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Abstract

We consider a four-dimensional heterotic string theory whose massless
states are the N=4 supergravity multiplet and the gauge multiplet of
S0(44). The string is coupled to the gauge background maintaining the
world-sheet super-symmetry. It is found that the non-Abelian gauge current
conservation becomes anomalous at the quantum 1level. The anomalies,
however, can be eliminated by requiring the antisymmetric tensor field to
transform nontrivially under the gauge transformation. This, in turn,
introduces a Chern-Simons term in the definition of the corresponding field

strength for it to be gauge invariant.
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The heterotic string is an attractive candidate for the unification of
all fundamental forces of nature. There has been a lot of work in exam-
ining various aspects of the model following the original construction(l)
where the right moving sector is the ten dimensional closed superstring and
the left moving sector is the 26 dimensional closed bosonic string 16 of

(2)

whose coordinates are compactified on tori. Narain envisaged the

construction of four dimensional string theories and obtained a large class
of heterotic like string theories(3). Subsequently, there has been several
proposals to construct four dimensional string theories providing us with a
large number of models(4). It is argued that there is only one underlying
string theory, namely, the heterotic string; however, the abundance of
models with different gauge groups is the manifestation of different vacua
of a single fundamental theory(s). Indeed, there have been attempts to
understand the mechanisms for symmetry breaking in order to construct

realistic 4-dimensional string theories(G).

(7)

It i1s well known from the seminal work of Green and Schwarz that the
Yang-Mills and the Lorentz Chern-Simons (C-S) terms are necessary for the
cancellation of various anomalies in the superstring theories. This also
requires the antisymmetric tensor field to transform nontrivially under the
non-Abelian gauge transformation. The existence of C-S terms for the ten
dimensional heterotic string and their implications have been investigated
by Sen(s) in the recent past. The purpose of this letter is to demonstrate
the existence of Yang-Mills C-S terms in four-dimensional heterotic string
theories. The antisymmetric tensor field, in four-dimensional string
theories, 1s identified with the axion. The phenomenology of the axion has

attracted considerable attention 4in the recent past and it would be

interesting to investigate the phenomenology in the presence of the Chern-



Simons terms.

We consider a d=4 heterotic string which admits the N=4 supergravity
multiplet coupled to the SO0(44) Yang-Mills multiplet and present the
explicit computations for the appearance of the Yang-Mills C-S term. The
path integral approach, employed earlier for the compactified chiral

(9)

bosonic string y provides an elegant method to obtain our results. Let
us recall some of the salient featu?es of ‘the 4-dimensional heterotic
string in the fermionized version for the compactified bosonic coordinates.
In what follows we work in the light—cone gauge for the sake of simplicity.
The right moving sector consists of bosonic coordinates xﬂ and ¢ﬂ (4 = 3,4)
which are the world-sheet supersymmetry partners. The six compactified
bosonic coordinates are fermionized to give 12 right moving Majorana-Weyl
fermions. Thus there are 18 fermions appearing from the compactified
coordinates which are required to be in the adjoint representation of a
semi-simple group G.

The left moving sector consists of the bosonic coordinates x”, b= 3,4
and 44 left moving Majorana-Weyl fermions which are obtained from the 22
compactified left moving bosonic coordinates. It is possible to construct
a large class of consistent 4-dimensional string theories by suitable
choice of boundary conditions for the fermionic coordinates. Thus we adopt

the standard set theoretic(lo)

notations for the fermions in the theory and
recapitulate essential features of d=4, N=4 heterotic string theory coupled
to SO(44) Yang-Mills gauge group. The 18 right moving internal fermions
are denoted by (xI,yI,zI), I=1,....,6.
3 44,1 6 ,
We choose a = {§7,¥ 527 ,....,2 } and take the simplest possible group

structure
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where F is the set of all fermions and Fea = FUa - FNa and ¢ is the null
set. The massless spectrum generated by the @ sector gives the N=4
supergravity multiplet which consists of the graviton, the dilaton, the
antisymmetric tensor, six graviphotons, 4 gravitinos and 4 Majorana
fermions. Furthermore, we also have a gauge boson, 6 scalars and &4
gauginos in the adjoint representation of SO(44).

Our strategy for deriving the C-S§ term 1s as follows. The string is
coupled to the massless gauge bosons and the antisymmetric tensor
background so that these couplings satisfy world sheet (1,0) supersymmetry.
Although, it is possible to write a manifestly supersymmetric action in the
super-space, we take the Lagrangian in component fields since it is more

suitable for the path integral derivation of the C-S term.
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Our two dimensional Dirac matrices are
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Furthermore, 8, = 0_* 0 and H is the field strength associated with
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Wﬁ(x) are the gauge-bosons of the N=4 supergravity multiplet and fIJK

denote the structure constants of the group SO0(4). Az(x) are the gauge-
bosons in the adjoint representation of S0(44) and F;V is the corresponding
field strength. Notice that the fermions zI are in the adjoint
representation of SO(4) whereas ﬂA, A = 1l,...y44 belong to the fundamental
representation of SO(44).>Consequent1y, TXB represent generators of S0(44)

in the fundamental representation. The action is invariant under the

following non-Abelian gauge transformations.

6z = fIJKzJeg(x)

dw; = aﬂei(x) + fIJKWi(x)Gg(x) (3)
n = 1(9§(x)rmn)A

éAz = aﬂef(x) + icmnpA:(x)GE(x) | (4)

where Gi(x) and Gz(x) are the two gauge parameters and c™P are the
structure constants of SO(44). Since the gauge bosons are coupled to the
world-sheet Majorana-Weyl fermions we have to examine carefully if the
(11)

gauge transformations (3) and (4) are anomalous in the quantum theory

We rewrite the action in a modified form which is more suitable to compute

anomalies.
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Notice that in the left moving sector the gauge background couples to the
Majorana-Weyl fermions precisely as in the compactified bosonic string
except for the coupling of the world-sheet fermions ¢# to the field
strength(s’lz).

It is well-known that the fermionic measure, in the path integral, is
not always invariant under gauge transformations. First, we will compute
the anomalies associated with the gauge transformations (3) on the right
moving sector. The anomalies associated with the S0(44) gauge transfor-
mations can be computed similarly in a straight forward manner(13).

Let us define the variable
_ o <Pl
aax Wﬁ (6)

The relevant fermionic Lagrangian, with this notation, is

L, = £ 2017 (7)

N

where the Dirac operator DIJ in the Euclidean space is

1J

b 17 _IJK K)(ilfg)
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Note that because of the appearance of ps terms in the Lagrangian (7), we

have to be careful in computing the consistent anomalies from the change in



(14)

measure +« We rewrite the Dirac operator
1J 1J 1 .IJK K 1 IJXK K
P = (0,87 -3 E v, + 5 £ P52) (9)

where v; are introduced with the understanding that we set vi = a; at the
end of the computation; furthermore we analytically continue ai + iai so

that the Dirac operator is hermitian in the Euclidean space. (For details
see ref. 9.)

1J

P = p, (8,0

IJKK 1 _IJK K) (10)
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and we shall analytically continue ai back again at the end of our
calculations. The eigenstates ¢n of the hermitian operator DIJ are used to

expand the fermions

]
]
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since they form a complete basis. The fermionic path integral measure can

be expressed in terms of the expansion coefficients fn and g, as

Dz Dz = g dfn dgn (12)

Under the gauge transformation (3)

Dz’ Dz’ = (det C  det C )‘1’2 Dz Dz (13)
nm nm.
where
2 i
c_=6_+[d% ¢l 1 (1-pgger ¢ (14)
S 2 i .
C =6_-[d% ¢n > (1+ps)6R T ¢m (15)



where (TI)JK = -ifIJK are the generators in the adjoint representation of

SO0(4) and GR'T = G;TI.

Using the standard technique of Fujikawa(ll)

we compute C and E for
nm nm
infinitesimal gauge transformations given in (3) (for explicit calculation

in the case of the string see ref. 9 and ref. 13).

det C = exp[Tr g / aZo ¢I % (1-p5) GR‘T ¢n] (16)

After proper regularization, continuing a, back analytically to —iaa and
setting Vg T 8, We obtain

iC

2 2 o1 I I
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where we have used
Te(r'r) = ¢80 4 (18)

with C2 representing the Casimir invariant of SO(4). A similar calculation

gives

det C = 1 (19)
nm

Therefore, the Jacobian factor multiplying the fermionic measure is given
by

~ )-1/2

(det C det C
nm nm.
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Rotating back to Minkowksi space the change in measure can be written
as an anomalous action
c
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The first term can be removed by adding a local counterterm of the form

c
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to the action, whose gauge variation will cancel the first term in (21).
Therefore, the minimal anomalous action is

C
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We note, however, that if B transforms under the gauge transformation

by

as

O

- 2 I I
6prV =3 B[FGR(x)WV](x) (24)

then the noninvariance of the action under this transformation would
precisely cancel the term in (23) and gauge invariance will be restored.
Now let us turn our attention to the S0(44) gauge background coupled to

the string coordinates. As before, we can calculate and show that the

minimal anomalous action has the form(9’13)
(4) R 2 af b v m ,m
sanomalous 167 [ 0 € aa X ap X 6# GL AV (25)

which will be cancelled if the antisymmetric tensor field transforms as

_l, m . m ,
6A BFV =% G{ﬂeL(x)AV](x) (26)
Note that the fermions ¢ﬂ, # = 3,4 couple to the field strength Hka of

B . But HﬂVX is not gauge invariant under the gauge transformations (24)

By

and (26). We can, however, define a new field strength
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S = H

BUA BUA * (C'S)w + (C'S)A (27)

which is invariant both under the Abelian gauge transformation
5BFV = aﬂAy(x) - ayAp(x) as well as the non-Abelian gauge transformations
(24) and (26).

This demonstrates that the quantum consistency of the four-dimensional
N=4 heterotic string requires the Yang-Mills C-S term in the field strength
of the antisymmetric tensor B”V. As we have noted earlier, the
antisymmetric tensor in four dimensional string theories is identified with
the axion and several authors have constructed low energy effective

Lagrangiansl7 inspired by string theories to study the phenomenology of

axions. The low energy effective actions contain interactions of the type

B EAVA

BV
L « Our analysis suggests that these would modify to spVXS . It

would be interesting to explore the phenomenological consequences of such a
modification.

We would like to emphasize that the existence of a C-S term is not
special to the particular d=4, N=4 heterotic string model that we analyzed.
In fact, such a term would necessarily arise in any other solution of d=4
heterotic string primarily from the requirement of cancellation of the non-
Abelian gauge anomaly. Therefore, the results presented in this paper are
quite general and the particular d=4, N=4 model is chosen as an
illustrative example.
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