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Abrtract 
We study the Hamiltonian formulation of perturbative quantum gravity. For a 

Freedman-Robertson-Walker background, the gravitational constraints can be aoived, and 
the physiCa degrees of fiecdom can be isolated explicitly. The resulting action is bounded 
from below in the Euclidean regime. In the context of wormhole physics this implies that 
there is no phase of the sum over spherea. We use the zeta-function regolarization tech- 
nique to calculate the so-called scaling behavior of the one-loop partition function about 
the S’ saddle point. We find a~ answer that differs by en integer from the value obtained 
from the covariant approachusing the ‘conformai rotation’ prescription of Gibbons, Hawk- 
ing, and Perry. These results indicate that the ‘conformai rotation’ prescription does not 
yield the correct partition function for curved backgrounds. 
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In their approach to perturbative quantum gravity, Gibbons, Hawking, and Perry [l, Z] (GHP) 

define the gauge-invariant partition function via a path integral over 5uctuations of the Euclidean 

four-metric about a saddle-point background, with Fadde’ev-Popov measure corresponding to the 

gauge invariances - the four infinitesimal general coordinate transformations of the metric 5uctu- 

ations 131, 

2 = 
I 

k%“l~~~l[dV,l[~~~l exP [-I(&, 4, v,, WI 0) 

For one-loop calculations, the Euclidean action I is quadratic in small fluctuations. The metric 

perturbations &,” are traceless, while the ghosts VA and VT exponentiate the Fadde’ev-Popov 

determinant, and 4 is the trace of the metric - the conformal factor. 

The action is unbounded from below with respect to variations of the cooformal factor, so 

the path integral does not converge. This is because about any classical background, the kinetic 

term of # is negative-d&u&. Gibbons, Hawking, and Perry supply a prescription which makes 

the path integral converge: rotate the # field at each point in the complex plane, 4(z) -+ id(z), so 

that the integrand is marimiieed at the background field saddle point. For non-trivial backgrounds, 

however, this conformal rotation is not suflicient to guarantee convergeme. In partic&, for 

Euclidean de Sitter space (S’), the six lowest eigenfunctions of the scalar Lichnerowice operator 

have unbounded action and must be rotated back. That introduces a phase is = -1 in the one-loop 

partition function. This is the essence of Polcbinski’s calculation [4] which, if correct, would imply 

the demise of Coleman’s mechanism (51 for the vanishing of the cosmological constant: 

The Euclidean path integral should be given by the integral over physical degrees of free- 

dom with an ‘imaginary-time’ action. In gauge theories, the covariant, gauge-fixed, second-order 

Euclidean form correctly imposes the Gauss’s law constraints needed to eliminate the unphysical 

degrees of freedom (so that the physical and covariaut path integralsare equivalent), but there is 

no a priori guarantee that this is true. The second-order form must be derived from a first-order 

Hamiltonian formulation with canonical coordinates and momenta, in the phase space reduced by 

gauge fsing conditions and primary Hamiltonian constraints [6]. (One may then be able to return 

to a covariaut formulation by adding redundant variables, Lagrange multipliers, and ghosts; in 

gauge theories, this yields the usual covariant second-order form.) 

For perturbation theory about flat space, the GHP Euclidean path integral with the conformal 

rotation prescription yields the same one-loop partition function as obtained from the path integral 

over the physical degrees of freedom [7]. What about other backgrounds? In this Letter, we show 

that the physical degrees of freedom of gravitational perturbation theory can also be isolated for 

. As pointed out by Polcbimki [4]. the ghost path integml id to be understood as yielding an absolute value of a 
determinant. 
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backgrounds of Freedman-Robertson-Walker (FRW) form with Minkowski or Euclidean signature. 

We find, in particular, that the Euclidean path integral for small fluctuations about S’ converges 

and hence cannot give rise to the additional phase found by Polcbinski using the GHP formalism. 

Abbott and Deser [g] have also discussed the boundedness of small gravitational fluctuations about 

Ninkowski de Sitter and anti-de Sitter space. 

We begin with the fist-order formulation of gravity originally introduced by Palatini [g], in 

which the metric and connection are independent degrees of freedom. We use the Landau.Lifsbitz 

spacelike conventions, namely the metric has signature (- + + +), and 

R" $&ur = -a,r;w t Wf - r;,r;, + rg-& 
R,, = RY,v, (2) 

Greek indices denote O-3 and Latin ones, 1-3. The Palatini action is 

S= & / $2 fi[d”‘R,,w(r) - ZA] . 

Variation with respect to the connection yields usual Christoffel relation between the metric and 

connection (which implies the vanishing of the torsion), and variation with respect to the metric 

yields the Eiiatein equation. Aa pointed out by Amowitt, Deser, and Misner [lo] the coxmec- 

tion components I’:, and l$ are nondynamical became there are no variables to which they are 

canonicdly conjugate. After eliminating them via equations of motion, one obtains the action 

(cf. equation (4.1) of ref. [lo]) 

where (a&ii = gij is the metric of the spacelike hypersurface with inverse (J)g’j(J)gjk = 6’1, and 

covariant derivative t3)Vj; 

N=l/&=, Ni = Wgiigjo (5) 

are the lapse function and shift vector, and 

l-p = N( Wg’k W,p _ (3Jgij W,p)r&, 
(‘3) 

so that fiIIij is the momentum conjugate to c3)gij. The lapse function and shift vector have 

no canonical momenta and act as Lagrange multipliers at the classical level which impose the 

gravitational constraint equations. 

Qua&z&ion proceeds through the construction of the functional integral over field cor@u.ra- 

tions. As emphasized by Fadde’ev and Slavnov [ll] in general, and Fradkin and Vilkovisky [12] in 

the gravitational case, the measure in a path integral is given by Hi [dpi][dqi] where the qi are the 
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phyaicoi degrees of freedom, and the pi their canonical momenta. However, it has not been possible 

to solve the full constraint equations in the traditional variables and hence to determine the uncon- 

strained degrees of freedom in the functional measure. The new variables found by Ashtekar [KS] 

may offer a solution to this difliculty, but in the mean time, we will consider only the perturbation 

theory about a saddle-point of the action (4) defined via the expansions 

go” = gij + hij, 

-Hz,, = finij + mpij, (7) 

Nc,,~ = N + n, N&, = N’ + n’, 

where the background values are now denoted by gij, II *j, N, N’ and the fluctuations by hij, p’j, 

n, nd. We shall raise and lower all indices wjth the background metric (‘)gij, and we also define 

ll = II’;, h = h’s, and p = pii. We will find it convenient to use the reparametrization symmetry 

implied by the constraints (part of the background field general coordinate invariance) to choose a 

form of the background configuration where N’ = 0 and N = constant. (We shall later set N = 1.) 

Then the background satisfies the classical field equations 

as well as the constraint equations obtained from the action (4) by varying N and N’. 

Under infinitesimal general coordinate transformations 6zp = sp acting on the fu!l metric and 

connection, where the background fields transform as scalars, the fluctuations hij and p’j have the 

following transformation properties: 

bh<j = - ‘3~i~j - (3Vj<i + $&gijro 

bpij = N 
( 

WgGWA _ (J)o’Pl@ - 2-aopj + in@i 
> 

$ + (Jbqk (pcj + njkci _ pick) , 
(9) 

where (s)A = (s)rcri(s)Vi is the three-Laplacian. The background equations of motion and con- 

straints were used to derive these transformation properties. We would like to identify the gauge- 

invariant degrees of freedom and use these as unconstrained representatives of the gauge orbits 

generated by the c*. This will eliminate four degrees of freedom from the phase space of the hij 

and p’j . Four more degrees of freedom are eliminated by the primary constraints that arise from 

inserting the expansion (7) into the action, truncating to quadratic order, and varying with respect 

to n and ni. These are the four pertnrbative Hamiltonian constraint equations, 

@)o’ (3k,ih;j _ (3)&h + -$a,,@ - in@? > hij + flp _ 2&jp’j = 0, 
‘3’ojpij + $jk c3bjhik + (Jbkhij _ (3vh. ,k) = 0. 

(10) 
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We are able isolate the physical degrees of freedom of the reduced phase space for backgrounds 

which satisfy 
nij = 5 (Jlgij~. (11) 

This restriction implies the following functional form for the background momentum and R.&i 

tensor 

l-@ = 5 (3)gUqzo), (%lij = ;gij ‘%(z”). 02) 

These conditions are satisfied by FRW metrics to which we shall restrict oar attention. (Note 

that we use compact spacelike slices, as these allow for a Euclidean continuation.) The gange 

transformations of hij and p’i given by eqns. (9) simplify to 

bhij = -~BijIl’n - ( ‘3~i~j + (3Mjci) , 

The Hedge-de Rham theorem states that hij can be decomposed into transverse and longitudinal 

components: 

hij = hz + ( ‘3’Pivj + ‘3WjK), (14) 

where t3vh$ = 0. The longitudinal part of h<j may thus be eliminated by an ei gauge tramfor- 

mation, and this selects (for example using the differential gauge-fixing condition (‘)V’h<j = 0) a 

representative of each gauge orbit of the ci up to transformations of the form ci = g(Z’)Ki(Z’), 

where the Kg are Kiig vectors of the three manifold - (‘)V<Ifj + t3)VjK< = 0 (these are the 

analogs of the space-independent residual gauge transformations in flat-space gauge theories). Un- 

der the 6’ coordinate transformations, 

For non-flat FRW backgrounds, the operator (2c3)A + 2NA) has no global zero modes so that the 
. 

trace p can be eliminated by an e” gauge transformation. Thus, on the configuration space reduced 

by fixing the es gauge invariances, the additional gauge lixing condition p = 0 selects a unique 

representative of each gauge orbit of c O. Those ei satisfying the spacelike Killing equation are then 

fixed by the constraint ni(z’ = $5, to) = 0 for some point z6 on the three-hypersorface for every 

value of coord+ate time 2’. The perturbative constraint equations (10) reduce to 

06) 
Wvjpij - :=(3)@h = 0. 
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For FRW backgrounds the fist equation is satisfied for non-vanishing h only for isolated 2”; con- 

tinuity then requires h = 0. The second equation then implies that p’i must be transverse - 

(s)v,p’j = 0. Therefore the physical unconstrained degrees of freedom for perturbation theory 

about FRW backgrounds are the transverse, traceless components of hij, ad the transverse, trace- 

less components of p’j. Referring back to eqn. (13), we see that these components (which we shall 

denote hTT and pTTij respectively) are invariant under both y and CO gauge transformations. II 

In terms of these physical degrees of freedom, the quadratic part of the action is 

S = & j& fi[$h~T(3)A~mh~ + & (aohTTij)’ _ N@TTdj + inhTTij _ &aohTTij)2] , 

07) 
where the operator 

(3)Ay'" = _ Wqil (3)gjm@)A _ 2 (B)@ljm (18) 

is the Licbnerowicz operator for the symmetric traceless-transverse tensor hF . When acting on 

forms, it corresponds to the Hedge-de Rham Laplacian [14] AL = db + 6d. On compact manifolds 

its eigenvalue spectrum is positive definite. 

The EucIidean formulation of the above analysis is obtained by letting N-r - iN , which 

changes the signature of the metric to (+ + + -I-). In the action, the background momentum also 

rotates (II’j-+ - iIIij) because of the implicit dependence on the lapse in eqn. (6). The action 

transforms as ~S[hTT,pTT]+iI[fiTT,pTT], where I[hT*,pTT] is the Euclidean action. Note that 

the canonical momentum p TT does not relate. The functional integral over pTT is a bounded, 

well defined, real gaussian integral, with saddle point on the imaginary axis. This prescription is 

equivalent to the usual Wick rotation applied, for instance, to gauge and scalar field theories. That 

the canonical momentum does not rotate is a generic feature of first-order Euclidean formulations; 

it is a Euclidean path integral with a ‘propagating’ (Minkowskian) momentum integral that is 

well defined. Alternatively, one may approach the Euclidean functional integral by rederiviag the 

Euclidean version of eqn. (17) from the Euclidean formulation of the Palatini action eqn. (3). At 

the classical level, the canonical momentum would simply be replaced via its equation of motion 

to obtain the second-order action. The quantum path integral over the momenta, however, is 

formally divergent, and it requires a rotation to Minkowskian momenta to make it well-defined. 

There is nothing special about gravity in this respect; it is a general feature of the Hamiltonian 

formulation of Euclidean field theories when the momentum p conjugate to the coordinate p is 

delined as bLE/6(&q), where r is the Euclidean time (because the canonical momentum for the 

physical theory is really defined by the Minkowski theory). 
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The second order Euclidean action I[hTT] is thus 

I= e.& 
/ 

d’+ fi fh;T(3)A~mh;r_T + i (&/,==’ 
[ j)‘] 

= & 
I 

$+ fi WpWgjl [ahTT<j (-‘“‘A) hz? + AI12hTTij hz: + i (aOh:‘) (~ghz:)] 

(19) 
where the Euclidean-signature lapse has been set to 1. The action is positive-definite (since the 

spectrum of the Laplacian is negative definite for the FRW backgrounds under consideration), and 

thus d&es a convergent path integral. In terms of canonically normalized fields it is , 

2 = elcp (-I.,) 
I 

[dhTj=] exp - (J d’t ,/?$ &=‘“‘@“h~ + ; (&,hTT’ j)‘]) (20) 

No contour rotation is required, and thus no additional phase emerges in the partition function. 

Fiscbler, Klebanov, Polchinski, and Susskind [15] have used the claim of a phase in the partition 

function to discredit the Euclidean path integral approach, but the result here indicates that such 

a dismissal is premature. 

We turn now to the zeta-function computation. Consider the four-sphere S’ with N = 1, 

Ni = 0, three-metric 9ij = f’(t)gij(Z) and Ricei tensor (s)&j = 2&(Z), where Z and & are 

coordinates and metric on the unit three-sphere ss, and f(t) is the scale factor determined by the 

background equations of motion and constraints: 

f(t) = sin(wf), wz = $ t E IO, Z] 

The Laplacian @)A scales as @)A = w’f- ’ ‘s%, where the operator (% is the Laplacian on $. 

Eigenvalues and multiplicities of (s% acting on a complete orthonormai set of symmetric transverse 

traceless rank two tensors on s3 are well-known (see, for instance, Rubin and Orddfiez [16]). We 

denote the eigenfunctions by ?/,T, where 

‘“‘Z@ = -([(I + 2) - 2)%\., 
I = 2,... 

m=1,...,1)~=2(1-1)(1+3). 

The action (19) may be diagonal&d using the expansion 

m n-1 D, 
h;= = p c c c sin(wt)a,~,,,h~~“‘, 

n=3 14 m=1 

where p is a normalization constant with dimensions of inverse length, 

h$” = /~P;++,swf)~;? , 

(23) 

(24) 



and the P,!(z) are associated Legendre polynomials. The eigenfimctions h$” are are orthonormal: 

J *lo wsh(wt)& &,,&jii’~jj’,,;“h;~;“I = ,+6”‘6mmr, 0 I 
Completeness follows from the real, elliptic, form of the operator acting on the fields hsT in the 

action (19). In terms of the o+,, the measure on the space of fields is 

W;=I = ng 2. 
The one loop partition function is formally given by the integrstion over the coefficients a,l, 

z, =fi”Z fi[h(n+y-l)l-t 

n I=, m=* 

(26) 

(27) 

The sets function technique 1171 regularizes the product 2, = fli Xi/p” using the generalised zeta 

function C(d) = xi X-‘, which converges for Re(s) > 2 for positive eigenvalues &. The infmite 

product Z, is given by 
z, = eiC’(o)+tIn(~“/A)C(0), (28) 

where ((0) and (“(0) are the analytically continued values of the function. In OUT case we have 

C(#) = & (4y 2 (2n + ‘;{;~++l;I’y-g;,g) + 120 

n=3 

General results useful for evaluation of the s-0 limit of functions of this type are found in the 

Appendix of ref. [3]. We find 

((0) = -f.$ . (30) 

The value of ((0) is conventionally regarded [1,3,17] as the gauge invariant, on-shell, scaling behavior 

of the one loop partition function: JI$ ln ZI = c(O), w h ere Z1 is defined via eqn. (28). The result 

obtained here differs from that obtained from the covariant approach with the GHP conformal 

rotationprescription*[3], -571/45. The difference is aninteger, wbichis sign&ant because negative 

and zero modes which occur in the covariant approach contribute integer values to the scaling 

behavior. 

We wish to thank B. Grinstein for numerous conversations about quantum gravity and worm- 

hole physics, and W. Bardeen and R. Pisarski for answering endless questions about constrained 

Hamiltonian systems. D. A. K. would also like to thank 2. Bern for helpful discussions on the 

codormal factor. 

*A XCCCII~ reanalysis by Taylor and Venesiano [la] yields --671/45 + 20 = X29/45 for the covuiant result with 
the GHP conformal rotation prescription, which aha difTur from our result. 
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