (1.2)). However, the obvious choice of gauge i++ = i-- = 0 

produces constraints that would seem to be intractable. Also, with some change 

change of variables it produces the usual ghost action, but a power of Det jr is left in 

the measure. Instead we will split diffeomorphisms into left and right handed parts, 

infinitessimally: 

6(++’ = f+ (z,z) 8x” 

6(-)x’ = f-81’ (3.3) 

and for the moment fix only right handed diffeomorphisms f- by the gauge i++ = OS: 

Under the above, the gauge changes to 

tA chiral gauge for the Polyakov action was considered in ref. [12], but there the fixing was 

completed by also setting g+- = 1 
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4+$++ = 0 

6(-)G++ = i+- af- 

Using the Fadeev-Popov procedure, one obtains from (2.8): 

ZN = J lw mt +‘cj Det (4+-B) 6 [k+] ecSN 

Combining the determinants and using eq. (3.1), we obtain: 

?r J ($Jg {ax . ax + ipar ax + m} 

(3.4) 

Here we have raised the functional 6-function constraint into the action by integrating 

over a Lagrange multiplier field /?. b and z are the usual ghosts that appear in the 

conformal gauge for Polyakovs action (as follows from the identification t- + 2, and 

conformal invariance -a symmetry that survives the gauge fixing). Note that the 

measure factor is precisely the factor required to cancel all metric dependence from 

the Fadeev-Popov determinant. 

Significantly the above already coincides with the Polyakov partition function: in 

the partial gauge g++ = 0.7 To show this statement, identify 

fig++ E 4ip (3.6) 

and note that the gauge choice implies fig f- = 2 and g-- = 0. This in turn implies 

the only non-vanishing component of the anti-ghost b.a is b-- = in and hence (after 

some algebra) the ghost Lagrangian for the Polyakov partition function simplifies to: 

& b,dV”Cd = 6az 

Not surprisingly, the BRS and left handed diffeomorphism symmetries also coincide: 

they can be determined uniquely from the requirements that they obey the correct 

TThe integral over the Weyl mode has been factored out as implied by the Weyl invariant idcn- 

tificstion (g.6). 
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algebra (for symmetries involving BRS this occurs, as usual, only on-shell) and that 

the action be invariant. We will go back and analyze the symmetries in detail, but 

first let us show how to completely fix the gauge. The left-handed diffeomorphisms 

(c.f. (3.3)) take the following form on the new fields: 

S(+$J = f+ap - af+P + i8(+ 

6(+$ = (+a? 

SC+,6 = f+ab (3.7) 

In particular, this means that (on a sphere) we can choose the gauge /J = 0. 

From the point of view of the identification with the Polyakov action (3.6), this is not 

surprising, but referring to our gauge fixing procedure (3.4-5) we see that this means 

we can gauge away our first gauge fixing constraint which we would otherwise not 

know how to handle! Fixing the gauge -ip = 0 and introducing the Fadeev-Popov 

ghosts (by using (3.7)), one obtains: 

ZN = 

SL. 7r J duo {ax.& + sac + m} , 
in other words, precisely the Polyakov action in conformal gauge. 

The rest of this section is devoted to a careful analysis of the symmetries involved 

in this two-step gauge fixing procedure. We do this to ensure that no crucial symme- 

tries are violated in the procedure. In particular, we show that the first gauge fixing 

step can be introduced such as to both leave the left-handed local invariance undis- 

turbed and transform the right-handed invariance into an off-shell-nilpotent BRS in- 

variance. We then show that the next gauge fixing step leaves the right-handed BRS 

invariance undisturbed. At the end of the section we discuss the quantum anomalies 

that appear in the procedure; they are just the usual anomalies that appear when 

D # 26. 

Returning to the splitting of diffeomorphisms (3.3) and gauge choice j++ = 0, 

let us make some preliminary comments. First of all, in order to do separate diffeo- 

morphism6 (3.3) we must complexify, i.e., allow z to take on complex values, but we 

preserve the degrees of freedom by integrating only over z and not Z. We would not 
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have had to do this in Minkowski signature: this is just the usual effect of treating 

chirality in euclidean space. Compare, e.g., the euclidean action and gauge transfor- 

mation for chiral boson&‘] with eqs. (3.5) and (3.7). Secondly, it is straightforward 

to see, by Riemanns theorem (a coordinate choice can always be made over the whole 

sphere such as to diagonalize the metric), that it is always possible to choose the 

above gauge. 

Note that the algebra of diffeomorphisms yields two subalgebras, a left-handed 

one: 

pt+)q+)] = 6% 
where @i+, = (+a i=1,2 

and 6fZ) = (f:af: - f:af:)a , (3.9) 

and similarly a right-handed subalgebra for 6(-). But they do not decouple (not 

normal subalgebras): 

[6(+),6(-J = (f+af-) a - (f-af+) a. (3.10) 

Fixing the gauge j++ = 0 using standard methods of BRST[“I we specialize to 

6&‘ = ~6~“ 

&I!’ = c&y (3.11) 

where z is a ghost, b is the BRS operator and z is a constant Grassmann parameter. 

Derive 

& zz E& (3.12) 
- - 

by nilpotency of 6 (Sa = 0) and introduce an antighost i?f that transforms into the 

Lagrange multiplier field p-f by 

be = $3: (3.13) 

@_+ = 0 . (3.14) 

[Iexcept of course in the special case where the diffeomorphisms are conformal 8EC = BE- = 0. 



-12- FERMILAB-Pub-89/251-T 

(The indices refer to the fields required conformal weights: conformal symmetry will 

survive the gauge fixing. .Z has conformal weight K = -1). The ghost and gauge-fixing 

lagrangians are then given together as -Cc-1 = b(Z?az. az). 

The (off-shell) BRS invariance is automatic from nilpotency of 6. However, we 

must modify this procedure. The reason is that (one can show) the above action 

cannot respect the remaining I+ invariance off-shell. This is a consequence of the 

fact that the two algebras are coupled (3.10). (If one simply ignores this problem, 

the end result is eq. (3.5). But we solve the problem here to ensure that we are 

not performing some sleight of hand). Actually, we must ensure that the action 

is invariant under finite left-handed diffeomorphisms. This is equivalent (for those 

connected to the identity) to ensuring that the transformation of the fields respect the 

subalgebra (3.9). And since the actions invariances must be right-handed BRS and 

left-handed diffeomorphisms, the commutator of the two must close, i.e., we require 

[SC+), 4 = S;,, + a?6 

where a is a number. Equation (3.10) (with f- = ZE as in (3.11)) shows that this 

equation is not true: the induced SC-1 transformation is not of the form of BRS- 

6f-1 = ~6. However, if we define E to transform as 

6(+$ = f+aE (3.15) 

then one finds 

[6t+l, 4 x@ = .s E af+azp 
which is of the required form (with a = 0 and f +’ = F E a[+). It is equivalent and 

convenient to define a BRS transformation of the gauge parameter 

bf+ = eat+ (3.16) 

The two symmetries then commute when applied to a+‘; this may also be verified for 

E: 

[6f+l,b] x” = [St+,4 E = 0 (3.17a) 

To ensure invariance we now require 

[a~+,, $1 P-+ = 0 (3.17b) 



-13- FERMILAB-Pub-89/251-T 

[6(+,,6] E+ = 0 . (3.17c) 

Also, the left-handed transformation of the Lagrange multiplier is determined by 

requiring the ,@8z.az term to be invariant (up to a total derivative). The transfor- 

mation is just that implied by its tensor indices: 

4+,P_+ = AP-+ (3.18~) 

where 

A = [+a - (a<+) . (3.18b) 

Now it is clear that (3.14), (3.17b) and (3.18) are incompatible. Thus we generalize 

the BRS transformation (3.13) to 

b$=@$$iP-f 

8 = A.8 + B (8~) 

where we have added the most general possible homogeneous BRS transformation 

compatible with conformal invariance (A and B are real numbers). We assume 

where As is a linear differential operator containing f+. Requiring 6’ to vanish on ~2 

yields: 

Z/3! = Q,p_+ 

S(Q) = p (3.19a) 

which is sufficient to ensure brp_f = 0. Eq. (3.17~) implies 

Ae = A 

b(A) - S(G) = Lo, Al (3.19b) 

which is sufficient to ensure (3.17b). Solving equations (3.19) determines A = -B = 

1 uniquely. Thus we have 

be.? = E&f-&E+ +ip+ 

b/3_+ = zap_+ -Fcp_+ (3.20) 
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and 

6c+j~! = f+ae - a<+& 

bc+,p_f = t+ap+ - af+p_+ (3.21) 

Finally note that transformations (3.15) and (3.21) obey the subalgebra (3.9) auto- 

matically since they are of the form of tensor transformations in one dimension. Now, 

using the fact that 6~+) and b commute on the fields (3.17) and the 6(+)~? transfor- 

mation is that implied by its indices, it immediately follows that the ghost plus gauge 

fixing action 

s(-) = & / a% b (tiaz.az) 

1 

=2?r J t 
80 ip_fa2.az + de+ax.az - (&)z+az.ax 

-ti&az.az) E - 2~fax.& ar 
> 

(3.22) 

is invariant under an off-shell nilpotent right-handed BRS and finite left-handed 

gauge transformations. Our gauge-fixed partition function is thus (using (1.1) and 

(2.8)): 

z, = /D (X’,E,E+,/?) D&j e-(‘N+‘(-)) 
This is equal to our intermediate result (3.5) as may be shown by using the functional 

s-function obtained by integrating over p-+ to simplify the action (using also (3.1)), 

changing variables to 

6 = -eaz.& (3.23) 

which, recalling that a change of Grassmann variables generates an inverse jacobian 

(Bereeinian) and using (3.1), can be seen to cancel the measure factor, and finally re- 

expressing the functional 6-function as a term in the action (p-+ = 2p). The change 

of variables (3.23) implies (using (3.20-21): 

sc+,5 = (+a& - 8f+a+.az(ax.B+)-‘5 

A = EL% - zip&.& + aeBz.Bx(az.&-lh 
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However, the use of the constraint ax.& = 0 to simplify the actions (3.22) and (1.1) 

deforms the fl and 6 transformations to: 

SC+,6 = pa6 

sC+,p = tfap - app + iat+ 

$5 = - (86~ + 2ipBdx + 268~ + a~.&} 

@ = 8(q) (3.24) 

Note that p no longer transforms homogeneously under 6~~1 as a consequence of 

simplifying (1.1). The altered b transformations are determined uniquely by requiring 

the action S’ still be invariant. It is straightforward to show that the new 6~~1 

transformations still satisfy the subalgebra (3.9) (and that the action S’ is invariant). 

However, the BRS transformation is nilpotent on 6 now only on-shell: 

8% = -Zip 82.82:a~ (3.25) 

(Of course, this effect is standard in BRS and does not destroy its power. It follows 

from the fact that we have used the p eqs. of motion). We find also that the modified 

transformations (3.24) commute only on-shell: 

[6t+l, s] 6 = -28.p (ME + ipax.ax) 

[6(+1,6] ,a = zaf+azp (3.26) 

Note that the 6(+1 transformations (3.15), (3.24) are as quoted in equation (3.7). 

Now let us gauge fix left-handed diffeomorphisms. The new term in the p trans- 

formation allows us to gauge away the first gauge fixing constraint (in (3.5)). Thus 

specialize to et = sc,b(+l = 66 where c is our left-handed ghost, E is a constant 

Grassmann parameter and 6 is our left-handed BRS operator: 

6x’ = caxfl 

6’ = 0 + 6c = c&z (3.27) 

The BRS transformations of the other fields E, 6, p follow from the replacement f+ = EC 

(and (3.7)), and off-shell nilpotency on these fields is readily confirmed. That 6 and b 
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anticommute (up to equations of motion (3.26)) f o 11 ows from the commutator relations 

[b, 6~+1] except for 

{6,b}c=O and bsc= 0 

which follow from (6,b)e = 0 and bz~ = 0 by symmetry. Now introduce antighost b 
and Lagrange multiplier field 7 in standard fashion: 

6b=y, 6-y=0 (3.28) 

and write the left-handed ghost plus gauge fixing action: 

S(,) = ; / d’aS[b@] = ; jd%{i+ b(icBP-i&P-&)} (3.29) 

This is automatically invariant under left-handed BRS: 6. It will be invariant under 

b if we choose the transformations on the new fields so that 

b(bp) = a total derivative 

and (b,6}b = 0. (3.30) 

The first condition determines: 

bb=zab (3.31) 

which (e.g.: by symmetry with 6i) satisfies bz = 0. And the second condition gives: 

&‘= -cacBb+E& 

One may readily check that 6’7 = (6,b)r = 0, for example: 

{6,6)-y = -6’(bb) = 0 

follows from (3.30) and (3.28). Th us we have confirmed that we may gauge fix left- 

handed diffeomorphisms by setting p = 0 while leaving right-handed BRS undis- 

turbed. Finally, including the new action (3.29) and variables into the partition 

function (3.5) and integrating over y gives the result (3.8), the Polyakov action in 

conformal gauge. The BRS transformations become: 



-17- FERMILAB-Pub-89/251-T 

. 

86 = - { ax.82 + 268e + &} 

bc = EBC 

bb = db (3.32) 

for right-handed BRS, from eqs. (3.11, 12, 24), setting p = 0 consistently (@ = 0). 

And nilpotency (6s = 0) off-shell follows from (3.25). The left-handed BRS trans- 

formations are just those of (3.32) with all barred terms exchanged with unbarred. 

These are just the previously stated transformations ((3.27) and below) except for 

6b which is modified by integrating out 7. (It is determined uniquely from 65 = 0, 

thus clearly by symmetry of (3.8) it is as given in (3.32) by exchanging barred with 

unbarred). Thus 6r = 0 holds on all fields, and {6,6} = 0 holds except possibly on b 

and 6 where we find 

{6,b}h= -2% [baz+ar.az] 
and by symmetry (6,b}b, which vanish only on-shell. Hence the total BRS charge 

6 + b is nilpotent on-shell (which is all that is required). Note that equations (3.32) 

are the usual BRS transformations. (6~ and be are often set to zero which is true on 

shell, but off shell they follow from nilpotency of the full BRS operator). 

We have shown how to gauge fix the Nambu path integral (2.8) to a free theory 

(on a sphere) and verified the quantum equivalence to the Polyakov formalism up to 

anomalies. Now that we have fully gauge fixed we may check to see whether our gauge 

fixing steps were anomalous. Of course, because (3.8, 3.32) are just the usual gauged 

fixed action and BRS symmetries, one finds the well-known anomalies in the left and 

right moving BRS symmetries which disappear if and only if D = 26.lsl Naturally, our 

interpretation of these BRS anomalies is that the diffeomorphism invariance of the 

Nambu action becomes anomalous on quantization unless D = 26. As is well known, 

in gauge fixing the Polyakov action, it is possible to regard the BRS anomalies by a 

suitable addition of local counterterms which depend on the auxiliary metric,131 as a 

loss of local Weyl invariance; Clearly such a choice is not available to us here. 
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IV. General Genus and Typical Strings 

So far we have only discussed the Nambu formulation for a sphere. Now let US 

discuss the differences that arise on a general topology. Let us assume for simplicity 

a closed oriented string theory. (Actually since non-orientable or open strings do 

not have separate chiral degrees of freedom it is not immediately clear how to gen- 

eralize to these cases). Thus we consider gauge fixing the Nambu partition function 

on a Ffiemann surface with some non-zero genus. Recall first that (for the Polyakov 

partition function) it is no longer possible to pick the gauge gob -+ n(c)& over 

the whole surface. (We are considering only the diffeomorphism group and ignor- 

ing the local scale degree of freedom n(q) which is left unfixed). Instead, global 

restrictions leave one with an integral over some finite number of degrees of freedom: 

g.b + n(&,&~) , &b(7) being some coset representative for the diffeomorphism 

orbits, r being the Teichmiiller parameters (strictly moduli) which label the cosets 

uniquely (and range over a fundamental region determined by the modular group”). 

It is intuitively clear how the Nambu partition function will also yield Teichmiiller 

parameters (we will be specific later): It is no longer possible in general to choose 

one specific gauge for all metrics $,,b e.g., i++ = 0 (c.f. below (3.3)). Instead one 

must integrate over a more general choice of gauge introducing some function of the 

Teichmiiller parameters. From our discussion around (3.6) we would expect the result 

to coincide with the Polyakov partition function in the more general gauge. Then 

again it is clearly not possible in general to fix p = 0 completely (directly from (3.7) 

or by the identification (3.6)) t d in ro ucing some further dependence on the moduli. 

Thus the Teichmiiller parameters will arise in general partly from an integration over 

right-handed gauge fixing choices and partly from some remaining degrees of freedom 

in the gauge fixing parameter 0. 

Now let us introduce a specific family of gauges which in fact extracts all the 

Teichmiiller parameter dependence at the first gauge fixing step. Every metric &,b is 

diffeomorphic to some coset representative n(&&; 7). For each coset representa- 

tive we can make a further change of coordinates (in the action) which diagonalizes 

the metric jj,&; 7) + !?(a’; r)& at the expense of altering the boundary conditions 

to ones that now are a function of Teichmiiller parameters. This is guaranteed at any 

genus by the uniformization theorem.[‘sl 

**The group of diffeomorphisms mod& those connected to the identity. 
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(For clarity’s sake, let us detail the genus one contribution: the torus. In order 

to perform the path integral, we fix on some choice of coordinates, for example, we 

may choose to represent the torus by a square 0 5 orlo 5 1 with opposite sides 

identified.[q We then integrate over all fields periodic in ur,or (0’ - or + 1,~’ - 

ur + 1). Every metric is diffeomorphic to some unique coset representative C&s where 

&i.s is constantJ’1 

[i&b] = 

and T = rr + irr is the (complex) Teichmiiller parameter (modulus) restricted to 

the fundamental region (~1 1~1 2 1,rr > O,lrrl 5 i]. The above clearly displays 

the remaining metric degrees of freedom to be integrated over. One can make a 

change of coordinates in the action to (.z’,z’) so that g0s becomes diagonal and the 

boundary conditions become some (fixed) function of the Teichmiiller parameters; 

the popular choice is such that the torus is represented by a parallelogram with 

corners z’ = 0, 1,~) 1 + r, and opposite sides identified. At genus g > 1, the cosets 

are labelled by 3g - 3 complex Teichmiiller parameters and, by the uniformization 

theorem, one can change coordinates so that the metric is diagonal and the Riemann 

surface is represented by a polygon (in the upper half plane plus point at M) with 

sides identified in some specified way and corners given by functions of the Teichmiiller 

parameters.) 

Let z’(r), Z’(T) be some specific change of coordinates that diagonalizes &.(a; r). 

Let 

then fixing the gauge by setting &s(c) to f+)g,&;r) for some f?, and some r is 

equivalent to requiring 

~(~)f”(+b(C) = &+(Z’,z’) = 0 

and ?t”&b = g-=0 (4.1) 

for some r (as may be seen by inverting the coordinate transformation). Our first 

gauge fixing is accomplished by inserting into the path integral (according to the 
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usual Fadeev-Popov trick): 

constant = / [dr] / dp (t- 
) 6 [c”fb&] 

Here [dr] is the modular invariant measure for the Teichmiiller parameters and the 

integral is over some fundamental region. (Modular invariance fixes the measure 

uniquely up to some constant). &(E-) is the group measure for right-handed diffeo- 

morphisms where left/right-handedness are referred to the z’(r) coordinate system, 

so that, for example, a general infinitessimal diffeomorphism is given by: 

w(~) = ~+(c)pa,z~+~-pa.z~. 

Viewing our manipulations in the r’(r) coordinate system, we are choosing the 

family of gauges g++(z’(r),~‘(r)) = 0 h h . w ic 1s clearly possible from the discussion 

about (4.1). The result, again viewed in the primed coordinate system, is of the form 

(3.5) except the partition function is also integrated over 7. The dependence on r 

appears implicitly through the choice of boundary conditions (position of corners of 

the polygon). Now we can choose the second gauge fixing to be PC’) = 0, as before. 

This is a globally allowed choice of gauge for the right-handed diffeomorphisms be- 

cause the first gauge fixing produces a partition function which is equivalent (through 

identification (3.6)) to the Polyakov partition function in the partial gauge g;+ = 0 

(defined as in (4.1)) while this second gauge fixing is the same as setting g’- = 0 and 

completes the gauge choice (4.1). Th us the final result is the same as that obtained 

for the Polyakov partition function: the standard partition function (3.8) defined 

with some standard choice of 7 dependent boundary conditions and integrated over 

a fundamental region for r using the modular invariant measure. 

We have completed our demonstration that the string quantum theory based on 

the physical area action (1.1) (i.e., the actual area of the world-sheet configuration 

as measured in space-time) and defined by the partition function (2.8) is quantum 

equivalent to the Polyakov partition function. It is amusing to note that various 

results derived using the latter partition function now receive a direct physical in- 

terpretation. For example, the moduli (Teichmiiller parameters restricted to the 

fundamental region) now characterize geometric properties of the world-sheet con- 

figuration in space-time (rather than the auxiliary field of the Polyakov formalism), 
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while the integrand-in the integral over moduli-is a measure of the probability (for 

the euclidean path integral, amplitude for Minkowski space) of obtaining configura- 

tions with these values of the mod&. Thus at genus one the fact that the integrand 

is non-zero everywhere and diverges only for rr -+ cot+ (due to the tachyon) im- 

plies that no range of moduli leads to world-sheets that cannot be embedded in 26 

euclidean dimensions while tori for which one direction is infinitely longer than the 

other are infinitely more probable than any other configuration. (The first conclu- 

sion is expected from geometry: Whitney’s isometric embedding theorem guarantees 

the existence of an embedding (+“(a)) f or each choice of metric &,s(‘) in four or 

greater euclidean dimensions. It would thus be interesting if sense could be made of 

the Nambu formalism in small numbers of dimensions). The fact that the partition 

function (at any genus) has string tension dependence: 

(by dimensions, also explicitly [7]) all ows one to deduce the probability measure as 

a function of physical area A of the configuration. Writing the Nambu partition 

function so as to explicitly display the string tension dependence: 

n&(T) = / d/q,.(~“)e-~“[~~ 

where A[z] is the area (27r.S~ as given in (l.l)), and substituting 

l= 
I 

dAd7/% exp i7(A - A[+]) 

one finds the probability measure for a given area P(A): 

ZN = J dA P(A) 

13 
P(A) cc e-TA Q-4 

a distribution at A = 0. 

Taken together, the above facts imply that a typical string world-sheet configura- 

tion (at least for genus one and presumably in general) is constructed from infinitely 

thin tubes of zero area. 

ttThis follows for example from the explicit result [3,7] and properties of the discriminant [14]. 
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V. Conclusions 

In this paper we have constructed and investigated a partition function for first 

quantized strings based on the physical area (Nambu) action (1.1). In Section II we 

constructed the Nambu partition function by integrating out the auxiliary metric from 

the Polyakov partition function. We used (implicitly) a lattice regularization. As was 

noted there, it is not guaranteed that the result contains the inverse exponential of 

the Nambu action, and that the other factors may be interpreted as the measure (2.8). 

We note that by construction, within the lattice regularization, the result of Section II 

proves equivalence between the Polyakov partition function and this Nambu partition 

function for any space-time dimension and, in fact, for a variety of backgrounds: the 

analysis is unaltered if one introduces a general spacetime metric, nor is it altered 

if one couples in a general antisymmetric tensor field BIuI(z) (since this does not 

involve the auxiliary metric) or a constant dilaton (since this couples only to the 

Euler number). However, since lattice regularization is not diffeomorphism invariant, 

the Nambu partition function can develop an anomaly in this symmetry. 

The result we obtained for the measure, in Section II, is puzzling because it does 

not appear to be diffeomorphism invariant. Nevertheless, in Section III we showed 

that this is the measure required so that on gauge fixing the Nambu partition function, 

the Polyakov partition function in conformal gauge with free measure (and the usual 

ghosts) is obtained. Our strategy for gauge fixing the Nambu path integral was first 

to fix right-handed diffeomorphisms. Our choice of gauge eliminated the square root 

in the Nambu action and produced a partition function that can already be identified 

with a partially gauge fixed Polyakov partition function by suitable reinterpretation 

of the gauge fixing Lagrange multiplier. We completed the gauge fixing by choosing 

a gauge that eliminated the Lagrange multiplier. 

The remainder of Section III was devoted to a careful discussion of the BRS 

and gauge symmetries involved in this two step procedure, checking that they are 

preserved when required. Once the partition function was fully gauge fixed, we were 

able to investigate quantum anomalies in the gauge symmetries (diffeomorphisms). 

There is just the usual anomaly that requires D = 26 for flat spacetime. Outside the 

critical dimension the loss of gauge invariance invalidates our gauge fixing procedure. 

It would be very interesting if progress could be made in understanding this anomaly 

in the Nambu formalism more explicitly. The extension of this gauge fixing procedure 
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to the previously mentioned backgrounds is straightforward and is valid providing 

they satisfy the usual conformal invariance conditions. The extension to non-constant 

dilaton backgrounds and other backgrounds is an interesting question not addressed 

by this work. Once gauge fixed, however, the couplings (and vertex operators) will 

clearly be those for the Polyakov formalism. 

In Section IV, we generalized our analysis to general genus introducing a family 

of gauges for the first gauge fixing and thereby exposing the Teichmiiller parameters. 

The final result is again equivalent to the Polyakov partition function in conformal 

gauge. We noted that the generalization of this gauge iixing procedure to open or 

non-orientable strings is not so clear. 

The appearance of exactly the same results from this Nambu formulation (as have 

been obtained from the Polyakov formulation) in the critical dimension allows us to 

give a physical interpretation of the vacuum diagrams’ dependence on moduli and 

string tension in terms of typical world-sheets (i.e., qualities of the embeddings that 

appear almost always in the euclidean path integral). We showed that typical world- 

sheets consist of infinitely thin tubes of zero area. This conclusion is in accord with 

expectations for a partition function where the probability of a given configuration 

is exponentially suppressed by the area of the world-sheet. Indeed intuitively one 

expects typically infinitely thin and infinitely long tubular world-sheets with zero 

area since these configurations are undamped, but explore the maximum configuration 

space. 

Finally, let us note that the methods described in this paper may have applications 

elsewhere. It would be interesting to consider the supersymmetrization of this work 

(presumably via the Green-Schwars action [3,15]). But perhaps most intriguing is the 

possibility that these methods might shed light on quantum theories of membranes 

(and higher dimensional analogues) controlled by a volume action (of the form (1.1) 

but with dau replaced by d”cr where II = 3 or higher). Similar to the Polyakov action 

one can create a classically equivalent action containing an auxiliary metric which 

is bilinear in derivatives. Such theories prove very difficult to quantize (see however 

ref. [16]). Since the metric involves fn(n + 1) 2 6 degrees of freedom, it would seem 

unlikely that an extension of the analysis of Section II to these cases would show that 

the auxiliary metric actions are quantum equivalent to the volume actions (based on 

(1.1)). On the other hand, progress might be made on a covariant gauge fixing of the 
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volume action since for example the partial gauge choice 

4-i &zW.z, = 0 

turns the square root into a free lagrangian and leaves (n - 1) further gauge choices 

to use to eliminate, or form manageable, constraints. 
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