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Abstract 

A detailed analysis is presented of the linear evolution of spherical perturbations in 
a Universe dominated today by light interactionless particles. This formalism is used to 
study the evolution of perturbations around a sphere of uniform density and fixed radius, 
approximating a loop of cosmic string, plus a compensating perturbation in gravitational 
radiation. On small scales the results agree with the nonrelativistic calculation of previous 
authors. On scales greater than a few megaparces there is a deviation aproaching a factor 
of 2 to 3 in the perturbation mass. The difference is mainly due to the inclusion of the 
photon/baryon fluid before decoupling. A scenario with cosmic strings, hot dark matter 
and a Hubble constant greater than 75 km/s/Mpc can generally produce structure on the 
observed mass scales and at the appropriate time: 1 + I z 4 for galaxies and 1 + I x 1.5 
for Abell clusters. For a Hubble constant of 50 km/s/Mpc, galties can still be seeded but 
they are considerably smaller for a given seed mass. The fact that recent simmulations 
indicate a much larger string density than previously determined makes this a favorable 
effect. This success is to be contrasted with the hot dark matter plus Gaussian fluctuation 
model where clusters can be easily accounted for but structure on the scale of galaxies is 
smoothed out by kee-streaming. The work presented here does not include the effect of 
seed loop peculiar velocities. However, as with a Newtonian potential, one can integrate 
the spherically symmetric solution to determine the effect of a perturbation of arbitrary 
initial geometry. 
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1. Introduction 

In this paper the evolution of initially relativistic matter, radiation and baryons around 

cosmic string seed perturbations is investigated. In setting up a solution for this problem 

the formalism for evolving spherically symmetric perturbations from the early universe to 

the present is developed. 

The ‘standard’ hot dark matter model has a number of appealing features: The dom- 

inant msss component of the Universe has three candidates that are known to exist (the 

neutrinos), and power on large scales to produce both streaming velocities (Dressier et al. 

1987) and positive correlation functions (Bahcsll and Soneira 1983). Unfortunately, one 

pays for the large scale power by washing out any primordial structure on smaller scales, 

making galaxy formation possible only at a very recent epoch (Peebles 1982, Frenk, White, 

and Davis 1983, and Bond and Ssalay 1983). One could avoid this problem if the primor- 

dial structure wss in some kind of cold material, such as cosmic string. In this model the 

neutrinos are free to move around while they are hot, but as the Universe cools they will 

eventually accrete onto the string seeds to form gal&es. 

Cosmic strings occur naturally in many particle physics models (Kibble 1976). To form 

strings requires a symmetry breaking phase transition involving a complex scalar Higgs 

field. To produce objects massive enough to seed structure in the Universe this transition 

must be near the grand unification scale. After the transition one is left with a network 

of essentially one dimensional concentrations of stress energy that fill the Universe like a 

collection of random walk trajectories. One might be concerned that these strings would 

come to dominate the energy density of the Universe, however, simulations (Albrecht and 

Turok 1985; Bennett and Bouchet 1988) indicate that once decoupled from the background 

long strings will be continuously breaking off loops which subsequently slowly decay into 

gravitational radiation. The whole network of strings scales like radiation and thus do 

not significatly affect the large scale evolution of the Universe. However, on smaller scales 

the chopped-off loops pose reasonable candidates for the seeds of gal&es and clusters 

(Zel’dovich 1980; Viler&n 1981). 

Theories with strings and cold dark matter (CDM) have been considered by Sato 

(1986), Stebbins (1986), and Turok and Brandenberger (1986). Strings with hot dark 
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matter (HDM) have been discussed by Brandenberger, Kaiser, and Turok (1987), Bran- 

denberger, Kaiser, Schr- and Turok (1987), and Bertschinger and Watts (1988). There 

are some significant limitations to the work done so far -two we address in this paper are: 

(1) previous work has assumed a ‘Newtonian Universe’ -that is, the universe is dominated 

by non-relativistic particles and the region of space considered is much smaller than the 

horizon throughout the evolution period. For perturbations that are born early enough 

this limit will not apply. At early times relativistic particles will dominate and the horizon 

cannot always be assumed to be arbitrarily far away; (2) the perturbations in the string 

scenario come in two pieces; cosmic string and gravitational radiation from the decay of 

loops formed earlier. To generate a loop on of a given size there must be a corresponding 

absence of smaller loops formed at earlier scales. These smaller loops would have intum 

become gravitational radiation. Thus where there is string there is less gravitational radia- 

tion to the extent that beyond the horizon the combined effect is zero. This leads agsin the 

problem of handling relativistic energy density. The best attempt to handle the compen- 

sating radiation has been in the most recent work of Bertschinger and coworkers who have 

modeled it as a uniform depression in the radiation density over the horizon at any given 

time (private communication). However, this does not accurately reflect the flow of the 

radiation and hence does not take into account the effect of the momentum flux element 

of the stress energy tensor. Thi s will be explained further in section 5. The calculation 

in this paper avoids the earlier short comings by perturbing the relativistic generalization 

of the Boltsmann transport equation and Einstein’s equation rather than the Newtonian 

approximation. 

There has also been some work done on large scale structure and strings. Turok 

(1985) found that strings could yield a two-point correlation function for clusters that 

fit well with observations (Bahcall and Soneira 1983). M ore recent simulations indicate 

this effect may be smeared out through peculiar velocities of the seed loops (Bennett and 

Bouchet 1988). Scherrer, Melott and Bertschinger (1989) worked from a model consistent 

with the work of Bennett and Bouchet and were able to produce a reasonable two point 

correlation function when gravitational clustering was included. Concerning the large scale 

streaming velocities reported by Dressier et aI. (1987), Shellard et al. (1987), Bertschinger 
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(1988), and van Dalen and Schr- (1988) all found that cosmic strings had a rather 

low probability of producing such a phenomenon with cold dark matter, but that hot dark 

matter looked more promising. The issues discussed in this paper should be especially 

relevant for these large scale calculations. It should be pointed out that all this work so far 

has ignored the effect of the infinite strings since early simulations indicated a density of 

about a few per horizon. More recent results (Bennett and Bouchet 1988) indicate perhaps 

a order of magnitude more, which would make them a major source of structure on large 

scales. ‘Infinite’ or horizon crossing strings produce wakes as they move through space. 

The effect of wakes has been discussed by Stebbins, Veeraraghavan, Brandenberger, Silk, 

and Turok (1988) and Charlton (1987). 

The formalism presented in the first part of the paper will address the problem for 

general, spherically symmetric source perturbations. In section 2 the perturbed Boltsmann 

equation is derived. Section 3 will show how the equation can be interpreted as the free flow 

of particles plus a production term. In section 4 a model is presented for the photon/baryon 

fluid. It is found that the system can be treated like free flowing sound waves plus a 

production term analogous to that for the neutrinos. These production terms will then be 

defined as integrals of the perturbation in section 5. 

The remsinder of the paper will deal with the cosmic string scenario. Section 6 will 

describe the model used for the seed and underdensity. In section 7 the results are presented 

of a simple test for the production of gal&es and clusters. The results are then discussed 

and conclusions drawn in section 8. 
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2. The Boltzmann Equation 

Lindquist (1966) shows that the relativistic generalization of the Boltzmann transport 

equation to be 

dF -.DF where D a ;it = P dzP - = dza G 
- r&p78 

a?-@ 
(2.1) 

and z” the space-time coordinate, 1 the local time coordinate, pa the four-momentum, and 

F the phase space density. 

To take advantage of the spherical symmetry, Lindquist (1966) suggests introducing an 

orthonormal frame or tetrad at each event. Our metric is, in time orthogonal coordinates, 

dsZ = -dta + ezAdr2 + R2(dOZ + sin29d#) (2.2) 

with A and R functions of only z and t. A is not to be confused with the cosmological 

constant, which is assumed to be zero in this work. Relative to the old basis, the new basis 

is 

c?#J = e*, q = e -A err e2 = R-IQ, ea = (Rsin6’)-’ e+. (3.3) 

In local spherical coordinates, taking el as the polar axis, we define 

po = (p2 + my2 , p’ = pcos8, pa = sin&os& p’ = psin&in& (2.4) 

Spherical symmetry implies that F = F(T, t,p, p) with p =cos@. 0 is the angle between 

the three-momentum vector and a radial vector. Reworking the algebra of Lindquist, the 

Boltzmann equation in full is 

dF _ = EE’ + ppe-AF’ + ~[!$-^p + (’ - I$%+ - p2) 
dt 4.~ R R 

- i$Ep[&’ + $1 - P2)1 = 6 
(3.5) 

where primes denote & and dots &. We have s = 0 since the particles are collisionless. 

Now, consider the metric as perturbed, flat Robertson Waker, i.e., let e” = a(l- jh~) 

and R = az(1 - $hl) where a is the scale factor set to one now. With little effort one finds 

for the perturbed part of F = Fo + f: 

. Et + p~/af’ - $P; + (l-2) af 
a2 pG = -;$Ep[jrlp’ + (I- ~*)hl. (2.6) 
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One can do somewhat better by letting q = ap. Being careful to include the change in the 

time derivative, one finds the momentum derivative now cancels out, leaving 

f+- &y2 
1 -pz af . --f’+- l aF.q[jlJ + (1 - p2)& EaZz 4% = -- 2 84 (2.7) 

Because the neutrinos decouple while relativistic, the background phase space density is 

given by 

F,= 2 
.&IT + 1 

with qT = 1.66 x low4 eV (2.8) 

as discussed by Bond and Szalay (1984). 

3. Collisionless Particles in a Flat Background 

Consider a distribution of collisionless particles g(z,q,p, t) with t,q,p, t as defined 

above. Between t and t + dt an element at I, q, p moves to I + dz, q2 = q, pz = p + dp. 

Now, from the sine law of triangles: 

z + dr I -=- 
sid sir& 

hence, 1 - pa = ( 
z + dz 
y)2(1 - (P + dp)a) 

1 - pa dz 
and dp=-- 

P = 
= %;,A 

where in the last equality we use dz = $GIt = -&. 

The total derivative of g is thus given by 

(3.1) 

This is the same as the left hand side of (2.7) with g replaced with f. This implies that 

the first order perturbation behaves like freely streaming particles that are ‘squeezed’ out 

of the comoving external medium at a rate given by the right hand side of (2.7). 

With this result we have a way out of what at first sight is a very complicated partial 

differential equation: First, we divide space into a number of concentric shells. Then for 

each shell we define a grid to cover q and p. As we time step through the evolution of this 

system we begin by calculating the change in the metric perturbations hl and hz (how this 



is done will be derived in the next section). From this we find how much perturbation is 

‘produced’ for each z,~, q. Finally the old and new perturbation is projected through our 

grid by an amount given by the momentum and the size of the time step. This is a very 

simple process since ‘q’ is an invariant for each particle and all trajectiories are straight 

lines. 

The discussion of the last two sections follows through the same way for massless 

neutrinos and gravitational radiation. In these cases things are simplified by the fact that 

the perturbation flows at a iixed velocity. This makes it possible to reduce the number of 

variables by one by integrating over momentum. 

Before moving on to the calculation of the metric perturbations it is worth discussing 

how the approach taken here relates to the Newtonian limit. In going to the Newtonian 

approximation one makes the redefinitions z = z - d and f = t - $. Demanding the metric 

have the form 

d’s = -(l - &drI+ ar(i)d% + a2(E)z2dZR (3.3) 

and assuming ct >> ar we find & = $‘/a’, d = -i+hz, d’ = -ihi and the perturbation 

potential 4 = 4. From here one can go either of two ways. Substituting directly into (2.7) 

gives 

df a& q 
z= y-#“l + +/a - /a (3.4) 

for our Newtonian limit. 

One could also work from equation (3.3) and (2.1) to get 

g = aFo 
---m&4’. dt aq 

This is the result of Bertschinger and Watts (1988) and Brandenberger, Kaiser, and Turok 

(1987). Writen out in full the left hand side looks different from the previous work because 

they used a different coordinate system. Here z, q, and p were used, where Z and {were 

used previously. The right hand side is different from (3.3) because this latter result is 

using comoving background coordinates, while in this paper we use comoving coordinates 

of the entire fluid. To first order in the perturbation this is not an important distinction. 
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4. The Photon/Baryon Fluid 

After decoupling (1 + z > 1300) the baryons are treated like cold dark matter (i.e., 

like neutrinos with zero velocity, since at decoupling their velocity is about 100 km/s, 

corresponding to a distance of approximately 0.002 Mpc in a Hubble time) and the photons 

are combined with the massless neutrinos. Before decoupling photons and baryons are 

treated as a tightly coupled fluid. A simple technique is used to model this system, which 

we now motivate. 

To begin with, equations (85.8) and (85.9) from Peebles(l980) are combined to give 

J&T$f6) - ;(l+ Y)iL) = gqf6) (4.1) 

where 6 is the fractional perturbation in the fluid, h = hl +2hz, cf = dpldp, p and p are the 

density and pressure of the fluid, v = p/p, t = %(2 - 3v), and f = -3t(v - ci). This last 

factor can be shown to just be due to the redshifting of the photon energy density, while 

the A term is the production one would expect for massless radiation plus non-relativistic 

matter. Defining dr = Ldt we have 

@(fJ) - - $[$l +v,g; = (~~)2v~(fs), a+ 

which is very close to being just a wave equation with a source term. The equation is 

modeled as follows: During each time step a bit of perturbation is generated, via the i 

term, which then flows outward from each point of origin in spherical shells with velocity 

e = ~./a. This computationally convenient interpretation is exact for a fluid of pure dt 

radiation, but with the addition of baryons the coefficient on the right side of (4.2) becomes 

time dependant, resulting in a dispersive system. Fortunately there are two effects that 

make the dispersion quite small for the system we evolve. The first is that at early times 

the photons dominate the fluid. The second is that at later times the region we evolve is 

so small relative to the horizon that the scale factor, and hence the sound speed, changes 

very little during the passage of a wave across the system. The dividing line between the 

two effects will be roughly when the comoving horizon equals the neutrino free-streaming 

scale, about Sh-’ Mpc. Before this time (a&, x 1.6 x 10m6) the relevant distance scale is 
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the horizon itself. In the time it takes to cross a horizon the scale factor doubles and one 

finds 

%-3pa 

4 - 4P, 
= 0.05( a < Gjj.. (4.3) 

After adi* the change in the scale factor in crossing the free-streaming scale is just 

adi* (in a radiation dominated universe). Hence one finds 3 N 0.05( 2). Thus for small 

!& the change in velocity is quite small. 

5. Defining Equations for Metric Perturbations 

Given the ‘production’ terms it has been shown how one can understand the fluid 

behavior in a simple way. Now we consider how one defines the production terms given a 

fluid distribution. This is done by perturbing Einstein’s equations. From Peebles (1980) 

the relevant nonzero elements are: 

8irGT,O = ErG(J, + J, + Jb + JL) 

(5.la) 

8rGT: = -8rG(K, + K,) = 2: + (g)’ + $ - e-“(~)” (5.lb) 

e-“8rGT,’ = -e-*8rG(H, + H,) = 2e-“(g - ;\$) 

8rGT; = -8nG;(N, + N, - K, -.K,) 
. . . 

=~+;\“+~+~~-.-?A(~_*“) 

The ‘Y’ subscript signifies the massive neutrino component, ‘r’ massless radiation, ‘L’ the 

loop, and ‘b’ baryons. K, 61, N, and J are integrals over momentum that will be explained 

shortly. 

To relate the equations defined in Peebles (1980) with those of Lindquist (1966) there 

is one subtlety that arises due to the orthonormal coordinate system. Associated with each 

sub/superscript of a tensor is a basis vector. When one changes the basis vectors one must 

make a corresponding change to the tensor. For three of the nonzero components there is 
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no effect since the sub/superscripts are the same and the factors cancel. For TJ the factor 

is CA, as indicated. 

From Peebles (1980) the phase space integrals are: 

Jv = +p% j dG(+,a,p,p) (5.2~) 

0 -1 
co I 

Hv = 277 p3dp J J !&F(~,a,p,~L) (5.26) 

K, = 2r~p4,Ei-;p]p2d~F(z,a,p.pi (5.2~) 

N, = 2r)p4,Edp-j dpF(z,a,p,p) (5.2d) 

0 -1 

For massless radiation the defintion is the same, except that since E = p the dynamic 

behavior of the radiation is p-independent and hence we can separate out the momentum 

dependence and integrate over it. 

We now consider the perturbation equations. We let e2* = a’(1 - hl) and R = 

az(1 - h2/2). The only zeroth order term that will prove useful to relate time to the scale 

factor is 

(ij2 = intro 

The first order equation for 5, + Nr (the subscript 1 will refer to the combined effect of 

all perturbation types) is 

S?rG(Jl + NI) = a-‘&(a’(i, + 2ha)) 
t 

thus k, + 2jLr = EnGo-r J a’dt(J, + NI). 

ti 
(5.4) 

For radiation Ni = J1 while for matter Nr = 0. Thus radiation will initially have twice 

the perturbing effect of an equal amount of cold matter. In the long run this turns out to 

just compensate the redshift loss to radiation energy density: The positive perturbation 
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generated by the loop will be exactly compensated by that generated by the negative 

radiation perturbation. 

To get an equation for & we first review some work of Misner and Sharp(1964). 

Introducing the auxiliary variable 

m(r,t) = ;(l + (;)r - e-‘“R”). (5.5) 

They find from the T,O equation 

m(z,t) = =4rrR’dz(R’J + ;H) J 0 
(note that we do not subscript H since Ho = 0) and from the Tt equation 

ii -= G(m + 4rR3 K) 
R R3 ; 

Now perturbatively, 

LHS = z - +9&~~~~) 

RHS = 4nG( 5 Jo + K. + 5 

hence. 

2 

s2dz(J1 +&HI) + K1); 

A, = ~j.‘dtjK~+jt’dz(J~+hzH)~. 
:i 0 

(5.6) 

(5.7) 

(5.6) 

(5.9) 

Lindquist (1966) does provide a local definition of m thus making it possible to get 

an equation for hz that is local. Unfortunately it is third order in time. However, we do 

have the comforting result that causally disconnected regions do not influence each other. 

From this we conclude that 7 &‘dz( 51 + &H) = 0 for + greater than the extent of the 
0 

loop/underdensity system. 

In (5.9) the quantity 

s =co, 

J z3&H = !! ‘JJJ a q3pz f dpdq%‘dZ 

0 0 0 -1 

(5.10) 
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must be calculated very accurately since any error at a given radius will directly affect all 

shells of greater radius. Consider a piece of phase space f(q,p, z, a)dpr2dx. We have 

f(q,~,zr+p=*dz = f(qrpzr”z,a+ da)dm: (5.11) 

and from section 3 

zapa = (2 + g)(&$dt). 

qdt xx/L+-. 
GE 

Thus for a + a + da, q’px f dpdqa?dz + q3pz f dpdqz’dz + &f dpdqr’dzdt 

i.e. $q”pzf) = &f 

One can integrate this result to obtain 

BZH 
- = Nl 

at 

(5.12) 

(5.13) 

(5.14) 

with Nr as defined in section 3. The rate of change of (5.10) is thus simply the volume 

integral of Nr. Even though the individual particles of the photon/baryon fluid do not 

travel in straight lines (due to scattering) momentum is conserved and thus the corespond- 

ing quantity for this fluid must evolve similarly. Hence equation (5.14) can be used for 

H7/a (6T,1 for the photon/bs.ryon fluid) as well. 
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6. The Model and Its Parameters 

Consider a comoving volume of about a cubic megaparcec or more. This volume will 

just enclose a loop of string (at its time of birth) big enough to seed some kind of collapsed 

system the size of a galaxy or larger. At the phase transition that forms the string a 

great deal of energy is released in other forms as well; more where there is less string. 

The energy density generated in its various forms will quicldy smooth out on scales well 

inside our comoving volume. If the strings did not decay that would be the end of the 

story; the string becoming just another component to the background. However, due to 

their decay, any string that survives to a given time form isolated density contrasts. As we 

evolve through time our comoving volume begins to look ever lumpier, particularly after 

it is surpassed by the horizon. Eventually the region contains only background material 

or background material plus a string loop. The difference in the two possibilities is the 

integrated decay rate into gravitational radiation of the initial network of string. Thus a 

region that contains a loop produced correspondingly less gravitational radiation than a 

region without a loop. 

The welI defined parts of this story are the beginning and end. We start with no 

perturbation on our chosen scale, and some time later we have a loop and a corresponding 

deficit in gravitational radiation. For the part in-between we interpolate with the following 

model: The process begins at a, = a,t.ti and ends at as = abirth, and in-between we have 

the mass of the proto-loop (ml) accumulating linearly in a. The conversion of string to 

gravitational radiation is a slow process, thus, so is the formation of the underdensity and 

string loop. How long it takes is not very important in this model. If one takes a. = O.Olas 

or a. = O.OOlob makes little differences since in the intervening time the perturbation is 

of very low density relative to the background. In these calculations we used a. = 0.01%. 

The total energy in underdensity is given by & = -lit1 - $E, where the last term is due 

to the redshifting of the radiation. The loop and negative energy radiation are created 

uniformly and isotropically over a sphere of fixed radius Rl. Once created the loop begins 

to decay into radiation at a rate given by -yGp*/c with y =50 to 100 (Vachaspati and 

Vile&n 1985). 

The tinal relevant piece of information is the make-up of the background. We consider 
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a universe with h =0.5, 0.75, and 1.0, h being the Hubble constant over 100 km/s/Mpc. 

The energy density is composed of 2.7K photons, two species of 1.9K massless neutrinos, 

and &. = 0.1 in baryons. The difference necessary to make R = 1 is made up by one 

species of massive neutrino with mass given by wry = 96.8il,h2eV. 

7. Results 

Since the details of the evolution of a network of cosmic strings appears to be important 

but not too well understood, we will forgo the usual discussion of the naive string evolution 

model. Instead we concentrate on the more welI defined and basic problem that faces any 

theory for structure formation in a HDM dominated universe: Can collapsed systems be 

formed at scales as early as they are observed, about a = 0.25? The formation of AbeIl 

clusters is also examined. 

a) Galaxies and Early Forming Structure 

String simulations indicate loops tend to be born a fraction of the horizon in size 

and with a frequency on the order of one per horizon volume per horizon time. As a test 

for galaxy formation we consider a Rl = 4 pc loop created at ai = lo-‘. At this scale 

the comoving horizon is about 4.7 Mpc, which is roughly independant of h. Concerning 

the size of galaxy this should seed we consider three possibilities: More than one seed of 

at least this size will be in this volume on average (large loop production rate), about 

one in this volume on average, and less than one in this volume on average (small loop 

production rate). The specific densities we consider are 0.00884, 0.00191, and 0.000238 

loops/Mpc3 respectively. This corresponds to one loop in a sphere of radius 3, 5 and 10 

Mpc respectively. The consequence of a larger loop production rate is that there will be 

more loops of a given size in a unit volume and hence these loops must correspond to more 

numerically dense, Jmaller galaxies. 

Our goal is to determine the collapse time as a function of comoving radius for shells 

surrounding the seed loop and to then check if a galaxy typical of the above size regions 

can be produced by scales as early as a = 0.25. We are thus interested in the size of 

the comoving sphere that must collapse to turn into these typical galties, zcol. We 
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start by integrating the Schechter (1976) 1 uminosity function with Mi = -19.1 + 5logh, 

4’ = O.O12h3Mpc--3 and cr = 1.4 (Davis and Huchra 1982) and solving for the luminosity 

that corresponds to the above densities. Assuming (F) = 100 the resulting masses arc 

listed in Table 1. Also listed are the corresponding values of r,,l. 

The string parameters used were Gp/c’ = 10-s, typical for a GUT scale, and p = 9. 

p is the mass per unit length of the string and PRl is the mean loop perimeter (Albrecht 

and Turok 1985). 

Figures 1, 2, and 3 show the results of the simulation for h = 1.0, 0.75, and 0.5 

respectively. The plots are of the perturbation mass interior to the comoving scale I in 

units of the initial loop mass. In each case a 20 Mpc sphere was considered, 200 shells and 

32 directions were used, and momentum was divided into a 15 point Laguerre integral. The 

systems were evolved until the mean distance traveled by the massive neutrinos between 

then and the present was less than a shell thickness. 

To estimate the time that a galaxy results we calculate the turnaround scale using 

the spherical collapse model. Numerical simulations indicate that a system will virialize 

at loi- = 1.8&l (Peebles 1970). One finds a.,‘ = (~)~~i[6Mi(~)/M~ + zfii]-‘. 6d4(~) is 

the perturbation mass interior to z, and Mb is the background mass. ‘i’ refers to the value 

at the end of the simulation. The iz term is an addition to the usually quoted definition. It 

is required here since our perturbation does not start out comoving with the unperturbed 

background. From this the estimated collapse scales are plotted in figure 4. The scales 

that we want to collapse for the three values of h are indicated on each line. One need 

not panic at the sight of scale factors greater than one (the present) since we have some 

leeway in our choice of initial data. Given a factor of about five uncertainty in the mass of 

the seed loops, with h = 1.0 it is possible to seed even the largest gal&es. With h = 0.75 

there is a cutoff at galaxies larger than 3 x 1O”Ma. For h = 0.5 only galaxies smaller 

than a few biion solar masses can be seeded. The large free-streaming scale, throughout 

the history of the loop in the h = 0.5 case, tends to kill the formation of larger structures. 
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b) Chtets: Late Forming Sttucture 

Turok and Brandenberger (1985) show that the mean overdensity within an Abell 

radius of 1.5h-’ Mpc is about 170 times the background. This corresponds to a mean 

comoving sphere of background material of 8.3/z-1 Mpc. Abell clusters seem to have 

formed relatively recently, at a scale factor of about 2/3. For our ‘typical string cases’ we 

form a loop one tenth the horizon in size when the comoving horizon equaled the mean 

separation of Abell clusters, 55h-’ Mpc (Bahcall and Soneira 1983). For h =l.O, 0.75, 

and 0.5 this corresponded to a 1000, 1700, and 3300 pc loop ,with an initial scale factor 

of 1.9 x lo-‘, 2.3 x 10w4, and 3.0 x lo-’ respectively. The same values of ,u and p were 

used. 

The results for these cases are shown in figures 4, 5, and 6, again for h =l.O, 0.75, 

and 0.5 respectively. Using the spherical collapse model as before yields the collapse scales 

ploted in figure 8. As can be seen, the turnaround scale varies very little with h. This is 

because the mass of the region corresponding to an Abell cluster and the the size of the 

horizon (and hence the size of the seed loop) scale in the same way in h. Thus, given seeds 

about three times more massive, objects the size of Abell clusters are generic feature in 

this model. 
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8. Discussion and Conclusion 

It has been demonstrated that by making a simple physical interpretation of a per- 

turbation in a Robertson-Walker space-time how one can evolve the perturbation to first 

order in a relativisticly consistant manner. With this formalism it has been shown how 

one can study the formation of structure through cosmic string seeds without many of the 

approximations used in past solutions. By performing the calculation with and without 

these approximations the following was found: The assumption of non-relativistic neutri- 

nos turned out to be a quite good one. Even for the h = 0.5 case the error is no more that 

5%. A much bigger error is found when ignoring the effect of the photons and baryons 

before decoupling and to a lesser extent the massless neutrinos. The effect is less than 

20% on galactic scales, but a factor of 2 to 3 at intermediate distances. At larger scales, 

ignoring massless radiation effectively negates the effect of the underdensity, since the un- 

derdensity is only relevant at early times (before it has red-shifted significantly), which is 

when the Universe is dominated by radiation. Consequently, if one does not properly treat 

the massless radiation one gets spurious perturbations developing outside the horizon. The 

massless radiation, whether that of the background or that of the underdensity, will have 

a significant effect on the large scale velocity field and should be included more carefully 

in future calculations. 

An interesting side issue in the evolution of string seed perturbations is the mechanics 

of how the growth of acausal perturbations is avoided. Naively one sees a parada since 

the energy in radiation drops as one over the scale factor relative to the fixed seed-apart of 

the resolution can be seen in equation 5.4. For matter Ni = 0 while for radiation Nr = Ji. 

One can show that, in a matter dominated Universe, after many scale factors this extra 

term just cancels the red-shifting loss and the total energy density perturbation sums to 

zero. When radiation is still important then the total energy density perturbation in fact 

does not sum to zero. This does not turn out to be a problem since the total energy density 

perturbation alone is never a physically meaningful quantity (unless certain other terms 

are zero). In equation 5.9 the energy density is joined to the term &E. Together they 

form a physically meaningful, conservered quantity. Since it is eero before the seed is born 

it remains zero and there is no acausal growth in h 1. Since 5.4 is a local equation there is 
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also no acausal growth in hi + 2hs and hence the paradox is solved. 

In this work a relatively naive model for the relation between cosmic string and struc- 

ture was used: Each loop produces a single spherically symmetric collapsed system. How- 

ever, the results of recent improved simmulations (Bennett and Bouchet 1988, Albrecht 

and Turok 1989) indicate a potentially much more complicated picture. The two most 

important new features are the large initial peculiar velocities of the loops and the larger 

density of string relative to previous results (Albrecht and Turok 1985). Extensions of the 

work presented here to more realistic situations is relatively simple. By dividing a seed 

perturbation into smsll pieces in space and time one can define the final perturbation as 

the sum of spherically symmetric parts, making it possible to consider arbitrary geome- 

tries. For example, one can solve the moving loop problem by considering it as a series 

of perturbations that exist briefly at points along its trajectory. Wakes produced behind 

long strings can be modeled as being seeded by a line of moving points, and a wall-like 

perturbation can be solved simply by integrating over each point of its surface. 
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Table 1 

&moving Volume with Mass Equal to the Largest Galaxy in a Region of a Given Size 

h =0.5 h =0.75 h cl.0 
Region (Mpc) log(&) -04 log(&) =col 14%;) GoI 

3.0 9.15 0.165 10.57 0.375 11.18 0.494 

5.0 10.37 0.421 11.13 0.567 11.59 0.677 

10.0 10.99 0.678 11.56 0.801 11.92 0.872 
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FIGURECAPTIONS 

1. Mass function vs scale at a = 0.1: h = 0.5, 4 pc loop, aborn = 1 x lo-’ 

2. Mass function vs scakat a = 0.1: h = 0.75, 4 pc loop, aborn = 1 x 10-s 

3. Mass function vs scale at a = 0.02: h = 1.0,4 pc loop, ab., = 1 x 10m5 

4. Turnaround Scale vs radius: 4 pcloop,ab,, = 1 x10-s 

5. Mass function vs scale at a = 0.1: h = 0.5, 1000 pe loop, aborn = 1.9 x 10e4 

6. Mass function vs scale at a = 0.1: h = 0.75, 1700 pc loop, aborn = 2.3 x lo-’ 

7. Mass function vs scale at a = 0.02: h = 1.0, 3300 pc loop, aborn = 3.3 x 10e4 

8. Turn around Scale vs radius, h = 1.0: 1000 pcloop, aborn = 1.9 x lo-‘, h = 0.75: 
1700 pcloop,abom = 2.3 x 10-4, h = 0.5: 3300 pcloop, abo,.,, = 3.0 x lo-’ 



I I 1 I \ \ \ \ \ I 

4 

e 
d 

CQ 
4 

0 
4 

T 
T-i 

a3 3 
2 

M 
x tz 

(D 

* 

@.I 

0 

(SSWLI door)/( Jopqu? ssmu)g 



0 

_--- 

4 pc loop h=0.75 

aborn=l.X10-5 a=O. 1 

neutrinos=solid baryons=dashed 

_------ 
____A------ 

.---- 

I I I I I I I I I I I I I I L 

0 2 4 6 0 
x (MPC) 

10 12 14 16 

Figure 2. 



5 
i 
2 
a 
II 

z 

St 
2 

P 

a 
z 
iTi 
II 

ii 
‘r: 
5 

2 

0 
T-4 

I I I I I I I I I I I I I I I I 

(SSWII door)/( Jo~.Iapqg SS-euI 



I I I I I I I I I I I I 

-I 

\ UI 

aleas punoq umL 



0 
I 

0 e 

2 

2 

!A 

a 
z! 

E 
‘: 

2 4: 
2 
II 

2 
ii 

0 0 

a 74 G 
.r( 

z 
II 

0 ; 
4 (6” 

I 
I 
I 
\ 
\ 
\ 

I 

62 
0 

(ssem dool)/( .Iopaqu~ sselu)g 



f 0 ” 
4 II 

6 :: 

y 2 

; 2 

o? 2 

-z 

E 

-z 

z td 
- & 2 

zl .4 k-4 L 
-v) 4 

-0 
4 

III I I I I ’ l l II ! I I Illll Ill1 IIl1-h 

5: s 5: 
0 i : + 4 

(ssmu dool/.ropp)g SS-~UI 



I I I I I I I I I I I I I I I I I % 

-bG 

-4 

I 
---it 

I 
I 2. 
I 
I 

- 33 

I x 

I 
1 -cl 
I -- 
I 
I 

(SSBUI doo#xor.quQg SS~UI 



I- .O II. 

L 

a 
i.i v) 

..- 

s 

a 
7-l 

co 
4 

* 
4 

&I 
7-l 

‘;; cd 

$ $ 

X 
u 

fz 

co 

a 

-+ 

@.l 

0 

apms punoq umL 



POSTAL ADDRESS 

Anthony van Dalen 
Department of Physics 

The Ohio State University 
1’74 West 18th Avenue 

Columbus OH 43210-1106 


