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Abstract 

In a quantum theory, the cosmological constant is scale-dependent. The leading 
behavior of the scaling in Coleman’s mechanism for the vanishing of the asymptotic cos- 
mological constant is calculable. 
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Of the many unexplained small numbers that appear in modem physics, the cosmological 

constant is undoubtedly one of the smallest. The most recent measurements by Loh and Spiller 

of the density of galaxies [l] put a bound of IO-seV’ on the cosmological constant*. Coleman [2], 

building on earlier work of Baum [3], Hawking [4], and Linde [5], has presented an argument that 

the asymptotic low-energy value of the cosmological constant is zero. The question I wish to address 

here is, how zero is zero? What are the corrections to Coleman’s result when the theory is being 

considered not at zero energy but at some finite energy? In a quantum theory, the cosmological 

constant is not a constant, rather it depends on the scale at which one probes the theory. The 

presence of quantum corrections is after all the reason the ‘cosmological constant problem’ exists 

in the fist place; and quantum corrections are scale-dependent. 

Coleman’s argument is based on the Euclidean functional formulation of quantum gravity, 

As is evident in much of the contemporary literature on the subject, Euclidean gravity has many 

pitfalls and poorly understood embarrassments; adding wormholes only exposes more weaknesses. 

I will have nothing to say about these issues, the unboundedness of the gravitational action, the 

appropriateness of the Euclidean continuation, the supposed existence of a phase in the sum over 

spheres [6], or the possible dangers of large wormholes [7, 8, 9, lo]. Rather, I will blithely make 

all the standard assumptions of wormhole physics, namely that all of these technical problems can 

be solved. In addition, I will assume a mechanism for keeping the gravitation coupling constant 

GN bounded away from zero [ll, 6, 121. With all these assumptions, let us ask: how does the 

cosmological constant run? 

For the purposes of the present work, it is most convenient to follow the approach of Klebanov, 

Susskind, and Banks [13]. The expectation value of some observable, 0, in a Euclidean gravitational 

theory is given by a path integral, 

(o), = .Wslbf4 e-s‘(g~*x) 0 
J[dg][d#] e-Wg@+) 

where the subscript denotes the coupling constants of the theory (including the cosmological con- 

stant), and where 4 denotes all the matter fields. I am implicitly assuming a physical, gauge-fixed 

form of the gravitational path integral, along the lines of Amowitt, Deser, and Mimer [14] and 

Scbleich [15], with a cut-off of order the Planck mass. 

What is the effect of wormholes in the dilute gas approximation? They lead to a sum over 

large manifolds connected by small wormholes; the sum exponentiates, giving us the form 

(0) = M/r]: Ohi q(- c crf/Ci) /[dg][d$] e-sB(“*hA+p) exp (j~dg’]~d~l]e-s.(“,~‘ir+a)) 0 
i i 

(2) 

* Particle physics conventions sre used throughout. 
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where the gravitational path integrals are now taken over connected large manifolds (and fluctua- 

tions about them) with no wormhole insertions. The cr< (in spite of ref. [13]) label wormhole types 

rather than operators in an operator expansion. This equation tells us that an observable is given 

by a weighted sum over theories with coupling constants shifted by the wormhole parameters cci. 

The weighting is given by the probability distribution 

P(a) = Nexp(- ~a~/C~) /[dg][d&] .z-‘~(P,~‘+~) exp (/[dg~[d~‘]e-s~(P’,~.i”f.)) (3) 
i 

If we now approximate the gravitational path integral by summing over Euclidean de Sitter 

spaces - four-spheres - then we find Coleman’s double exponential, 

P(Q) = N-d- pm) exp ( ‘J&(O)) exp [eq (SG;A(O))] 

where I have indicated explicitly the dependence of the cosmological constant on the renormalization 

scale but have left the dependence on the a’s implicit. If GN is bounded away from zero, and if 

there are values of the QS for which A(0) can vanish, then the distribution will be infinitely peaked 

about those values, and A(0) will indeed vanish. This is Coleman’s solution to the cosmological 

constant problem. 

However, experiments do not measure A(p) at a scale fi = 0, but rather at some finite scale. 

what does Coleman’s argument tell us about A(p)? Were we to calculate the cosmological constant 

ignoring the effect of wormholes, we would lind that the effective cosmological constant is a sum of 

‘bare’ and ‘fluctuation’ contributions, 

A(P) = LJ + Aq..mt.m (5) 

To be a bit more precise, in changing the renormalization scale from M to P, we would find new 

contributions to A arising from integrating out quantum fluctuations of energies M through p: 

/ 

bf 
A(/4 = A(M) + dk 6A(k) (‘5) 

P 

In the absence of a symmetry, such as supersymmetry, or an Atkin-Lehner symmetry [16], A(M) 

will typically be of order M’. 

(The reader may worry that this is all a fake; after all, in dimensional regularization, one would 

throw away such t-. Dimensional regularization is not appropriate here, because it amounts to 

throwing away an infinite constant, whereas the appropriate subtraction is completely determined 

by Coleman’s result. Another way of saying this is that the difference between A(0) and A(p) is 

f&e and well-determined. Unlike ordinary flat-space field-theory, we are not free to make different 

subtractions for d&rent p.) 
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Bxturuing to equation (z), we may put in two independent (in&red) scales, /J, and p’: 

(0) = N/ nda< exp(- ca;/Ci) l,,[dg][dr$] .-ss(~~+++a) 
i i 

Xexp 
(I 

[dg’][d~‘Je-S~(O’,f’d+“) 0 
k’>d > 

(7) 

(Recall that we are assuming a physical gauge-fixed form for the gravitational integral, so that 

the notion of a momentum cut-off makes sense.) The fist scale, p, sets the scale of the effective 

Lagrangian which determines the results of observations made in OUI universe (the large manifold 

in which we live). The other scale, p’, determines an infrared cut-off on the sum over large four- 

spheres. It is important to note that p and p’ are unrelated, once we are evolving below the 

wormhole scale, since the different large manifolds are not connected by any physics below that 

scale. Indeed, while p is tied by the ‘momentum transfer’ iu any observation we perform, we cauuot 

fix $, but must take the limit p’ + 0, otherwise we are truucatiug the heat bath of disconnected 

universes which give rise to Coleman’s result. 

Equation (7) implicitly yields a formula for A(p, p’). This comes about because, as showu 

by PreskU [a], the sum over spheres smaller than p’-’ gives rise to a probability distribution for 

the a’s that is peaked (although not infinitely so) for values which give a cosmological constant 

of order G~P’-~. (Because the double exponential dominates over the single exponential, /r plays 

essentially no role in determining the most probable value of A(p, p’).) We thus have 

N/J, P’) = No, d) - i’dk JACkI (8) 

Passing to the limit p’ - 0, we fiud 

A(I) = ,$= A(P, P’) = - l’dk ha(k) 

The leading order contributions to bA(k) come from closed loops of particles interacting only 

with the background gravitational field. The coupling here comes solely from the kinetic terms 

of the particles, and involves no coupling constant, dimensiouful or otherwise. For dimensional 

reasons, we thus have &‘6A(k) = O(#). III order to determine it precisely, we must separate 

the contributions to A from those which renormalize the background Bicci scalar and higher-order 

terms. This has been done by Fradlcin and Tseytlin [17]; from their work, we may extract 

A(P) = -& (W + 2N1 - WI, + No) p’ 

where N, is the number of massless fields of spin s in the theory; Nl/s counts the number of Weyl 

degrees of freedom, and No the number of real scalars. This equation holds in the region between 
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mass (and symmetry-breaking) thresholds; near such thresholds, it will be modified. The relative 

sign of Bose and Fermi terms is as expected, but the over-all sign may seem a bit surprising; it 

is a reflection of the fact that Coleman’s mechanism has over-compensated for the short-distance 

quantum fluctuations by subtracting contributions to A coming from energy scales lower than p. 

What is the correct choice of p for the observations of Loh and Spillar? The Bnswer is rather 

obscure, but Stromlnger’s analysis [18] suggests the choice p N H-‘, where H is the Hubble time. 

This is not the present-day scale factor R, which is still related to the photon temperature T7 by 

R N T;’ (because the ratio of the number of baryons to the number of photons is so small), but 

it is probably still appropriate, as the photons have long since decoupled from matter, and the 

observations track the matter density. 

It is worthwhile contrasting the result obtained above for A(p) with that which would emerge 

from a Baum-Hawking analysis. In that case, the exponential of the path integral is absent, 

and so there is no p’; the probability distribution is determined entirely by p. In this case, we 

will Snd a cosmological constant of order G & p ‘, although it is not precisely computable since 

the probability distribution is not infinitely peaked for tinite p. This differs from the prediction 

following from Coleman’s mechanism, but is it sign&ant? With p N If-‘, both predictions are in 

accord with present-day observational bounds, and so it might appear that we cannot distinguish 

between the two possibilities. However, in the radiation-dominated era, the temperature, rather 

than the Hubble time, presumably set the scale for the cosmological constant. If so, then the Baum- 

Hawking analysis would lead to a cosmological constant of order G&T:, which is much too large, 

while Coleman’s mechanism leads to an effective cosmological constant which is acceptable even 

in the early universe. Strominger’s analysis leads to a present-day cosmological constant similar 

to that obtained in a Baum-Hawking analysis, presumably for much the same reason: it excludes 

configurations which give rise to Coleman’s double exponential. 

Because the effective cosmological constant and the thermal energy density ‘act differently as 

sources for Einstein’s equation, a (small) effective cosmological constant will modify the equation of 

state in the radiation-dominated era from p N R-’ to p N R-‘+‘. Equation (9) shows that c would 

be rather small in practice, so it is not clearly observable. Nonetheless, it would be interesting to 

examine the bounds on e arising from nucleosynthesis constraints. 
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