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Abstract

Nontopological solitons can be formed during a phase transition in the
early universe as long as some net charge can be trapped in regions of
false vacuum. It has been previously suggested that a particle-antiparticle
asymmetry would provide a source for such trapped charge. We point out
that, for the model and parameters considered, statistical fluctuations
provide a much larger concentration of charge, and are therefore, the
dominant source of charge fluctuations in solitogenesis.
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to the mass of @ free ¢’s in the true vacuum, Mgy = Qmy = th/zio_ — ool. The
NTS configuration will have a lower mass, and hence be stable, for charge Q greater

than some minimum charge, given by

1231 A
Qvv = h3 (c,_ - 0.0)4’ (3)

In this paper we will study in detail the case A;/A; = 0.15. For this choice of A;/},,
A =0.6A108, Qmm = 18X /h?, and Myn = 46();1/h%/%)0,.

A scenario for the cosmolbgical origin of NTS was proposed by Freeman, Gelmini,
Gleiser, and Kolb® (hereafter, FGGK). In the FGGK scenario, there is a critical
temperature, Tc ~ 20y, below which the Universe divides into domains of true (o =
o_) and false (¢ = o) vacuum. The characteristic size of these domains is determined
by the correlation length, £, of the o field at the transition. At high temperatures
thermal fluctuations can cause a correlation volume to make the transition between
the two minima. These fluctuations freeze out at the “Ginzburg” temperature, Tg.
FGGK estimate T¢ by the criterion that Tg is equal the maximum free energy of the
correlation volume in the transition Fpy = UpV; (Upy is the maximum value of the
potential in the region o < o < 0g). For A;/A; = 0.15, Tg = 1.300/)\}/2. Of course
T can never be larger than T¢ ~ 20,.

At Tg, the probabilities of being in the false vacuum, p(oy), and true vacuum,
p(c-), are Boltzmann distributed according to the difference in free energies of a

correlation volume in the different minima

= exp[~AF/Tg]| = exp[-AV;/Tq] (4)

(recall that U(o-) = 0 by the addition of A). If p(0o)/p(o-) < 0.3 then only finite

regions of “false” vacuum will be populated. If the regions of false vacuum contain a



will also be Gaussian distributed; with means N = N4 + 7\7;, Q=|Ns— ]\—’;i =N,
and variance ¢? = N. Therefore, the probability of finding a charge Q in a volume

containing a mean number N of (¢ + ¢)’s is®

_— 1 — _—
P(Q,N) = =exp |—-(Q — nN)?/2N]|. (8)
(@) = Zoag e [-(Q = nNY/2N]
As described by FGGK, below T the Universe divides into cells of correlation

volume Vp =~ (47/3)¢*. Adjacent cells of false vacuum form “clusters” with density

per unit cluster of
fr) =br=toe™ (9)

for volume V = rV;. The constants b and ¢ are unknown. Scaling arguments imply
that ¢ — 0 as p(oy) — p. (where p, is the critical probability for percolation, p, ~ 1/3)
and b — 0 as p(oo) — 0. It is expected that b and c are of order unity otherwise. The
number density of r-clusters produced in the transition is simply n(r) = fr)Wt In
a volume V' = 7V, the mean number of (¢ + ¢)’s is N = rN¢, where N, is the mean
number of (¢ + ¢)’s in a correlation volume

The number density of false-vacuum domains with charge Q is simply given by
ng = L2,n(r)P(Q; N = rN¢), where n(r) = f(r)Vi! as before, with f(r) given by
Eq.(9). Approximating the sum over r by an integral,’® ng becomes
bexp(Qn)

.TNE/drr exp[ (n 2_1V5/2+C)T—Q2/2W€T]

[}
2b exp(Qn)
vToQ

where K(z) is a modified Bessel function of the second kind of order one. For large

Veng

(P Fe/2 + 97K [(VEQIFY ) Nej2 + 77, (1)

argument, the expansion K;(z) — e~*\/7/2z gives!®

——-1/2

S(0* +2¢/Ne) 4 exp [Qn — Q(n* + 2¢/Fe)7]. (11)



the large-z expansion of the Bessel function K;(z) was used. In this conclusion
section we present some numerical result and discuss the range of validity of the
above approximations.

Clearly for “large” @, Q > 10-20, Gaussian statistics will be a good approxima-
tion. In Fig. 1 we compare an integration over r of Gaussian statistics, Eq.(10), to the
more accurate sum over 7 of Poisson statistics. The Gaussian results are presented
for n =0, 0.25 and 0.5, while the Poisson results are given for = 0 only. It is clear
that the Gaussian approximation is an adequate one. Integration over r rather than
summing also introduces only a small error.

In Fig. 2 we present the large-z expansion of the Bessel function in Eq.(11). Com-
parison of Fig. 1 and Fig. 2 shows that for \/ﬁQTV'gl/z(nr]VE/Z + )2 > 2, the
expansion is accurate. In Fig. 2 we also show for comparison the results of FGGK for
nqV;. Clearly it is a ;erious underestimate for ng unless 7% > 1.96A3c.

We conclude by illustrating the importance of the calculation of Y,. We use the
example discussed in the introduction, A; = 0.15);, which gives Qumv = 18A;/h?, and
M(Qmin) = 46X,00/h%? = 2.5Qmvh/?0o. Assuming that the contribution to  from
NTSs is dominated by those with Q@ = Qun, Yyrs =~ 10‘3Q;4L‘<{26'QMW, the present
NTS energy density is pyrs = YarsMnrsso, where sq is the present entropy density,
50 =2800 cm™3. Comparison of py7s to the critical density, pc=1.88 x 10-%%h2g cm 3,

where ho is the Hubble constant in units of 100 km s=! Mpc~!, gives

oo e~ QMmN

GeV) QMIZN ) (15)
For NTSs to be dynamically relevant today, Qyrsh? should be in the range 10-2 <

Qnrshy = 10%R1/3(

Qnrshd < 1. Relevant values of Quun, or equivalently A;/Ah?, are shown in Table I.
The conclusion of this paper is that statistical fluctuations are the dominant source

of charge fluctuations in solitogenesis, not a cosmic asymmetry as assumed by FGGK.
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When 7 = 0 the corresponding formula using Poisson statistics is P(Q,N) =
e~ Io(N), where I, is a modified Bessel function of order @. Turning the sum
over r into an integral, Vingo ~ 1\_/'51/2(22 — 1)Y4{1(Q — %)Pl'/? (z(z2 - 1)‘1/’)

where Pl'/? is an associated Legendre function of order 1/2, I' is the gamma

function, and z = ¢+ Ny = c + AT>.
The validity of this approximation will be discussed in the final section.
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FIGURE CAPTIONS

Figure 1: A comparison of Poisson (Footnote 9) and Gaussian probabilities (Eq. 10)

as a function of Q. N¢ = b = c =1 was assumed.

Figure 2: The result of the large-z expansion of the Bessel function in Eq. 11 is shown
by the points marked This Work. Comparison of these points with the corresponding
points in Fig. 1 shows that the large-z expansion is a good approximation. Also indi-
cated by the points marked FGGK are the results of FGGK?® which ignored statistical

fluctuations.
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