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1. Introduction 

In a fundamental theory of quantum gravity, such as Superstring Theory, the 

physical cosmological constant A is best defined as the coefficient of g,,,, on the right 

hand side of Einstein’s equations: 

Rw - fgwR = -bg, + sources + higher d&v. terms, (1) 

seen as the Euler-Lagrange equations of the low-energy effective action of the theory. 

The great mystery about the smallness of A is reinforced by the need to have a 

large A [say O(1) in Planck units] in the early universe in order to sustain inflation. As 

the universe expands and cools down, and after many changes due to all sorts of phasc 

transitions, symmetry breakings etc., A should eventually relax to an infinitesimally 

smd.value [say 0(10-‘20) in Planck units] in the present epoch. 

A new line of approach to this long-standing problem was started a few years sgo 

by Baum [l] and Hawking [z], and was later developed by Coleman in a very influential 

and stimulating paper [3]. Related ideaa have been also put forward by Banks [4]. 

The general framework invoked in these papers is that of Euclidean Quantum Gravity 

(EQG) and the specific configurations employed in the functional integral are the so- 

called wormholes [S]. 

After a few months of great excitement, the wormhole scenario appears now to 

suffer from many problems, both at the “conceptual” and at the “phenomcnological” 

levels. In our opinion, the most serious objections in the first category are related to 

the fact !6,7] that standard wormboles lower the Euclidean action in such a way as 

to make it unbounded from below at large Euclidean volumes V. It is precisely this 

unboundedness that gives Coleman’s result A --) 0 o V + co, and that casts, at the 
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same time, great doubts on the legitimacy of the conclusion. In particular, A = 0 doe,, 

not correspond to any stationary point of the non-local, wormhole-induced effective 

action. 

In spite of this and other criticisms, we believe that it would be too hasty to 

abandon the hope that EQG contains the solution of the Cosmological Constant 
: 

Probiem. The general idea that some quantum gravity corrections could become 

sizeable at large distances aad thus affect the present value of A (without changing 

it in the early universe) does seem very appealing. 

A wormbole-like mechanism using just saddle points and doing precisely this job 

was put forward in ref.[6]. It would leave a positive Ao ua.fTe.cted, thus saving itiation 

in the early universe. Howevu, a~ the U~~V~XSC COOIS and Ilo rolls down towards its 

would-be final, negative value, the non-local wormhole term effectively renormalizes 

it to a very tiny positive quantity. The problems with that proposal are basically two: 

i) wormholes should contribute to the action with a sign opposite to Coleman’s; 

ii) the mechanism becomes ineffective if one assumes that the contribution of other 

universes leads to Coleman’s double exponential. 

In this short note, we present an attempt which does not involve exotic and poorly 

understood effects of the wormhole type: it is supposed to generate a similar mech- 

anism by invoking nothing other than “standard” quantum gravity radiative correc- 

tions. We should point out that this idea is not entirely new. Other authors [g] in the 

past have analyzed EQG corrections to Einstein’s action with a cosmological term, 

with the goal of finding an instability of the classical (DeSitter) solution in favour of 

flat space-time. The previous proposals, however, suffered from being either limited 
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to “on-shell” calculations or from being affected by the notorious gauge-dependence 

problem of quantum corrections to the off-shell effective action. Our approach is free 

of these problems. However, as we shall see later on, it is not yet complete enough 

for deciding whether quantum effects lead to the desired rearrangement of the grav- 

itational vacuum. We hope to convince the reader that every effort should be made 

to improve our understanding of radiative cor&tions at large distances in EQG in 

order to find out if our proposal - or a suitable modification thereof - will work. 

2. A toy model that works 

We shall start by producing a sort of toy model which works and which possesses 

many of the features that radiative corrections are supposed to exhibit. We shall then 

try to find out how close we can get to what we need by some bona-fide calculations. 

The toy model assumes that the tree-level action: 

s = l-0 = & / d’+ Wo - R) (2) 

is modified by quantum effects at large V = i d’zfi by a term: 

AS = l-1 = @A,’ Vlog(V/X’) , (3) 

where 0 is a pure number and X is the ultra-violet cut-off of the theory in position 

space. We do not know of any other way of making sense of EQG other than assuming 

the existence of a finite UV cut-off somewhat larger than Planck’s length [9]. A 

candidate theory providing just such a cut-off is, of course: String Theory, where: 

x = A, = hiz, a’ = inverse string tension (4) 



and 

x,fi=x,=dxE, a0 = Grand Unified coupling constant. (5) 

Although we shall have in mind string theory e.a the way to regulate EQG, the reader 

can replace it with her/his favouritc way provided it does not spoil general covmimce. 

A few remarks are in order before we proceed to using eq.(3). The fact that, at 

one loop, the logarithm of the UV cut-off multiplies a term proportional to Ai V is 

Al known [io,ll]. In any given theory the coefficient P can be reliably computed too 

(see below). What is much less obvious - aad which we shall discuss later - is that 

the i&a-red (IR) scale of the logarithm is just the volume itself. Adding now eqs.(2) 

and (3) into the effective action S + AS, we find the modified “classical” equations: 

Ri, - f g,wR = - {As + WG A; [ log(V/A’) + I]} gw, (6) 

whose solution is again a DeSitter universe, R, = Agp, V = 24x2/A’, where the 

renormalized, or effective A is given by the “bootstrap” condition: 

A = A., - 16rPGA,‘[log(AX’) + const] (7) 

If 0 > 0, A is found graphically as shown in fig.(l). Its dependence on A0 is shown in 

fig.(2). Evidently, as long as AO is positive, AO = A, while, when he becomes negative 

and not too large in Planck units, A becomes very tiny, approaching the value: 

A = X-’ exp(-16x@G/A,/ )-I. (8) 

If the tree-level, zero temperature value of AO satisfies: 

0 < -GA,, < O(!O-'), (9) 



which should be easy to achieve with some supersymmetry protection, the resniting 

value of A wilI be certainly compatible with experimental bounds! 

In case the reader might be worried about our derivation of es.(S), we mention 

that exactly the same result follows from replacing the non-local action by a local 

action through the introduction of a wormhole-like auxiliary variable a,, [3]. One 

finds that the integral over 010 is dominated by a saddle point at which the effective 

cosmological constant is precisely given by eq.(g). 

The most appeaiing feature of the model discussed here is the existence of a 

phase transition at A0 = 0. The magnitude of lAoI does not play any r6le in the 

determination of the gravitational vacuum, as long as GlAo/ is small enough, see 

eq.(9). One can readily envisage an inflationary scenario, in which the transition 

from the expanding universe to flat space-time is triggered by the change of the sign 

of A0 due to the rearrangement of the vacuum state in the matter sector. 

3. Real life is harder 

We shall now proceed with a bona-fide attempt at computing rl. We shall first 

review existing results and then try to go beyond them. However, even before pre- 

senting any calculations, we stress three basic requirements to be fuM.Ued in order for 

the result to be both reliable and useful. It is important: 

i) to have a finite theory of quantum gravity which preserves general mu&once; 

ii) to work with an ofi-~-shelf background field effective action; 

iii) to maintain general covariance even of-shell. 

String theory is an “existence proof” for point i), but, as we stressed, other regw 

lators, if they exist, can be used. As for point ii),>& comes from the very definition of 
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the cosmological constant. It is well known that errors can be made if classical equa- 

tions are inserted too early into the calculation of the effective action. An example 

was recently provided by Duff [12]. Another one, more relevant for our present prob- 

lem, concerns terms in r1 in which the logarithm muitipliea the curvature scalar or 

its square. If such terms are rewritten using the tree-level equation R, = Aogw, one 

ends up with the wrong one-loop-corrected eq&tions, as it is easy to check. Finally 

requirement iii) is almost obvious if one wants to get unambiguous answers; it bar 

been widely discussed in the quantum gravity literature [11,13,14], but is apparently 

not 60 well known by the particle physics community. As stressed by Vilkovisky [13), 

the crucial point is that, if one does not correct the usual background field e&c- 

tive action, different gauges provide Bnawers that differ by equations of motion (i.e. 

by first variations of the classical action). In order to determine the new, quantum 

corrected, stationary points, however, one hau to “vary” the off-shell action making 

r-t&s obtained in different gauges differ by “second” variations which do not vanish 

even on-shell. 

The requirements ii) and iii) can be satisfied provided that one computes the so. 

called Vilkovisky - Dewitt (VD) background field effective action [13,14] (or unique 

effective action) rvD. We shall consider spherical backgrounds of arbitrary radii f. As 

we shall discuss later on, this will be sufficient to argue about the volume dependence 

of quantum corrections in the general ease. The one-loop correction to rw haa the 

formal expression: 

r~ = i log det{ P(S + S,, + 5%) / (6h)’ ) - log det{ S’S, / 6~6~’ } , (10) 

where S is the classical action and S, the ghost action. The functional derivatives are 

taken with respect to the metric fluctuations h ,-and the ghost fields v,,. In eq.(lO), 
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S,, is the gauge iixing term taken to be of the form: 

S (i, = & 
I 

d’z&V+-i;,,V’jl,“, 

The corresponding ghost action is: 

s, = & / d’=&iv;(- 0 - 3/+‘. 

(11) 

Finally, S, is the additional term prescribed by VD. Fortunately, for the case of 

spherical backgrounds under consideration, the one-loop VD action can be obtained 

simply by omitting the VD term in eq.(lO) and by taking the limit a -+ 0 at the 

end Ill]. The computation of r1 is presented in detail in ref.[lS]. Here, we restrict 

ourselves to the discussion of a couple of important technical points. 

It is well known that some of the metric fluctuations contribute with the “wrong” 

sign [16] to the quadratic part of the action; in these cases, the appropriate Wick 

rotation is performed in order to give meting to the functional integral or, if we 

wish, in order to keep the eigenvalues of the kinetic energy operators positive. Special 

care has to be taken for the zero eigenvalucs. There are two types of zero modes: 

those which arise from a symmetry of the problem and that, as such, do not depend 

on the values of r or A,,, and those which occur when these two quantities are in a 

certain relationship. It is now widely accepted that the first type of zero modes have 

just to be taken out since they correspond to residual gauge transformations, i.e. to 

incomplete gauge fixing. On the other hand, it is clear that the second type of zero 

modes cannot (and should not) be subtracted. 

The determinants involved in eq.(lO) contain ultra-violet (UV) divergences coming 

from arbitrarily large eigenvalues of the kinetic energy operators. This problem can be 

dealt with in several ways and, certainly, String ‘&eory must have its own. We shall 



assume that the way String Theory works is to introduce a lower cut-off X2 on the 

proper time t integration encountered in the heat kemei method !I?] for evaluating 

the determinant. There are strong indications that the physical results discussed here 

do not depend on this choice of regularization. Most of the existing results cm heat 

kernels concern their small t behaviour, which is sufficient to determine the UV cut-off 

dependence of r,. 

This is not sufficient, however, for our purposes since we are interested in the 

actual dependence of the effective action ora the radius 7. In order to have some 

handle on that, we need to study also the large t, or i&a-red (IR), behaviour of 

beat kernels. The IR behaviour is controlled by the lowest eigenvalues, which have 

been the subject of many investigations by mathematicians [IS]. Their results lend 

support to the idea that the IR behaviour of hest kernels is controlled by global, 

non-local properties of the manifold, such as the diameter of the largest ball that can 

be inscribed in the manifold. This non-locality of the effective action was pointed 

out long ago by Dewitt [19] and, later on, discussed to some extent by Vilkovisky 

[13]. This feature of the effective action is precisely what we want in order to play 

the game described earlier for the Vlog V toy model. 

The final result [15] for the one-loop ViUrovisky - Dewitt effective action is: 

r1 = 2 [-&A-‘- A&-’ + 2h,? log(XM)] 

f P’ [y A-’ - 16A&(&%4)] + O(logr), 

where: 

Id= =4 lAoI l’l,l/r } 

The following remarks are in order: 

(13) 

(14) 
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i) One has generated, as expected, a “large” cosmological constant proportional 

to the cut-off. This contradicts the assumption that Aa was the L‘tree-level” 

cosmoiogical constant. In other words, we have implicitly assumed that some 

(supersymmetric, for instance) protection is at work. The same protection must 

necessarily wash out the term proportional to ,I\-’ in eq.(13). 

ii) There is a finite renormalization of G: a small one if X > X,, and one propor- 

tional to & times the logarithm. The latter could be relevant if large logarithms 

are present. 

iii) There is a pure log T term corresponding to a renormalization of R’-type terms, 

which will play no r6le in the search for large volume solutions. 

iv) Finally, there are logarithms (with just a constant in front) that can become 

infinite at special values of r and Ao (i.e. when a zero mode occurs), which we 

neglect since we will be looking for soiutions far from these singularities. 

In accordance with the general discussion we made earlier, we shall now interpret 

the factors r occurring under the logarithms as V1f4, since it is the global size of the 

manifold which controls the small eigenvalues. For X 2~ X,, the term dominant at 

large V in the effective action of eq.(13) is: 

rl z $ Ao’ Vlog(XM). 

We notice that PI falls just short of giving our toy model’s action of eq.(3). The two 

main differences are: 

a) The argument of the logarithm which multiplies A,,’ V is not a power of the 

volume, but M z max{ IAol*“, I’-“’ }, se: _eq.( 14). This, unfortunately, pre- 
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vents the logarithm from becoming very large. On the other hand, the scale 

of a logarithm is often difficult to determine by a one-loop calculation. Higher 

loops might change the scale and replace it, for instance, by max{ Al/l, V-W ), 

where the final A CI V-‘i’ appears. This would be n&dent for our purposes. 

b) The sign of the logarithm under discussion is the opposite of the one of the 

toy model. As such, it would rather af%ct a positive Ao than a negative one. 

Actually, after an easy graphical check [similar to the one of fig.(l)], one finda 

that, for positive Aor there are two solutions and that the one with A z A0 

has lower action. This conclusion depends on the integration contours over the 

conformal factor of the metric and could be reversed if some reason forces one 

to change it. 

We thus conclude that our toy model almost comes out of a bona-fide one-loop calcula- 

tion. It is not at all excluded that higher loop effects or the use of a more complicated 

and realistic theory (with dynamically broken supersymmetry, for instance) could just 

lead to our toy model. Unfortunately we do not know, at present, how to approach 

either case. 

One can also take II different attitude towards our toy model and regard S + AS 

of eqs.(Z) and (3) as the effective action of B more fundamental theory. In super- 

string scenarios, for instance, the appearance of a cosmological constant term comes 

together with (local) supersymmetry breaking. Both in the gluino condensation [ZO] 

and in the gravitino condensation [21] scenarios the effective actions below the su- 

persymmetry breaking scale resemble those of supersymmetric gauge theories [22] 

and contain logarithms of fields induding those related to the size of various spaces 

[9,23]. In principle, such a mechanism could yieid 8 correction proportional to AS. 
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Fig.1) Graphical solutions of the “bootstrap” eq.(7); the upper and lower curves cm- 

respond to the r.h.s. of eq.(7) as the functions of A in the cases of positive and 

negative Ao, respectively. 

Fig.2) The effective cosmoiogicd constant A a~ the function of the tree-level cosmo- 

logical constant Ao. 
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It is straightforward to repeat the self-consistent determination of the effective cm 

mological constant in our toy model, with the coefficient of Vlog V kept positive and 

unrelated to Ai. One finds that A remains positive and large as far as A0 stays posi- 

tive, and becomes positive and exponentially small if Ao becomes negative and large 

compared to the coefficient of Vlog V times G. It remains to be checked whether such 

a string-based model is feasible. A more radi&l alternative, which we are reluctant 

to take into serious consideration at this point, is to abandon the locality principle, 

and postulate S + AS as the fundamental claasical action of EQG. 

In conclusion, we have given arguments to support the idea that quantum correc- 

tions to the classical action might be accompanied by logarithms which blow up at 

large Euclidean volume and/or small cosmological constant. It is not excluded that, 

just as in our toy model’s effective action, these logarithms drive, at late epochs, the 

ground state of the theory away from its naive, tree-level configuration, into the Big 

Universe of today. 
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