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Abstract

We study the Hamiltonian formulation of perturbative quantum gravity. For a
Freedman-Robertson- Walker background, the gravitational constraints can be solved, and
the physical degrees of freedom can be isolated explicitly. The resulting action is bounded
from below in the Euclidean regime. In the context of wormhole physics this implies that
there is no phase of the sum over spheres. We use the zeta-function regularization tech-
nique to calculate the so-called scaling behavior of the one-loop partition function about
the 5* saddle point. We find an answer that differs by an integer from the value obtained
from the covariant approach using the ‘conformal rotation’ prescription of Gibbons, Hawk-
ing, and Perry. These results indicate that the ‘conformal rotation’ prescription does not
yield the correct partition function for curved backgrounds.
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In their approach to perturbative quantum gravity, Gibbons, Hawking, and Perry {1, 2] (GHP)
define the gauge-invariant partition function via a path integral over fiuctuations of the Euclidean
four-metric about a saddle-point background, with Fadde’ev-Popov measure corresponding to the
gauge invariances — the four infinitesimal general coordinate transformations of the metric fluctu-
ations [3),

Z= ’/[d‘?&uv}[d?}'][dv.\][dvﬂ exp [~ (Puuvs @, Vi, V)] (1)
For one-loop calculations, the Euclidean action [ is quadratic in small fluctuations. The metric
perturbations ¢, are traceless, while the ghosts V, and V) exponentiate the Fadde’ev-Popov
determinant, and ¢ is the trace of the metric — the conformal factor.

The action is unbounded from below with respect to variations of the conformal factor, so
the path integral does not converge. This is because about any classical background, the kinetic
term of ¢ is negative-definite. Gibbons, Hawking, and Perry supply a prescription which makes
the path integral converge: rotate the ¢ field at each point in the complex plane, ¢(z) — ig(z), so
that the integrand is maximized at the background field saddle point. For non-trivial backgrounds,
however, this conformal rotation is not sufficient to guarantee convergence. In particular, for
Euclidean de Sitter space (§*), the six lowest eigenfunctions of the scalar Lichrerowicz operator
have unbounded action and must be rotated back. That introduces a phase £ = -1 in the one-loop
partition function. This is the essence of Polchinski’s calculation [4] which, if correct, would imply
the demise of Coleman’s mechanism (5] for the vanishing of the cosmological constant®

The Euclidean path integral should be given by the integral over physical degrees of free-
dom with an ‘imaginary-time’ action. In gauge theories, the covariant, gauge-fixed, second-order
Euclidean form correctly imposes the Gauss’s law constraints needed to eliminate the unphysical
degrees of freedom (so that the physical and covariant path integrals are equivalent), but there is
no a priori guarantee that this is true. The second-order form must be derived from a first-order
Hamiltonian formulation with canonical coordinates and momenta, in the phase space reduced by
gauge fixing conditions and primary Hamiltonian constraints [6]. (One may then be able to return
to a covariant formulation by adding redundant variables, Lagrange multipliers, and ghosts; in
gauge theories, this yields the usual covariant second-order form.)

For perturbation theory about flat space, the GHP Euclidean path integral with the conformal
rotation prescription yields the same one-loop partition function as obtained from the path integral
over the physical degrees of freedom {7]. What about other backgrounds? In this Letter, we show
that the physical degrees of freedom of gravitational perturbation theory can also be isolated for

* As pointed out by Pelchinski {4], the ghost path integral is to be understood as yielding an absclute value of a
determinant.



backgrounds of Freedman-Robertson-Walker (FRW) form with Minkowski or Euclidean signature.
We find, in particular, that the Euclidean path integral for small fluctuations about 5* converges -
and hence cannot give rise to the additional phase found by Polchinski using the GHP formalism.
Abbott and Deser {8] have also discussed the boundedness of small gravitational fluctuations about
Minkowski de Sitter and anti-de Sitter space.

We begin with the first-order formulation of gravity originally introduced by Palatini (9], in
which the metric and connection are independent degrees of freedom. We use the Landau-Lifshitz

spacelike conventions, namely the metric has signature (- + + +}, and

R'\pvu = "3:%[‘3» + avr;.\m - r?wriq + qurﬁn

2
R,u.n = Ry;,wn ( )
Greek indices denote 0-3 and Latin ones, 1-3. The Palatini action is
1
- (g [g#¥ - _
S = somg [ @'= VU0 RouiD) - 24] (3)

Variation with respect to the connection yields usual Christoffel relation between the metric and
connection (which implies the vanishing of the torsion}, and variation with respect to the metric
yields the Einstein equation. As pointed out by Arnowitt, Deser, and Misner [10] the connec-
tion components I}, and I'}, are nondynamical because there are no variables to which they are
canonically conjugate. After eliminating thern via equations of motion, one obtains the action
(cf. equation (4.1) of ref. [10])

I’%E / d'z /)y [II"BO @i+ N ((3)3 - 24+ -;—( “’g.-,-nu) - n.-,-n'J) + 2N‘(3)V,-II~’,-] , (4)

where (3)g;; = g;; is the metric of the spacelike hypersurface with inverse (3} (3)g,. = §%, and
covariant derivative (3V;

N =1//-¢%, Nt = Qlgiig, (5)
are the lapse function and shift vector, and

i = N( (3)g|'k (3)g,j! _ (3)g,l'j (3)gkl)112“ (6)

so that / (3)gIT"7 is the momentum conjugate to (3g;;, The lapse function and shift vector have

no canonical momenta and act as Lagrange multipliers at the classical level which impose the

gravitational constraint equations.

Quantization praceeds through the construction of the functional integral over field configura-
tions. As emphasized by Fadde’ev and Slavnov [11] in general, and Fradkin and Vilkovisky [12] in
the gravitational case, the measure in a path integral is given by []; [dp;][dg;] where the g; are the
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physical degrees of freedom, and the p; their canonical momenta. However, it has not been possible
to solve the full constraint equations in the traditional variables and hence to determine the uncon-
strained degrees of freedom in the functional measure. The new variables found by Ashtekar {13]
may offer a solution to this difficulty, but in the mean time, we will consider only the perturbation

theory about a saddle-point of the action (4) defined via the expansions

g = g5 + hij,

,/(3)gtun H:in = 1 /(a)g s + (3)gp=‘:" (7
Neu = N +n, N;;;KZN‘+"£5
where the background values are now denoted by g;;, II'7, ¥, N and the fluctuations by hy;, p/,
n, n;. We shall raise and lower all indices with the background metric (*)g;;, and we also define
I = I, h = A';, and p = p';, We will find it convenient to use the reparametrization symmetry
implied by the constraints (part of the background field general coordinate invariance) to choose a
form of the background configuration where N* = 0 and N = constant. (We shall later set N = 1.)
Then the background satisfies the classical field equations
8y Plge; =2N(IT; - %(3)9&11)1
. 5 ' y (8)
8ol =N (—-(3111-'3 + %(s)g" ((‘”R - 2A — %n’ + n"‘n,.,) + g—nn'f - m",,n*f) ,

as well as the constraint equations obtained from the action (4) by varying N and N*.
Under infinitesimal general coordinate transformations §z# = ¢* acting on the full metric and
connection, where the background fields transform as scalars, the fiuctuations 4;; and p*/ have the

following transformation properties:
1

N3

§p = N ((3]gu(3)A - B (3gi waﬂnu + —;—HH") e? + (3)Vk (Htkej + TI7%¢E H"Ek) ,

61‘1,’:‘ = - (S)Viﬁj - (3)VJ‘€.' + augf,jfo

(9)

where (3JA = (Ni(3)7, is the three-Laplacian. The background equations of motion and con-
straints were used to derive these transformation properties. We would like to identify the gauge-
invariant degrees of freedom and use these as unconstrained representatives of the gauge orbits
generated by the e#. This will eliminate four degrees of freedom from the phase space of the A
and p*/ . Four more degrees of freedom are eliminated by the primary constraints that arise from
inserting the expansion (7) into the action, truncating to quadratic order, and varying with respect
to n and n’, These are the four perturbative Hamiltonian constraint equations,
(i Bhyshg, — ah + ( Lo - Loy nf:') hes + T p — 2Mgp = o,
N 2 (10)
09,53 + ST (9 ki, + ON,HE; — OFh,) <o,
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We are able isolate the physical degrees of freedom of the reduced phase space for backgrounds
which satisfy
1 .
o 2(3),i5 .
I 39 I (11)
This restriction impiies the following functional form for the background momentum and Ricci
tensor
o1 . 1
H'J = 5(3)9‘11-[(30), UnR,{,‘ = 59,"' (3)R(30). (12)
These conditions are satisfied by FRW metrics to which we shall restrict our attention. (Note
that we use compact spacelike slices, as these allow for a Euclidean continuation.) The gauge
transformations of h;; and p'f given by eqns. (9) simplify to
1
§h;j = —-EJ—V—-g,',-IIeg - ((‘”V,-e,- -+ (3)VJ'E;) ’

3 . e . . . (13)
55 = N [(a)gu ((s)A + g A) _ (s)v-(a)v;] &L ;_.H((S)vtes + Crgiei _ ()i (g ek),

The Hodge-de Rham theorem states that A;; can be decomposed into transverse and longitudinal

components:
hig = h;l_; +{ (E)V,‘Vj + (3)V5V,-), (14)

where (3ViRL = 0. The longitudinal part of h;; may thus be eliminated by an ¢; gauge transfor-
mation, and this selects (for example using the differential gauge-fixing condition (3'Vik;; = 0) a
representative of each gauge orbit of the ¢’ up to transformations of the form ¢ = g(z°)K;(z7),
where the K; are Killing vectors of the three manifold — (})V;X i+ (3)751{,- = 0 (these are the
analogs of the space-independent residual gauge transformations in flat-space gauge theories). Un-

der the €? coordinate transformations,
Sp= N (2(31A + m) & (15)

For non-flat FRW backgrounds, the operator (2(3JA + 2V A) has no global zero modes so that the
trace p can be eliminated by an €® gange transformation. Thus, on the configuration space reduced
by fixing the ¢ gauge invariances, the additional gauge fixing condition p = 0 selects a unique
representative of each gauge orbit of ¢. Those ¢ satisfying the spacelike Killing equation are then
fixed by the constraint n;{z* = z},z°) = 0 for some point z} on the three-hypersurface for every

value of coord,ipate time z°. The perturbative constraint equations (10) reduce to

((% + gA) h=0,
1 (16)
(3’V5p"' - El‘[ Grrip = 0.
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S =

For FRW backgrounds the first equation is satisfied for non-vanishing h only for isolated z°; con-
tinuity then requires A = 0. The second equation then implies that p*/ must be transverse —
(3% ;p*7 = 0. Therefore the physical unconstrained degrees of freedom for perturbation theory
about FRW backgrounds are the transverse, traceless cornponents of h;4, and the transverse, trace-
less components of p'/. Referring back to eqn. (13), we see that these components (which we shall

denote AZT and pTT?/ respectively) are invariant under both ¢; and € gauge transformations.

In terms of these physical degrees of freedom, the quadratic part of the action is

4N
(17)

where the operator

(3)Ai£jm = — (B)it(d)gim(3)p _ 2 (Q)Ritim (18)

is the Lichnerowicz operator for the symmetric traceless-transverse tensor 45" . When acting on
forms, it corresponds to the Hodge-de Rham Laplacian [14] Ay = d§ + éd. On compact manifolds
its eigenvalue spectrum is positive definite.

The Euclidean formulation of the above analysis is obtained by letting N— — {N |, which
changes the signature of the metric to (+ + + +). In the action, the background momentum also
rotates (II*— — {II'/) because of the implicit dependence on the lapse in eqn. {6). The action
transforms as S[ATT, pTT]—iI[RTT,pTT], where I[KTT,pTT) is the Euclidean action. Note that
the canonical momentum pTT does not rotate. The functional integral over pTT is a bounded,
well defined, real gaussian integral, with saddle point on the imaginary axis. This prescription is
equivalent to the usual Wick rotation applied, for instance, to gauge and scalar field theories. That
the canonical momentum does not rotate is a generic feature of first-order Euclidean formulations;
it is a Euclidean path integral with a ‘propagating’ (Minkowskian) momentum integral that is
well defined. Alternatively, one may approach the Euclidean functional integral by rederiving the
Euclidean version of eqn. (17) from the Euclidean formulation of the Palatini action eqn. (3). At
the classical level, the canonical momentum would simply be replaced via its equation of motion
to obtain the second-order action. The quantum path integral over the momenta, however, is
formally divergent, and it requires a rotation to Minkowskian mormenta to make it well-defined.
There is nothing special about gravity in this respect; it is a general feature of the Hamiltonian
formulation of Euclidean field theories when the momentum p conjugate to the coordinate g is
defined as §Lg/6(8yg), where T is the Euclidean time (because the canonical momentum for the
physical theory is really defined by the Minkowski theory).

6
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The second order Euclidean action 7{ATT] is thus
1 itjm 1 i3
= forg [ 4% VO | HTOAHET 4 1 (T J

= Téﬁ / diz /Gy Clgik @)yt [i‘hTTij (-a) RFF + -7-1511’&1‘% R + % (Boh T (aohz,T)]

(19)

where the Euclidean-signature lapse has been set to 1. The action is positive-definite (since the

spectrum of the Laplacian is negative definite for the FRW backgrounds under consideration), and
thus defines a convergent path integral. In terms of canonically normalized fields it is

Z = exp(~Ia) / [dh]T] exp (_ f d'z /(Y [%h?jﬂa)&gﬁ"hﬁ + % (a.,hTT",-)’D (20)

No contour rotation is required, and thus no additional phase emerges in the partition function.
Fischler, Klebanov, Polchinski, and Susskind [15] have used the claim of a phase in the partition
function to discredit the Euclidean path integral approach, but the result here indicates that such
a dismissal is premature.

We turn now to the zeta-function computation. Consider the four-sphere $* with N =
N; = 0, three-metric g;; = f?(t)7;;(Z) and Ricci tensor OR,; = 25:;(%), where Z and §;; are
coordinates and metric on the unit three-sphere §3, and f(t) is the scale factor determined by the

background equations of motion and constraints:

o}

fit) =sin(ut), =3, tefo,I]. (21)

The Laplacian (P)A scales as (JA = w?f~% (A, where the operator (M)A is the Laplacian on 52,
Eigenvalues and muitiplicities of (¥A acting on a complete orthonormal set of symmetric transverse
traceless rank two tensors on 52 are well-known (see, for instance, Rubin and Ordéiez {16]). We

denote the eigenfunctions by E'J-'", where

OATIm = —(I(1 + 2) - 2)Tm, (22)
m=1,...,0;=2(1 - 1)(I + 3).

The action (19) may be diagonalized using the expansion

oo n-—1

RFE=p). Y Z Sin{wt)anm hII™, (23)

n=3 =3 m=1

where u is a normalization constant with dimensions of inverse length,

(2n + 1)(n - I)!

nim _
™ = 2(n+ i)t

Pyt (coswt)Vim (24)
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and the P!(z) are associated Legendre polynomials. The eigenfunctions A%™ are are orthonormal:

‘l'/w 1} ] L ] ]
/ w sin(wt)dt / EVTTEF AR L™ = 6 gV (25)
0

Completeness follows from the real, elliptic, form of the operator acting on the fields hTT in the
action (19). In terms of the @nim, the measure on the space of fields is

arg] = ] 2=, (26)

nim

The one loop partition function is formally given by the integration over the coefficients an;p,

oo n—1 Dy
H H H [A(‘n + 2)(11. - 1)] (27)

n i=2 m=1

The zeta function technique [17] regularizes the product Z; = [[; X;/u® using the generalized zeta
function {(s) = 37; A~*, which converges for Re(s) > 2 for positive eigenvalues A;. The infinite

product Z, is given by
Zy = e3¢ (O+HIn(k?/A)((0). (28)

where {(0) and {’(0) are the analytically continued values of the function. In our case we have

o= o £ iy o -

General results useful for evaluation of the s—0 limit of functions of this type are found in the

Appendix of ref. {3]. We find

¢(0) = —6—61- (30)

The value of {(0) is conventionally regarded [1,3,17] as the gauge invariant, on-shell, scaling behavior
of the one loop partition function: ,u%lnzl = ¢(0), where Z, is defined via eqn. (28). The result
obtained here differs from that obtained from the covariant approach with the GHP conformal
rotation prescription*(3], —571/45. The difference is an integer, which is significant because negative
and zero modes which occur in the covariant approach contribute integer values to the scaling
behavior,

We wish to thank B. Grinstein for numerous conversations about quantum gravity and worm-
hole physics, and W. Bardeen and R. Pisarski for answering endless questions about constrained
Hamiltonian systems. D, A. K. would also like to thank Z. Bern for helpful discussions on the
conformal factor.

* A recent reanalysis by Taylor and Venesiano [18] yields —571/45 + 20 = 329/45 for the covariant resuit with
the GHP conformal rotation prescription, which also differs from our resuit.
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