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Abstract 

The hybrid Monte Carlo algorithm does not completely remove 
problems with ergodicity in the molecular dynamics trajectories unless 
the length of each trajectory, s,-,, is kept shorter than the period of the 
fastest mode of the system, 2x/w,,.. The correlations which remain 
when larger values of re are used may be eliminated by randomizing 
not only the molecular dynamics velocities but also the length of the 
trajectory, ~0, at the beginning of each new trajectory. This allows 70 
to be increased to the time scale of the slowest modes in the system, 
l/~,,,;~, and reduces the correlation time (and therefore the computer 
time used) by a factor of around Y,../~w,,,;,. 

The most efficient existing algorithm for wiving Quantum Chromodynam- 
its (QCD) numerically on a discrete lattice is the hybrid Monte Carlo[l] al- 
gorithm. Monte Carlo simulation algorithms such as this one are designed to 
produce a sequence of configurations of the fields 4 with a probability distri- 
bution which approaches exp( - S( 4)), w h ere S(4) is the action of the theory. 
This particular algorithm evolves the fields on each sweep by an amount pro- 
portional to a small step size, dt, unlike the metropolis and heat bath algo- 
rithms which update the fields one lattice site at a time by as large a step 
size as possible. It introduces a new fictitious time coordinate and fictitious 
velocities r conjugate to the field variables which are evolved by Hamilton’s 
equations using the Hamiltonian H = S(4)+Cna/2. After some fixed length of 
molecular dynamics time rO, the velocities are randomized using the probabil- 
ity distribution exp(-Cn’/2) to ensure the correct probability distribution for 
the 4 fields, and to try to ensure ergodicity. For QCD calculations including 
the effects of the sea quarks, smalI step size algorithms are preferred to the 
large step size algorithms because they require the time consuming calculation 
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of a quark propagator once per sweep of the entire lattice rather than once for 
every update of a single site. 

An empirical rule of thumb is sometimes given that the hybrid lMonte Carlo 
algorithm appears to have roughly the same decorrelation time in molecular 
dynamics time units as the Metropolis algorithm has in sweeps.[2] This is 
disappointing and puzzling. In free field theory, the action is diagonal in 
the Fourier transformed lattice fields: S = X,(X,, sin’(p,/2) + m’)&,+4,+ E 
c P,,, w&&,,,,&,. The low momentum modes undergo larger fluctuations than 
the high momentum modes. The step size of the Metropolis algorithm is 
limited by the requirement that the steps, which affect all modes equally, not 
drive the high momentum modes out of equilibrium. They therefore produce 
only small changes in the low momentum modes, which require many sweeps 

(of order (+.,/~,i~)‘) t o random walk to a new value. 
Hybrid algorithms by contrast evolve the fields during a trajectory in a 

more direct path, rather than by a random walk. It might therefore have been 
hoped that by choosing the trajectory length TO to approach the time scale 
of the slowest modes of the system, all of the modes could be randomized 
after a single trajectory, which would lead to a correlation time in sweeps of 
order l/(w,i,dt). In practice, it has usually been found that the algorithms 
perform better with r0 around 1 or 2 times l/w-. This randomizes the 
fast modes after a single trajectory, but requires (w-/w,,,i,,)’ trajectories to 
randomize the slow modes, leading to correlation times in sweeps of order 

(W-lW”in)al(~-.dt). 

The problem is illustrated in Figure 1. It shows the evolution of the action 
of a free scalar field with the hybrid Monte Carlo algorithm on an 8’ lattice. 
The parameters used were m=0.2 and dt=O.l. ~0 was taken to be I/W,,,;,, = 
l/m = 5.0. This is a seemingly reasonable value from the standpoint of 
optimizing the relaxation over the slowest mode, but it turns out to be a 
spectacular failure in this case. The correct equilibrium value for the action in 
this system is S = 2048. The simulation was started far from equilibrium to 
make the effect stand out. The peaks in the figure every 50 sweeps occur at 
the refreshes of the momenta. The figure shows that after the first molecular 
dynamics trajectory, at the beginning of each trajectory the system relaxes 
closer to its equilibrium value, and then just as the velocities are about to 
be refreshed, jumps back to close to its starting value. It can be seen that 
there are correlations which last far longer than ~0. The action does not reach 
its equilibrium value after even hundreds of trajectories (tens of thousands of 
sweeps). 

Setting ~0 to a different value or adding an interaction term to the action 
do not qualitatively change the effect until TO approaches l/w,,,. This is not 
simply a pathology of the free field theory. In the simulation shown in Figure 
2, a X4’ interaction with X = 0.1 has been added to the action. All the other 
parameters of the run were left unchanged, including the random number 
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Figure 1: The evolution of the action of a free scalar field on an 8’ lattice 
using the hybrid Monte Carlo algorithm. The velocities are refreshed every 
50 sweeps. When the simulation is started far from the equilibrium action 
of S = 2048, it can be clearly seen that during each trajectory, the action 
approaches closer to its equilibrium value, but then jumps back almost to its 
starting value just as the velocities are about to be refreshed. This effect is 
not sensitive to small changes to the trajectory length or to the addition of 
small interaction terms. 
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Figure 2: The same as Figure 1, except that a X4’ interaction with X = 0.1 
has been added to the action. The effect seen in Figure 1 is qualitatively 
unchanged. 

sequence. The effect seen in Figure 1 is qualitatively unchanged. 

The effect can be understood by looking at Figure 3. The top graph shows 
the distribution of periods for the microcanonical evolution of the normal 
modes of a free scalar field on an 8’ lattice with m = .2. The bottom graph 
shows all integer multiples of the periods less than or equal to T,,,,. It can be 
seen that for any value of 70 larger than Z’,,,i,, = 27r/w,.., there are likely to be 
some modes satisfying In(2n/w) - 701 < r which evolve by an amount EW under 
the microcanonical trajectory. (e in this case is roughly .05.) These modes 
will take of order (cw)-s trajectories to random walk one radian away from 
their starting points. This in not simply a matter of hitting a resonance by 
bad luck; the modes are quite dense. Since the density of frequencies increases 
as the volume of the lattice, these correlation times tend to grow as the lattice 
volume squared. 
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Figure 3: The top figure shows the distribution of periods of the modes of a 
free scalar field with m = 0.2 on an 8’ lattice. The bottom figure shows the 
distribution of integer multiples of these periods with nT < T,... For any 70 
larger than T,,,i,,, there will be some modes with nT very close to ro. These 
modes will change very little under a molecular dynamics trajectory of length 

3. 
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Figure 4: The same as Figure 1, except that the length of each trajectory is 
varied randomly between 35 and 65 sweeps. In this case, the action approaches 
its equilibrium value after only a few trajectories. Different modes satisfy 
nT U 70 on different trajectories. 
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To remove these remaining correlations, it is necessary to vary rs at each 
new microcanonical trajectory. In this way, a different set of modes will be 

left unrandomized by each new trajectory. This may be done by varying dt, 
the number of steps, or both. Figure 4 is the same as Figure 1 except that 
rs is varied randomly from .7/w,,,;,, to 1.3/w,;, by varying the number of 
steps. In this case, the action reaches its equilibrium value after only a few 
trajectories. Requiring further investigation are the question of the optimal 
range of variation of rc and the question of whether it is better to vary the 
number of steps, the step size, or both. 

The effect discussed here does not occur in the original hybrid algorithm 
of Duane and Kogut[3], which had a varying trajectory length built into it. 
Interactions help the ordinary hybrid Monte Carlo method perform a bit bet- 
ter for large trajectory length, but the algorithm still performs best when 
70 < 2r/w-;ro 7z 2/w- is often near the optimum value. This leads 
to an expected improvement using the algorithm of this paper of around 
W-/(timin)r which may amount to a factor of 3-5 for QCD simulations near 
the continuum limit. 
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