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ABSTRACT 

Planar scalar field configurations in general relativity differ considerably from 
those in flat space. We show that static domain walls of finite thickness in curved 
space-time do not possess a reflection symmetry. At infinity, the space-time 
tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum 
(Rindler space-time) on the other. Massive test particles are always accelerated 
towards the Minkowski side, i.e. domain walls are attractive on the Taub side, 
but repulsive on the Minkowski side (“Taub-vacuum cleaner”). We also prove 
that the pressure in all directions is always negative. Finally we briefly comment 
on the possibility of infinite, i.e. bigger than horizon size, domain walls in our 
universe. All our results are independent of the form of the potential V(Q) 2 0 
of the scalar field @ 
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1. Introduction 

Domsin walls like other topological defects can be produced in a phase tran- 

sition in the universe. However, it is well known I” that stable domain walls in 
the early universe would soon have dominated the energy density and therefore 
were discarded. The renewed interest in domain walls is due to a scenario of 
galaxy formation proposed by Hill, Schramm and Fry3 in which these topologi- 
cal defects form after recombination and provide the seeds for the clustering of 
baryons without destroying the isotropy of the microwave background radiation. 
In this model the thickness 6 of these walls can be of the order of Mpc’s and 
is related to the neutrino mass m, and the GUT-symmetry breaking scale A by 

6-A/m;. It has been speculated4 that the “Great Attractor” might be such a 
domain wsll. 

Numerical simulations of the dynamics of a network of such walls show5’6 
that small closed walls decay and only one infinite wall per horizon survives. 

In general, a domain wall is a topologically stable configuration where the 
scalar field attains different vacuum expectation values on different sides of the 
wall. The gravitational effects of domain walls were studied in the approxima- 
tion of infinitely thin walls, i.e. where the energy momentum tensor becomes 
proportional to a &function. Under the assumption that the metric functions 

are reflection (z -+ -2) symmetric, no static solutions were found 7’8’g This lead 

to the study of thins” and thick”“’ (but still reflection symmmetric) static 
domain walls in non-static space-times. However, if the assumption of reflection 

symmetry is dropped, infinitely thin, static walls exist I2 The remarkable result 
of these studies was that the gravitational field of these wa,lls is repulsive. 

If domain walls exist in the present universe, they could only be detected by 
their gravitational effects. We therefore investigate thick, static domain walls in 
the framework of General R.elativity. Since the form of the potential V(@) is not 
known, we analyze the general properties of static planar domain walls for an 
arbitrary potential. In spite of their complexity the coupled Einstein-scalar field 
equations allow to extract some remarkable new features. The only assumptions 
we make are planar symmetry (i.e. with Killing-vectors a,, a,, .ra, - y& ), a 
positive scalar field potential (V(a) > 0) for finite z and a vanishing energy 
momentum tensor at infinity 121 -+ 03 

We will show that static domain wall solutions of the Einstein-equations 
are not reflection symmetric. The analysis of Einstein’s equations in a suitable 
coordinate system reveals that the asymptotic structure of the space-time is in 
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fact different on the two sides of the wall. Although the coupled Einsteinscalar 
field equations are symmetric with respect to a z + --i transformation, no 
solutions with this symmetry exist (besides the Minkowski vxuum). We show 
that the gravitational field of a domain wall always approaches the Minkowski 
vacuum on one side of the wall and the Taub vacuum on the other side. The 
Minkowski- and Taub vacua are the only two static planar vacuum solutions of the 
Einstein equations. Also the equations of motion for test particles are different 
on the two sides of the wall: All massive particles are accelerated towards the 
Minkowski side. This is compared with a static wall of perfect fluid which is 
attractive and admits only bound states for massive test particles. Also, we find 
that the pressure perpendicular to the wall is always negative and possesses only 
one minimum. This pressure is entirely due to gravitational effects, since for a 
wall in Minkowski space-time the pressure is zero everywhere. Finally, we make 
some remarks on the effects of infinite domain walls in the cosmological context. 

2. Einstein equations 

The coupled Einstein- scalar field equations are obtained from the action 

s= d’s& J 1 $l @” +@,a,+ - V(G) - ; R 1 , g = Idet(gev)l (2.1) 

by variation with respect to the metric gPu and the scalar field + (We use the 
units 8rG = 1 .) This gives the Einstein-equations 

G,, = R,, - ; g,,R = Tpy 

with the Bicci-tensor R,, and the energy momentum tensor 

Tpv = a,+&@ - g,w [ ; gw a,E@ - v(a)] 

and the Euler-Lagrange equation for the scalar field 

g-l/2ap [&g”“a,m] +@$J = 0 

(2.2) 

This last equation can also be viewed as a consequence of the Bianchi-identity 
T,“;, = 0 Since we are interested in static and plane-symmetric configurations 
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we can take the metric of the form 

da” = &‘Vr) & _ ,“W ,Q _ ,=(z) (& + Q) (2.5) 

We use the freedom to choose the coordinate system by imposing the condition 
2C = B - A . The energy-momentum tensor t,hen reads: 

Tt” = Tzz zz TyY = + ; ,-?B @J2 + V(@) e p 

T/=-; e-2B 
(2.6) 

an + V(Q) z -p 

and the Einstein-equations become: 

Gt’ = - e-2B 
[ 
4B” - B’2 - 2A’B’ - 4A” + 3A12 /4 = p 1 G,” = - ,-2B [B” + 2A’B’ - 3Af2] /4 = -p (2.7) 

G,” = G,Y = - ,-28 
[ 
2B” - B” - 2A’B’ + 2A” + 3A12 14 = p , 

I 

where the prime denotes the derivative a/& The scalar field equation (2.4) 
simplifies to: 

e -28 art _ 9 = o 
(2.8) 

From (2.7) one immediately finds that 

A” = -ezB V(a) (2.9) 

A” = B”/3 (2.10) 

Eqs. (2.8) - (2.10) are equivalent to the Einstein-equations (2.7) and are sufficient 
to determine the functions A, B and @ for a given V(@) 
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3. Properties of plamr scalar field configurations 

The simple form of eqs. (2.8) -(2.10) all ows us to draw some interesting con- 
clusions about static planar scalar field configurations for an xbitrary potential 
V(e) . The properties of thick walls are radically different from those of infinitely 
thin walls discussed so far. Our assumptions, besides planar symmetry, are only 
that (i) pressure and density vanish for Iz/ --t cc and (ii) V(G) > 0 for finite z 
The assumption (ii) requires the @ field to take a ground state value at Iz[ + cc 

3.1 PLANE SYMMETRIC VACUUM SOLUTIONS 

Before we analyze the properties of scalar field configurations we shall have 
a look at the asymptotic vacuum states that are possible fa,r away from the wall, 
where the density and pressure vanish. From (2.7) we find for p, p --t 0 

A” = 0 , B” = 0 , Bf2 + 2A’B’ - 3A’2 = 0 , (3.1) 

with the two solutions 

(0) : 01 z A’ = B’ = const 

(b) : ol E A’ = -B’/3 = const 
(3.2) 

In case (CL) the metric (2.5) becomes 

ds” = e20* (dt2 - dz2) - (dz2 + dy2) , (3.3) 

where we absorbed the integration constants by a resealing of the coordinates. 
Of course, for 01 = 0 this gives the Minkowski vacuum. For 01 # 0 (3.3) is the 

metric of a Rindler space 
13 

, that is Minkowski space in an accelerated coordinate 
system. This can be seen by applying the transformation 

i = eD’* sinh(cut)/a , 2 = ear cosh(olt)/cy , (3.4) 

so that eq. (3.3) becomes 

ds2= dt%ddi2-dz2-dy2. (3.5) 

An observer at rest at z = const receives an acceleration along the hyperbola 
i2 - r? = e2azcy2 in Minkowski-space. 
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In case (b) the metric (2.5) becomes 

&" = e2W &? -e-6C2= &? -e-4CrZ (&? + &,2) 
(3.6) 

where we again absorbed the integration constants by a resealing of the coordi- 
nates. Again, for cy = 0 the metric reduces to the Minkowski vacuum. For oi # 0 
after the coordinate transformation i = e-4ar 
(i, 2, jj) = 2&J (t, z, y) one finds 

/(4loI) and a further resca.ling 

ds2 = i--l/’ (di2 _ d;?) _ i (di2 + dc2) , (3.7) 

that is the Taub-vacuum14 

Now, knowing the possible asymptotic vacuum space-times far away from 
the wall, we show that the quite general assumptions stated above, i.e. planar 
symmetry , V( @) > 0 at finite z and p, p --f 0 for Iz / + co, are indeed sufficient 
to determine the actual vacuum states on both sides of the wall. 

3.2 FORM OF THE METRIC COEFFICIENTS 

Here we examine the general form of the metric functions A and B The 
relative sign of their derivatives, A’ and B’ , determines by eq. (3.2) the nature 
of the vacua at z -+ fco . The assumption V(Q) > 0 for finite z yields (see eq. 

(2.9) 1 

A” < 0 , B” < 0 for z finite. (3.3) 

Thus, A’ and B’ can change their signs at most once. Since we demand p + 0 
as IzI + co and p # 0 at some points (p c 0 would be equivalent to Minkowski 
vacuum everywhere by eqs. (2.7) ), p must have an extremum. This implies that 

PI = -~‘&2,-2B 
(3.9) 

has to change its sign at least once and, because @12exp(-2B) 2 0 , also B’ 
changes its sign at least once. On the other hand, since by B” < 0, B’ can 
change sign at most once. So there exists a single point zs where B’(zo) = 0. 
B(z) has a single maximum and must therefore tend to -cc for lzl -+ 03. The 
general shape of B(z) is illustrated in Fig.1 It is also obvious that the sign of 
B’ must be different for z -+ +co and for z -+ -co: 

forz-tfcu: B’<O ($ p’>O 

forz+-co: B’>O w ~‘50 
(3.10) 

Since the space-time tends to a vacuum as Irl --+ oc, , B’ becomes constant (see 
(3.2) and Fig.2). 
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Next, we want to determine the sign of A’. Since p(z) awld V(Q) are supposed 
to vanish for 121 + co and B(z) + -cc the gradient @‘(z) must also go to zero 
for I.?/ -+ 00. From (2.10) we have 

B’ = 3A’ + q , q = const. (3.11) 

and (2.7) yields then: 

@I2 = 6A” + 4qA’ + ;q2 + 2Ve2B 

The information about the sign of A’ , contained in the term 4qA’ of eq. (3.12), 
allows one to draw conclusions about the reflection symmetry of solutions and 
the asymptotic vacuum spacetimes on the different sides of the wall. This will be 
discussed in the following two sections for the case q = 0 and q # 0 , respectively. 

3.3 No REFLECTION SYMMETRIC SOLUTIONS 

We show here that in the case q = 0 of eq. (3.11) there are no solutions 
(besides the Minkowski vacuum, A’ = B’ = 0). Only for q = 0 both metric 
coefficients, A and B, could be symmetric functions of z. The choice of the 
integration constant q = 0 implies that for IzI + 00 A’ + 0 , since we have 
assumed @’ --t 0 and V + 0. Then, on account of (3.11), also B’ has to vanish 
at infinity which contradicts the result about the shape of B(z) derived at the 
beginning of this section. Since the case q = 0 is not compatible with the imposed 
boundary conditions and for q # 0 eq. (3.11) is not invariant under r + --z , i.e. 
at least one metric function cannot be invariant under reflections, we conclude 
that reflection symmetric static walls are not admitted by the coupled Einstein 
scalar field equations. This is also corroborated by the fact, which we are now 
going to prove, that the two vacua at z -+ &c are different. 

3.4 DIFFERENT VACUA OUTSIDE THE WALL 

For the remaining case q # 0 we now analyze the shape of the metric function 
A to determine the asymtotic vacuum states on the different sides of the wall. 
With V + 0 and @ + 0 at IzI + co eq. (3.12) becomes 

6A’2 + 4qA’ + iq2 + 0 for /zI --*cm. (3.13) 

However, this is only possible if 

qA’<O at z-++cs~andz+-co, (3.14) 

since 6A12 + iq2 is positive. The important point is that qA’ , and therefore also 

7 



.4’ , have the sa,me sign at 2 ---i +oo and z -+ -co Taking into account A” < 0 
(eq. (3.S)), A’ cannot change its sign at .all and therefore A(z) must have a shape 
as depicted in Fig.1 

We have seen in (3.1) , (3.2) that the two possible vacuum solutions are given 
by B’ = A’ = const (Minkowski, i.e. Rindler) and B’ = -3A’ = const (Taub), i.e. 
the two vacua can be distinguished by the relative sign of the asymptotic values 
of A’ and B’ Since we arrived at the conclusion that B’ must have different 
signs at z + +oo and z -+ -co and A’ cannot change sign at all, the va.cuum 
spacetimes at z + +oo and at z + -co must be diflerent. If q < 0 then, on 
account of (3.14) , A’ > 0 everywhere and since B’ < 0 at z + +co the vacuum 
at z + fco must be the Taub vacuum and since B’ > 0 for z + -co the space- 
time tends to the Minkowski vacuum at z -+ -cu. For q > 0 the Taub space is 
at z -+ --co and Minkowski space at z -+ +co. 

To summarize the last sections, we have shown that every planar, static 
solution of the coupled Einstein-scalar field equations with a positive potential 
and an asymptotically vanishing energy momentum tensor cannot be symmetric 
with respect to reflections z -+ --z and tends to different vacuum space-times at 
z++coandz+-oo. 

3.5 NEGATIVE PRESSURE 

In the appendix we give a proof that the pressure p(z) perpendicular to the 
wall must be negative and has a single minimum. This is markedly different from 
domain walls in flat space-time where this pressure is always zero. The scalar 
field equation in flat space is 

(in flat space) (3.15) 

which has the first integral 

p+‘2-V= const = 0 (in flat space) (3.16) 

By imposing the same boundary conditions for p as above the constant must 
be zero. Thus, the pressure perpendicular to a wall in Minkowski space is zero. 
This shows that p(z) originates entirely from gravitational effects. Since in curved 
space a force is necessary to counterbalance gravity in order to make a wall static, 
the pressure in a self gravitating wall cannot vanish. In fact, if p were zero, (2.7) 
shows that also p vanishes, i.e. there is no static wall solution with p = 0 in 
curved space. 
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3.6 GEODESIC EQUATIONS 

The absence of a reflection symmetry also gives rise to different geodesic mo- 
tions of te s particles on the two sides of the wall. All previous treatments of the t 

gravitational effects of domain walls in static and non-static space-t,iIlles7’s’g’10’1* 
were based on the assumption of reflection symmetry about the center of the wall. 
So repulsive gravitational effects were assumed to occur on both sides. However, 
non-reflection symmetric walls will have different gravitational effects on the two 
sides. We find that a wall is attractive on the Taub side and repulsive on the 
Minkowski side. 

The results from the last sections allow us to determine the general features 
of the motion of a test particle in the gravitational field of the wall. The geodesic 
equations for a test particle moving perpendicular to the wall with position vector 
9 = (t(~), Z(T), 0,O) (T is an affine parameter along the geodesic) have the 
following first integrals (a dot denote differentiation with respect to 7) : 

t = &-2A (3.17) 

52 = e -28 fi2e-?A _ p2 1 
where & is the energy constant associated with the Killing vector 8t and p2 = 1,O 
for massive and massless particles, respectively. The local energy Eloe a freely 
falling observer measures is (in units of the mass for massive particles) 

- - 
Eloc = Ee-A (3.19) 

The acceleration of the particle measured by an observer that remains at a con- 
stant distance from the wall is given by 

In order to determine whether a particle is repelled by the wall one has to know 
the sign of the acceleration on both sides of the wall. On the side where the space- 
time asymptotically tends to the Minkowski vacuum we have A’ = B’ = -q/2. 
We choose q > 0, so that the Minkowski vacuum is at z -+ +co Then the 
acceleration for z + +oo is 

2 = -.,B’~-?B ~32~-2A _ 1 

2p 
2 
1 

Since i2 2 0 implies ,?22e-2A - 1. 2 2p 1 0 and B’ = -q/2 < 0 we conclude that 
Z > 0 , i.e. the wall is repulsive on the Minkowski side at z -+ +cc For a particle 
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moving in the part of space which tends asymptotically to the Taub vacuum it is 
not possible to derive the sign of Z in a similar way. However, .4(z) is a monotonic 
function and t2 2 0 implies by eq. (3.18) that massive particles ($ = 1) can 
only move in the region 3 2 ZT (for q > 0) , where ZT is the single turning point 

E2 - e2A(zT) = 0 i.e. filoc = 1 , (3.22) 

see Fig.3 Thus, any massive particle coming from the Minkowski vacuum 
and moving towards the wall bounces at z = ZT and is repelled back into the 
Minkowski vacuum. This means that any test particle is accelerated towards the 
Minkowski side. Massive particles on the Taub side are attracted by the wall. In 
this sense the wall may be viewed as a giant “Taub-vacuum cleaner”. For photons 
the possible trajectories are quite different: from (3.21) and (3.10) it follows that 
massless particles (p2 = 0) moving perpendicular to the wall feel a repulsive force 
on both sides of the wall. However, they can penetrate the wall freely without 
any turning point. On the other hand, it can be shown that massless particles 
moving parallel to the wall are always driven towards the Minkowski side. 

In the remainder of this section we briefly discuss the essential difference of the 
gravitational field of these scalar field walls and the gravitational field of a planar 
static perfect fluid configuration. Taking the metric (2.5) with 2C = (B -il) the 
Einstein equations with an energy momentum tensor T,, = (p + p)u,u, - pg,, 
(upup = 1) are 

(p + 3p) = 2A”e-2B 

(p -p) = ,-2B(~” - .“) 

and the Bianchi identity is 

(3.23) 

(3.24) 

p’ + (p + p)A’ = 0 (3.25) 

If the fluid satisfies p+3p > 0 then A” > 0 and ifp + 03 as 121 -+ co and p+p > 0 
(3.25) implies that A’ has to change sign at least once. The equations of motion 
for a test particle moving along the z-axis are the same as (3.17), (3.18) and (3.20). 
Since A(z) increases monotonically as IzI --t 00 and has a single minimum,>the 
condition i2 2 0 implies that every massive particle can only move within a finite 
range ZT~ 5 z 5 z~2 where 2~1, 2~2 are the two solutions of l? - e2A(r) = 0. 
Thus, every massive test particle is trapped by a perfect fluid wall in a bound 
state and therefore this wall must be attractive. Only photons can escape the 
gravitational field since no points with Z2 = 0 exist for p3 = 0. 
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4. Infinite walls in the cosmological contest 

A phase transition in the early universe that allows a scalar field to settle 
down in different vacuum expectation values in different regions of the universe 
would produce domain walls between these regions. The network of domain walls 
will initially have a coherence length of the order of the inverse scalar mass, which 
is also the thickness of the walls. Because of their surface tension, the smaller 
closed domain walls will gradually shrink and finally decay into scalar bosons; 
bigger walls will straighten out. Also, walls can collide, annihilate or merge 
together; ,A numerical simulation of a network of domain walls in an expanding 

universe ’ , which, however, did not take into account the gravita.tional effects of 
the walls, suggests that only one infinite wall per horizon volume will eventually 
remain. 

An infinite wall in the cosmological context means a wall of a size larger than 
the horizon. The horizon volume is then cut into two halfs by the wall. Even a 
closed wall, with a curvature radius larger than the horizon, can be treated as an 
infinite wall, since the information of the topology of the wall can spread only on 
horizon scales. 

The assumption of a vanishing energy-momentum tensor at large distance 
from the wall is obviously not satisfied in the universe. But even the assumption 
of an isotropic perfect fluid far from the wall would, by eqs. (2.7) , lead to 
A’ = qB’ + const (7 = const) , so that the metric would still have no reflection 
symmetry and the space-times on the two sides of the wall would be different! In 
any case, one can expect that the above results are an approximation for almost 
planar walls and regions where the energy density of the universe is much smaller 
than that of the wall. 

If there is such an infinite wall between us and the last scattering surface 
of the microwave background, it could destroy the isotropy of this background 
by deflecting the photons at the wall. On the other hand, the wall would also 
influence our motion with respect to the microwave background. From the re- 
quirement that the combination of both effects is in accord with the measured 
isotropy of the microwave background one could derive constraints or indications 
on the possible existence of these domain walls in the universe. But also the 
wall-induced pertubations in the density and velocity distributions of ordinary 
matter could lead to similar effects. 
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5. Conclusions 

We have shown that static domain wa,lls in General Relativity possess no 
reflection symmetry. This implies some interesting phenomena. The asymptotic 
vacua are Minkowski (i.e. Rindler) space-time and Taub space-time on the dif- 
ferent sides of the wall. Massive test particles are always accelerated towards the 
Minkowski side; that is, particles coming from the Minkowski side experience a 
reflection. Massless particles moving perpendicular to the wall are always accel- 
erated away from the wall (and never get reflected), but those moving parallel 
to the wall are driven towards the Minkowski side. Indications or constraints for 
the existence of infinite walls in the universe could be obtained by comparing 
their gravitational effect on our local motion and on the microwave background 
with the observed isotropy of this background. 

ADDED NOTE: 

After completing this paper we found an exact solution of eqs. (2,s).(2.10) 
for the potential V(a) = VO cos “(‘-“)(+/f(n)) (0 < n < 1) which confirms and 
illustrates the general results obtained in this paper. 
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APPENDIX 

Here we show that p is negative and has only a single minimum. By eq. (3.9) 
p’ vanishes only, if either 9’ = 0 or B’ = 0 The second derivative of p(z) at the 
point .zo , defined by B’(Q) = 0 , is 

p”(Q) = -B”CP-2B 2 0 (Al) 

In order to prove that p is negative and has a single minimum which coincides 
with 20 we have to discriminate three possible cases for p’ to vanish: 

E’(q) = 0, W(zo) # 0 : 

Eqs. (3.9) and (Al) show that zo is a minimum of p(z). At all points z # zo 
where a’ = 0 (and B’ # 0) , p’ does not change its sign since we know that 
B’ changes sign only once. Therefore, these points can only be turning points 
of p(z). It follows that p(z) can have only one minimum and since p + 0 for 
121 + co eq. (3.10) implies p(z) < 0 for finite * 

B’ # 0 ) a’ = 0 for z # zo : 

Since the sign of p’ cannot change at these points, p can have only a turning 
point and no extremum. 

B’(zo) = 0 , @‘(zo) = 0 : 

In this case p”(zg) = p”‘(q) = 0 and 

P(~)(z~) = -6B”@“2e-2B > 0 - (A4 

If @‘I’(Q) # 0 , Q is a minimum of p(z). Again it is the single minimum of p, 
because at all other points where @’ = 0 , B’ and p’ do not change sign. The 
boundary condition p --+ 0 as IzI -+ co then implies p(z) < 0 for finite z If 
C@“(Q) = 0 , then, on account of (2.8) , dV/d@ = 0 at 20. Upon differentiating 
(2.8) one can show that if @‘(zs) = B’(zo) = @‘(rs) = 0 then all higher derivatives 
of a(z) must vanish. However, a function whose derivatives are all zero at some 
point must be constant. A constant scalar field gives rise only to a vacuum 
solution. That is W’(Q) # 0 and p(z) has a minimum. 

Thus p is negative and has a single minimum at zo where B’(zo) = 0 
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FIGURE CAPTIONS 

1. General shape of the metric functions A(z) and B(z) 

2. General shape of the derivatives A’(z) and B’(z) Note that the asymptotic 
values are related according to eq. (3.2). 

3. The general shape of the effective potential expA(r) for a massive test 
particle. ZT is determined by (3.22). 
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