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Abstract 

A discussion of the evolution and observable consequences of a network of cosmic 

strings is given. A simple model for the evolution of the string network is presented, and 

related to the statistical mechanics of string networks. The model predicts the long string 

density throughout the history of the universe from a single parameter, which we calculate 

in radiation era simulations. The statistical mechanics arguments indicate a particular 

‘thermal’ form for the spectrum of loops chopped off the network. Detailed numerical 

simulations of string networks in expanding backgrounds are performed to test the model. 

Consequences for large scale structure, the microwave and gravity wave backgrounds, nu- 

cleosynthesis and gravitational lensing are calculated. 
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1. Introduction 

The cosmic string theory of the formation of structure in the universe is both simple 

and, in principle, highly predictive[l],[Z] 

The existence of cosmic strings could provide one of the few possible ways to test 

unification physics. They would also provide an explanation for the origin of galaxies and 

clusters of galaxies, linking the spontaneous breaking of the underlying gauge symmetry 

in particle interactions with the breaking of spatial symmetry in the universe. 

The presence of cosmic strings in a unified gauge theory is purely a question of topol- 

ogy. The simplest SO(10) model, for example, predicts strings[3]. Many ‘superstring in- 

spired’ models also predict cosmic strings. These strings would be formed at a symmetry 

breaking phase transition, generally occurring at the grand unified scale. The distribution 

of such strings is predicted by the ‘Kibble mechanism’, in which one takes the distribu- 

tion of Higgs field phases to be random on scales larger than the correlation length at the 

Ginzburg temperature, when thermal fluctuations are no longer strong enough to erase the 

strings. This distribution has been calculated by Vachaspati and Vilenkin[4], and others, 

and we shall take it as our starting point. Recently Hodges has performed dynamical 

simulations of string formation [5], which support this picture. The crucial feature of the 

initial network is that most of the string appears in the form of ‘infinite’ strings which 

wander like random walks clear across the universe. It is this fact that guarantees that 

some cosmic strings will still be present at any time after they are produced. 

One of the advantages of the cosmic string theory of structure formation is that given 

a hot homogeneous big bang, the distribution of strings and the perturbations they induce 

in the surrounding matter is fully specified. They are independent of the precise initial 

conditions or parameters in the full field theory. This is because the motion of the strings 

is governed by a purely geometrical action, the Nambu action, and a network of strings 

quickly enters a Jcaling solution which is independent of the precise initial distribution 

of string on small scales[6], [7],[8]. Th e magnitude of the perturbations produced by the 

strings is set by a single parameter, the string tension p. For a recent review and references 

see [9]. 

Our first calculations of the evolution of cosmic string networks, in 1985, provided 

indications that a cosmic string network might be just what is needed to explain the 

observed large scale structure[7]. Indeed the correlation function of Abell clusters, one of 

the few systematic statistics on the largest scale structure in the universe, was miraculously 
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fitted with no adjustable parameters by the correlation function of string loops chopped 

off the scaling string network[lO]. 

Since then, there has justifiably been a lot of interest in pursuing the predictions of 

cosmic strings further. However for the past few years the numerical problems posed by 

cosmic string evolution have been a stumbling block. Perhaps more importantly, there has 

been little progress in understanding the evolution of string networks analytically. There 

have even been serious questions raised about whether the scaling solution exists at all[ll]. 

In this paper we hope to resolve many of these problems. 

We shall describe the evolution of strings using a new set of nonsingular, ‘gauge-fixed’ 

variables, and an improved method of detecting and enacting string interactions. These 

have led to numerical results significantly different from our first results, with the long 

string density an order of magnitude larger than we originally thought. We shall describe 

some numerical tests of the new code which lead us to realistic estimates of our systematic 

errors, which we believe to be of the order of 50% , Our new string scaling density is 

approximately twice that reported in independent work by Bennett and Bouchet last year 

[12], so the difference is within our estimated errors. There are still significant differences 

in our more detailed results, however, which we are in the process of trying to resolve. 

More importantly, we shall describe conceptual improvements in our understanding 

of the problem. In particular we shsll describe a simple model for the evolution of the 

long string density inspired by earlier work of Kibble[S]and B ennett[ll], but representing an 

advance on that work. In particular we present a simple model for the velocities of the long 

strings, and argue from string statistical mechanics that the sign of the term governing 

long string-loop energy exchange is fixed. This reduces the problem of calculating the 

string scaling density to the calculation of a single dimensionless number, the chopping 

efficiency. This may well be calculable in flat spacetime simulations. The model allows one 

to calculate the scaling density for the string network in the radiation, transition or matter 

eras from a single parameter measured in string simulations. So, for example, given only 

the radiation era scaling density we can predict the matter era scaling density and even 

follow the string density right through the transition between the two eras. 

We shall relate the model to the statistical mechanics of string networks in flat space- 

time, and argue that the loops chopped off a string network may be viewed as ‘thermal’ 

radiation from a hot body, the network of long strings. We also show how a string dom- 

inated universe would be inconsistent with flat spacetime statistical mechanics of strings, 

and from this argue that the scaling solution is inevitable. The statistical arguments lead 
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to a prediction for the form of the ‘loop production function’, which we check in our sim- 

ulations. As a consequence of this discussion, we argue that it should be possible, at 

least approximately, to calculate the scaling density of the string network in fiat spacetime 

simulations, which present few numerical problems. 

Finally we discuss the observable consequences of our new numerical results. We show 

that the masses of galaxy clusters are reasonable if the string tension is x (lO”GeV)’ (i.e. 

Gp = lo-s), and calculate the mass function in the one loop - one object picture for cold 

or hot dark matter. We then discuss distortions in the microwave background produced 

by strings, the gravity wave background caused by radiation from strings, and lensing of 

galaxies by strings. Any one of these observations could constrain the string tension to be 

too low for any appreciable structure formation, at least by gravitational accretion. 

We shall only deal briefly with the predicted large scale structure from our new results. 

As a consequence of the higher density of long string, the correlations produced in the 

distribution of galaxies and clusters of galaxies may not be as clear-cut as we originally 

thought. Our new simulations do find loop - loop correlations quite similar to the original 

results (as do the simulations of Bennett and Bouchet[l3]), but the translation of these 

into a cluster-cluster correlation function is a nontrivial matter and we shall defer a full 

treatment of the problem to a future publication. 

The paper is organised as follows. In Section 2 we give a detailed discussion of the 

equations of motion of cosmic strings in expanding backgrounds. We introduce a new set 

of ‘gauge-fixed’ nonsingular variables which are useful in numerical evolution, and discuss 

the motion of small loops. The later parts of this section are technical, and the reader 

interested in our more important results may skip to section 3. There we present and 

solve a simple analytic model for the evolution of the string network. In Section 4 we 

discuss the statistical mechanics of string networks in flat spacetime, and what insight 

they give us into the expanding universe case, This discussion makes it clear that the 

scaling solution for the string network is inevitable, and provides a qualitative picture for 

the distribution of strings on all scales in the scaling solution. We suggest how the scaling 

density might be calculated from flat spacetime string simulations. In Section 5 we present 

our numerical results. The simple model presented in Section 3 is shown to fit the results 

remarkably well. The next three sections are devoted to calculation of the observable 

consequences of a cosmic string network. Section 6 discusses the general issue of how to 

attribute ‘typical’ properties to loops chopped off the network, and Section 7 discusses the 

spectrum of massive objects accreted by the strings in cold or hot dark matter dominated 
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universes. In Section 8 we discuss the other observational signatures of cosmic strings - 

fluctuations in the microwave background, the gravity wave background, and lensing of 

galaxies. 

Throughout this article we use units where h = c = kg = 1. 

2. Equations of Motion 

Immediately after cosmic strings form, they are heavily damped by collisions with 

particles in the surrounding medium[l4]. This causes the strings to straighten out, so that 

the typical radius of curvature on the string rapidly becomes much larger than it’s width. 

The damping ceases to be important at a temperature of order (Gp)!pf , and thereafter 

it is a very good approximation to treat them as infinitely thin relativistic strings [15] [IS] 

described by the Nambu action [17] 

S=-p dA 
I 

which is simply proportional to the area traced out by the string worldsheet in spacetime. 

In this section we will derive some properties of Nambu strings which will be used in our 

general discussion. Then we will discuss some more technical issues which pertain to our 

numerical techniques. 

The area element 

dA = fi (2.2) 

is obtained from the induced metric on the worldsheet 

Pap = sp”(~)aa~“apz” (2.3) 

Here g,,” is the background spacetime metric and z”(u) are the spacetime coordinates of 

the worldsheet, parameterized by ea = (7,~). A nice feature of (2.1) is that it is purely 

geometrical - /J clearly drops out of the equations of motion, which depend solely on the 

background spacetime metric. But the early universe was, as far as we can tell from 

present observations of the microwave background and matter density, a very nearly flat 

FEedmann-Robertson-Walker radiation/matter dominated spacetime. 

Furthermore, according to the numerical calculations of Matzner[lS] , (local) cosmic 

strings have very simple interactions - two colliding strings alurays reconnect the other 
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way (Figure 2.1). Thus the evolution of the string network is completely specified and has 

no adjustable parameters. 

The equations of motion derived from (2.1) are 

~‘sv5qapq3~:‘) + r~Aap+“apx~J-nq~P = 0 (2.4) 

where I’:, are the Christoffel symbols for the background. To solve (2.4) we need to 

pick coordinates for the background and for the worldsheet (corresponding to fixing the 

gauge invariance of (2.1) under general coordinate transformations and worldsheet repa- 

rameterizations). It is convenient to pick coordinates in which the metric is conformally 

flat: 

da’ = dt’ - a(t)*d2 = a(q)*(dq’ - d2) (2.5) 

We also choose r = v(u), simply slicing the worldsheet at constant conformal time. We 

can use the remaining freedom in redefining (r to choose the velocity of each point labelled 

by Q to be always perpendicular to the string, i.e qro = i.z’ = 0 (Our notation is ~5 = &z, 

z’ = 8,~ etc.). With these choices [6], (2.4) reduce to 

with h = i/a and 

z+ 2hk(l- 2) = +(;) 

i = -2hcz 

The stress energy tensor calculated from (2.1) is 

T”“(Z,v) = sg 
Ire 

= & 1 d2r,/=ijq~@twvpr~csyz - z(u)) 

= -$ J du(&“$” - c-‘&z’y)63(Z- Ic’(cr,v)) 

In particular, the total energy and momentum in the string are given by 

E E d3&Ttt = J J d%a’TJ = /AU(~) J dot 

pi E d5Za3Tti = pa(q) J J d& 
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where t is defined in (2.5). Thus in this gauge pm is the energy per unit parameter length 

along the string. From (2.6) it follows that 

Ii = h(l - 2V*)E 

P:=-hF 
(2.10) 

where the average velocity squared on the string 

(2.11) 

. Equations (2.10) and (2.11) will prove very useful in section 3, where we develop an 

intuitive physical picture of the network evolution. We now turn to more technical aspects 

of the equations which will come into play when discussing numerical issues. 

Returning to (2.6), it is well known that in Minkowski spacetime (h = 0) we can 

choose g so that E = 1 initially, and (2.6) will preserve this for all time[l9]. We then have 

as the full system of equations 
2 = .p 

&.,’ = 0 (2.12) 

$+le”l =1 

which are solved in terms of ‘left-movers’ a’ and ‘right-movers’ b as follows 

p = 2” = 1 
(2.13) 

so a’ and 2 are constrained to be unit vectors, but a’and b are otherwise arbitrary functions. 

For a closed loop, a’ and bi describe closed trajectories on the surface of a unit sphere [20]. 

Furthermore it is easily seen that in its centre of mass frame a loop’s motion is periodic 

with period L/2 where L is its length, defined by energy over p. Where the curves a’ and 

-bi cross on the sphere, ‘cusps’ occur - the string instantaneously reaches the speed of 

light and doubles back on itselfI211. 

This suggests defining approximate ‘left-movers’ and ‘right-movers’ in the expanding 

universe case as well: we set 
i= 2; + z’/c 

<= ;- &p/c 
(2.14) 
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which automatically obey 

Substituting into (2.6) we find 

p=,I=1 (2.15) 

f=i'/e-hr'+h(+$+ 

?= -F/c-hi+ h(+' 

k = -hc(l + IfrJ 

(2.16) 

Equations (2.15) and (2.16) provide a closed set of equations governing the evolution of 

2 and Z’. They are completely ‘gauge-fixed’ but do not have any ‘singular’ variables. 

Furthermore, we can obviously evolve iand r’ exactly in flat spacetime; for constant e, r’ 

is constant along constant s(r + T and r’is constant along constant so - T. Our numerical 

scheme is designed to include the effects of expansion as a small perturbation about the 

exact flat spacetime solution (as we explain in the Appendix). 

By contrast, using (2.6) directly, with e defined from (2.7) presents difficult numerical 

problems - generically some points on the string reach the speed of light instantaneously 

and at these points Z’s must go to zero as well to keep c finite. In our first paper [22] (and 

in the paper of Bennett and Bouchet [12]) the gauge conditions (2.7) were not imposed 

numerically - the variables Z, Z and e were evolved according to their own equations. 

In our first numerical code this led to the problem that e actually drifted away from it’s 

definition over time, which meant that our simulations did not conserve energy properly. 

Our new numerical scheme preserves (2.15) automatically and is much simpler to 

implement - no ‘fudges’ are needed. Bennett and Bouchet have recently also written a 

new code using the nonsingular variables (2.16). Our detailed results still appear to be 

significantly different, and we are at present engaged in trying to locate the reasons for 

this. 

In addition to Z’(C) (which may be obtained from 17 Rand c, we need a single position 

in order to reconstruct any loop of string. It is obviously better not to single out any 

particular point but to use the center of mass of the loop as our one extra variable for each 

loop. This is kept and evolved (using the known and updated center of mass velocity) for 

every loop. 

It shah be very useful to us later to show that loops whose size is much smaller than 

the Hubble radius evolve to a good approximation as if they were in flat spacetime. For 

short times one can see this as follows. If h is small, and we choose c = 1, then (2.10) is a 
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first approximation to (2.6). Taking a solution of (2.10) one finds that the curvature term 

on the right hand side of (2.6) is of order the inverse (comoving) curvature radius of the 

string. The damping term is of order h, the inverse comoving Hubble radius. Thus for 

small loops the damping term is a small perturbation. 

What is the effect of the damping term over long times ? First consider the evolution 

of the centre of mass of the loop. Defining the velocity of the loop to be v’, = F/E we find 

from (2.10) that 

t$ + 2h(l - V’)“; = 0 (2.17) 

We can solve this in the approximation that we treat the Vz term by averaging over an 

oscillation of the loop, taken to be a aeroth order (i.e flat spacetime ) solution. This is 

valid to order h as explained above. 

The flat spacetime result is very simple [23] (we can set c = 1 here) 

I 22 2’ 
= -*+< 

(2.18) 

Here T, L and uC are the period, length and centre of mass velocity of the loop. Note 

that for a loop at rest, the average velocity squared V2 = $. Using (2.18) in (2.17) we find 

that to order h2 

v: + hv;(l -vi”) = II (2.19) 

which is exactly the equation for a point particle in an expanding background. 

Furthermore, substituting (2.18) into (2.10) we find 

.& = -hgE (2.20) 

This makes sense; a very fast moving loop (UT x 1) is like a photon - it’s energy is redshifted 

as a-l. However a nonrelativistic loop has nearly constant energy. (2.19) is easily solved, 

and yields 
-1 

v. = %a 
J1 - vzi + v$-2 
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where the initial velocity is v,; and the initial scale factor is chosen to be 1. Now (2.20) 

can be integrated for E; 

g = ~(“:i+;“,;“‘) f 

so that as a -t 00 the energy remaining in the loop is simply the rest mass energy. 

What about the internal oscillations of the loop ? It is possible to choose coordinates 

so that the Christ&e1 symbols vanish, and the metric is the Minkowski metric along any 

world Iine[24]. (It is well known that this is possible at a point, and this is demonstrated 

in most textbooks. It is actually crucial for the equivalence principle, which is all we are 

really using here, that one can do so along a geodesic world line, since observers live on 

world lines, not at points!) In particular we may do so along a line chosen to run through 

the centre of the ‘world tube’ swept out by a closed loop as it moves through spacetime. 

The time coordinate in the case where the line is a geodesic is just the proper time for 

the particle travelling along the geodesic. Returning to (2.4) it is now convenient to pick 

‘orthonormal gauge’, where g-0 = Rn+ , ~~0 = diag(1, -l), in which the string equations 

become 
&ii - &’ + rt;gt,& - &&‘) = 0 

gy&A!.~ + C’2’) = g&,x(2+‘) = 0 
(2.23) 

The zeroth order solution is simply z” = 7, with Z((Q, r) obeying the flat space equations 

(2.12). Recalling that the Christ&e1 symbols are to be evaluated on the world tube, we 

see that the second term in the evolution equation is of order r/R& where r is the spatial 

size of the loop and RH the Hubble radius (in these coordinates!), compared to the first 

two terms which are of the order of l/r. In the cases of interest, RH 0: t, it is easily 

seen by using a Greens function that the second term causes negligible disturbance to the 

evolution of the loop in the long time limit. Thus the loop evolves, to a better and better 
. . 

approxnnatron, as tf It were m flat spacetime in its own local inertial frame. 

3. The Scaling Solution 

The notion of scaling plays a central role in understanding the evolution of a network 

of cosmic strings. The idea is that statistically the properties of the string network are the 

same at two different times, once all linear dimensions are resealed by the ratio of the two 

Hubble lengths. The scaling picture says that not only does the scaling solution exist, but 
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that any initial string network satisfying ‘randomness’ on large scales will evolve towards 

the scaling solution with time. This means that observable predictions based on cosmic 

strings are quite insensitive to the initial string configuration. It also makes parameter- 

independent predictions possible. As we emphasized above, the spatial distribution of 

the strings does not depend on II, the string tension, since the equations of motion are 

independent of CL. Thus correlation properties of the network are independent of p. 

First let us define some useful terms. We define Hubble’s constant H = g/a and 

the Hubble radius RH z H-‘. The ‘length’ I of a string loop is defined as e/p where 

e is its energy. ‘Long strings’ are strings whose length is longer than the Hubble radius 

RH. ‘Loops’ are strings shorter than R H, although technically of course, much of the ‘long 

string’ may be in the form of finite loops as well. 

The main idea of the ‘scaling solution’ [22], [25] is that there is a single scale in the 

problem, the Hubble radius RH. All other scales are determined in terms of RH. Thus 

there is a total length in long strings of the order of RH per volume RL, so 

PL 0: - R\ (3.1) 

Einstein’s equations tell us that the total energy density is also proportional to Ri’, so 

the ratio of the two energy densities is constant in time. 

In this section we will set up a simple model for string evolution which exhibits scaling 

behavior and which we will show (in section 5) agrees well with the numerical simulations. 

This model is based on a “one scale” principle which allows a simple understanding of the 

network evolution, even far away from the scaling solution. 

The initial string network formed at the phase transition is composed largely of long 

strings which wander as random walks right across the universe. The precise details of the 

phase transition are irrelevant - the distribution of long strings is a result of the phases of 

the higgs field being uncorrelated on large scales. 

Let us consider the evolution of these long strings. We define a length scale E on the 

string 

(3.2) 

where pr, is the density in long strings. 

As long as reconnection is frequent between the strings, which should be the case if 

{ << RH, it will keep the network ‘random’ so that t should be related, by a constant factor 

of order unity, to the typical radius of curvature on the string, and the typical distance 
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between strings. This is the “one-scale” principle. It results in a simple one-scale model 

of the string network, where the string distribution is characterised by [ alone, even when 

scaling ([ a RH) has not yet been reached. 

The existence of the scaling solution may then be argued in the following way. The 

rough idea is very simple. If < becomes much smaller than RH, the long strings rapidly 

chop off loops and the long string density falls, so < grows faster than RH. If t grows larger 

than RH, chopping off becomes infrequent, the string density rises, and 6 falls relative to 

&I. 

To see this more quantitatively, let us assume t is < RH, so that from the discussion 

of the previous section the strings average velocity squared should, as explained above, be 

close to i. Thus neglecting interactions, the energy in string should remain constant (Eq. 

2.10) so the string density should evolve as matter. In the radiation era this means pi is 

growing compared with scaling, which would have pr, evolving as radiation. 

Now let us include the effect of interactions. As mentioned above, these simply cause 

two colliding strings to reconnect the other way. Statistical mechanical calculations of the 

density of states for free Nambu strings which we will discuss further in the next section 

show that at low density p << fi2 there are many more states available for the long string to 

chop itself up into loops than there are for it to remain in long string. Even though we are 

far from equilibrium in the present discussion, it means that we can expect chopping off 

of loops from long string to be favoured by phase space over reconnection of loops. In fact 

the timescale for the string string to chop a given fraction of its length off into loops must 

be related to tJ by a constant factor, the chopping ‘efficiency’ c, which one would expect 

to be a fairly small fraction. We shall have more to say about the value of c in section 5. 

Putting this together, we have 

4x -= 
dt -3Hp~ + (I - 2v2)~pL - cpG 

< 

The first term alone would give pi evolving as matter. The second term gives correction 

to & = 0 from (2.10) . The third term represents the loss of energy into loops. Note that 

it is the physical time we use here. 

We shall adopt a simple model for predicting V2. The quantity (1 - 2V’)H just 

measures growth of energy (or length) of the string due to stretching. If a long string is 

a random walk with a correlation length 4 then it takes a total length L = R&/t to cross 

each volume R& (assuming RH >> <). On scales larger than RH the string is stretched by 
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the expansion of the universe. If we imagine ‘pinning’ a long string to the background at 

two points separated by RH, the string will be stretched at a rate i, = HRw = 1. Dividing 

by L we obtain i/L = H~/RH, so we take (using (2.10) ) 

(1 - 2V’)H = H</RH (3.4) 

and (3.3) is just 
+L -=--3Hpb+H t 
dt 

GpL - CE 
t 

(3.5) 

Note that although the physical picture behind equation (3.4) assumed t << RH, the 

formula also makes sense in the other extreme. A string which is straight on the scale of 

Rw (that is, [ = RH) should have L 0: a, and Vz = 0. 

Now we define the number of correlation lengths [ per Hubble radius: 

and (3.5) becomes 
dr -=-- 
dt 3 

cy2 - (2& - 3)7 - 1) (3.7) 

In the radiation era R;i = 2; setting the right hand side equal to zero we find the 

fued point 

ll+diTz-~ 
7r = ; 

2 -c 
c<<l (3.8) 

Similarly in the matter era R;I = i and the fixed point is given by 

7m = - 
;f 

In the radiation era the chopping term must make up an extra -HAL (in (3.5) ) as well as 

counteract the stretching term in order to keep the string scaling as radiation (b = -4Hp). 

In the matter era however, (where p = -3Hp) the chopping term need only balance against 

the stretching term. Thus one expects t to be larger in the matter era since less chopping 

is required. The result, for c << 1, that r,,, Y 6 is remarkably simple and as we will 

see is verified to good accuracy in our simulations. Likewise we predict the velocities of 

the long strings in both eras 

v: = $1 -c) 

vi = $l- JE) 
(3.10) 
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It is also clear that the scaling solutions are stable - the right hand sides of (3.7) are 

inverted parabolas with the scaling solution at the positive root. If y is greater than the 

scaling solution it falls, if it is less than the scaling solution it rises. In fact (3.7) may be 

solved in the radiation era to give 

b-Y-%= x 

=6-r; 

a’ (e + Cayi) - CSyj 

z syia+ C6Yi << 1 

c=diTz 

(3.11) 

where 6ri is the initial deviation from scaling. Thus 7 approaches its scaling value rather 

slowly, as o-s/z. 

Likewise in the matter era one finds 

67~7--~,,,= 26~ 

a+/“( 2 + J;cari) - CSri 

= bia-fi &‘67i << 1 

(3.12) 

For small c this approaches scaling even more slowly. 

At this point we should also mention a small correction to the model due to the V 

dependence of the chopping efficiency c. This is a small effect because both in radiation 

and matter eras V2 is not very far from f. To a first approximation we should simply 

have c proportional to V because this determines the rate of interactions of the long string. 

This we can include to first order by writing c, = c,V,/V,. z c,(l + &)-i. 

The model is easily generalized to the matter-radiation transition. In this case it is 

more convenient to change variables from i to a(t) which is given by 

(kJ = 8ym (a-’ + a-2) 

de*= prngcp is the matter density at tcp, the time of equal radiation and matter density 

and we take a(&) = 1. 

Now we find (3.3) becomes 

d-r 
z= (3.14) 

This equation is simple to solve numerically, and the result is plotted in Figure 3.1, for 

c = .074, the result of our numerical simulations explained in section 5. 
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Let us now work out the consequences of the scaling solution for the distribution of 

loops being chopped off the long strings. The chopping term in (3.3) represents the loss 

of energy into loops: if we define the dimensionless energy production function f(z) to be 

the energy loss from the long string into loops of length I to I+ dl per correlation volume 

per unit time we have 

&PI(~) = -3Hm(l) + ;,(;) 

where pl(l)dl is the energy density in loops of length 2 to I + dl. The first term just 

represents dilution due to the expansion of the universe. The cutoff I, is simply a result 

of our definition of long string - in our numerical results for example we shall typically 

define f(z) to be zero for + > nE = 2F. We shall see that the precise value of the cutoff 

is irrelevant - for + of order unity or greater chopping off and reconnection balance very 

closely. Note that f as we define it here includes both chopping off and reconnection. In 

the next section it will be useful to differentiate between these explicitly. 

Here we make the important assumption that f is only a function of I/[. The one- 

scale principle has come into play again. It says that no matter what the scale t of the 

network, the loop production process looks the same when scaled with t. In particular, if 

one understands loop production in the radiation era, then an appropriate re-scaling will 

describe loop production in the matter era, and even in the radiation-matter transition. We 

shall check this in section 5. Note that f is the net amount of energy lost per Hubble time 

per unit volume - it includes both chopping off and reconnection. As we explained above, 

we expect chopping off to be greater than reconnection from the statistical mechanical 

results, and we shall explore how this works in detail in the next section. We have ignored 

effects of expansion on the loops, where the main (small) effect is to redshift kinetic energy 

away as explained in section 2. 

What about the loop distribution ? Of course loops fragment after being chopped 

off the network, so it is convenient to divide loops into two types; those destined to self- 

intersect (variables corresponding to these will have a subscript I) and those which are 

not (these wilI have a subscript NI). In particular we have pi(Z) = pr(Z) + per and 

f(z) = fL-r(=)+f L+N~(z) as the production function fromlong string and (3.15) becomes 

&pr(l) = -3Hpr(l) + & 

h’NI(l) = -~HPN&) + &(,-,I( i) + f&NI( ;,, 

(3.16) 
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In fact for z ~L-NI + fl-NI, the non-self-intersecting energy production function, 

determines the final density in non-self-intersecting loops - integrating (3.16) and using 

< = R.y/y we find in the scaling solution in the radiation era that 

pprr(Z)dl = /A,( 7) e g- H 
i 

A, = 7$ 
J 

dzzi fNl(Z) 

and in the matter era that 

mr(I)dl = J&,(~)$ 

Am = F j d.fN:(z) 

(3.17) 

(3.18) 

assuming of course that the integrals converge. We shall present strong evidence for this 

and determine X, and X, from our numerical simulations. The number density of loops 

of length 1 to I+ dl is given by n(Z) s pl(Z)dl/(pl) . 

We have so far ignored the slow decay of loops into gravitational radiation, which is 

crucial in the radiation era since the loop density (3.17) scales as matter, and without this 

process the loop density would come to dominate, the universe. A loop of initial length Zi 

produced at a time ti loses energy at a rate i = -I’Gp with I? a constant which depends on 

the loop trajectory but typically I? x 50 for simple trajectories [zI], [26]. Thus the length 

of B loop varies with time as 1 = Zi - I’Gp(t - ti). Equations (3.17) and (3.18) are the 

densities as a function of the initial length Ii - substituting for I; we obtain in the radiation 

era fOr t >> ti 

mr( l)dl = A 
dl 

Ri(Z + I’Gpt) 5 

and in the matter era that 

mr( +I = An 
dl 

R&(1+ T.Gfit) 
(3.20) 

Thus loop decay determines a cutoff in the size of ‘typical’ loops of the order of rG@. 

As we discussed above, in the scaling solution we have Jdsf(z) = e. This led to 

pi, L p/(c’R&) in the radiation era and m p/(cR$) in the matter era. Likewise we should 

have for the density of long string plus intersecting loops p~1 similar relations in terms 

of the integral of the non-self-intersecting energy production function, s dzfNl(+) G CNI. 

This provides a useful consistency check which we will apply to our string simulations in 

section 5. 
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4. Statistical Mechanics and the Energy Production Function 

In this section we shall discuss the statistical mechanics of string networks. This will 

be useful in several ways. The most important fact we will learn is that phase space favours 

the chopping up of long string into loops over the reconnection of loops onto long string. 

This fixes the d;gn of our constant c of the previous section, and guarantees that a scaling 

solution must exist, as we have discussed. We shall argue that it is inconsistent with flat 

spacetime statistical mechanics to have a string dominated universe where chopping off is 

balanced by reconnection [27]. This conclusion is different to that reached by Bennett[ll] 

and Kibble[25]. 

We also suggest that the long strings may be viewed as a radiating hot body. Loop 

production can be then thought of as the ‘black body radiation’ coming off the network. 

This gives a simple prediction for the shape of the loop production function. In the next 

section we show that the predicted shape is fit very well by the simulations. 

Let us begin by reviewing flat spacetime string statistical mechanics. To discuss this, 

one needs to be able to count states in the space of all possible string configurations. The 

measure on the space of states may be obtained by quantizing the strings[27], or from a 

simpler argument we present below. 

It is useful to think in terms of the ‘left-movers’ and ‘right-movers’ of (2.10). Let 

us introduce a fundamental energy scale A and construct the set of all loops of energy 

e = NA by choosing a’ and bi to be randomly chosen unit vectors at each step A along 

the string (energy is proportional to parameter length in this gauge). This scheme has 

been used by Hawking[28] and by York[29] [30]. W e must furthermore restrict Z and 2 to 

only take a discrete set of directions D at each step. This procedure guarantees that the 

displacement AZ’ and momentum A2 are themselves taken from a discrete set (quantized) 

for every step along the string. The number of such sets Z’(c) and g(g) is just 0% c ebe. 

Thus b-’ (a A) emerges as fundamental energy scale. (the precise value of b depends 

on exactly how one defines the set D). For any one of these sets, Z;(u) and g(p) execute 

random walks given by adding up all the Z’ and bi vectors. (Copeland, Haws, and Rivers 

[31] give another ‘classical’ treatment of this problem where they count random walks in 

position space rather than in a and b. However, they neglect the momentum degrees of 

freedom of the string segments. See also [32] for a similar discussion of the string initial 

conditions.) 
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We still must further restrict ourselves to closed loops in their centre of mass. This is 

only the case when we impose the two additional constraints 

J d&‘(a) = J d&(o) = 0 
Thus we need to select out the class of random walks which return to the origin. As is well 

known, the probability of a given walk returning to the origin after N steps is proportional 

to N-f in 3 space dimensions. Taking this into account for both Z’ and $’ and using e = m 

in the centre of mass of the loop we obtain m- s e bm for the number of closed strings of 

mass m. However this is still not quite right because any given loop could be obtained by 

starting at any of the m/A steps on it, and so we have over counted by this factor in our 

construction. So the number of different configurations of mass m to m + dm is just 

n(m)dm a m-‘ebmdm bm >> 1 (4.2) 

with a and b constants depending on D and A. Note that the measure requires some 

fundamental scale of allowed ‘wiggles’ on the strings. The argument given is easily gener- 

alized to any number of dimensions and to open strings. In each case it agrees with the 

‘Hardy-Ramanujan’ formula which one obtains when the theory is quantized. 

It is also clear with the above measure what typicalloops look like: C(O) = J” $(Z’+g) 

clearly executes a random walk in space as we track along the string. 

Now let us discuss equilibrium distribution of loops in flat spacetime. From (4.2) one 

calculates the equilibrium number density of loops in the energy range e to e + de at finite 

temperature T = /3-’ 

neq(e)de cc d’p’ J J dmn(m)6(e - ,/n)e+ 
zz ,,-+.(*-P)e be >> 1 

where one uses m x e - j?/2e to perform the mass integral. The total energy density is 

given by 

P’ J den.,(e)e x J ae-: e(*-B)c 
l e % 

where e, is a lower energy cutoff, usually take to be of order b-l. 

There are several important points about (4.4). First, the expression makes no sense 

for p < b i.e. 2’ > TH E b-l, the Hagedorn temperature. This is a reflection of the 

fact that the canonical ensemble is not defined above TH. More importantly, (4.4) tends 
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to a finite limit PH at TH. Densities above PH cannot be described with the canonical 

ensemble - a microcanonical description is necessary. In fact the initial string configuration 

is described by this p > PH configuration with most of the string in ‘infinite’ string and 

the remainder in a distribution of loops , given by (4.4) with p = b. 

Densities below PH are well described by the canonical ensemble[27]. From (4.3) and 

(4.4) one can see that the loop distribution and energy density are dominated by the 

smallest loops allowed, with energies of e,. Smith and Vilenkin, and Sakellariadou and 

Vile&in have numericvdly evolved boxes of string in flat spacetime [33] and have verified 

these results. A box of long string (with p < ~a ) grinds itself up into small loops which 

settle into the distribution given by (4.3). In their case the smallest allowed loop is set 

by their numerical scheme, and the scale of ‘wiggles’ by the lattice spacing. For cosmic 

strings, the ‘smallest allowed’ loop would be a loop which is not much longer than a 

string thickness, which also sets the scale of allowed wiggles. Loops smaller than this can 

disintegrate into their constituent fields. In themal equilibrium, at any temperature below 

the Hagedorn temperature large strings would be exponentially rare. Long strings survive 

only to the extent that the network does not equilibrate. 

Boxes of string in which there is a net string winding number across the box were 

also considered in [27]. These impose a topological constraint which forces there to be a 

minimum number of long strings in the box. The energy in wiggles on the long strings is 

suppressed by the Boltsmann factor at low string density, just as large loops are. Even 

though the long strings carry kinks whose separation can be as small as the scale of allowed 

wiggles, they remain very straight. Not surprisingly, the equilibration process does its best 

to put energy into the statistically favored small loops. 

In the context of cosmology equilibrium statistical mechanics cannot be applied di- 

rectly. However, lessons learned in the above discussion have important implications. 

The main difference of course is that as the universe expands, the mean separation 

between strings grows and the loop velocities redshift away. This has the effect of ‘turning 

off’ the interactions between different loops. As we shall discuss, this interrupts the frag- 

mentation process. In the expanding universe, we expect a given loop to fragment only 

down to the scale set by the smallest wiggles it had acquired before it stopped interacting 

with other strings. (We neglect the effects of gravitational radiation in this analysis since 

they only become important over much longer time scales than we are concerned with 

here.) 
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It is important to emphasize here that loops broken off a string characterised by the 

scale t do not fragment indefinitely - the scale of the typical fragments is set by <. This has 

been shown convincingly by York [30] in flat spacetime simulations of loop self-intersection 

(see also [34]). He also gives the following simple argument. Defining the space of loops as 

we have above, all loops consist of straight sections connected at kinks. Take a loop with 

N left moving kinks and N right moving kinks. If this breaks off a child loop, there have 

to be at least 5 kinks on the child loop. 2 are created at the crossing, and at least 3 are 

necessary to ‘bend the string around’ back to the crossing point. This is so because kinks 

are actually planar (velocity of the string perpendicular to the plane of a kink has to be 

equal on both sides of it). Thus the case with only 2 kinks ‘bending the string around’ 

is degenerate. Now only 2 new kinks are created on the ‘parent’ loop, while 3 were lost 

from it. Thus eventually the parent loop runs out of kinks and can no longer chop off 

loops. The mlvrimum number of child loops allowed is just 2N - 4. This argument ignores 

reconnection of fragments onto the parent loop, but York has verified that for an isolated 

initial loop reconnection has very little effect on the final energy distribution produced for 

z>l. 

York also found that the probability for a loop of N straight segments to be non- 

self-intersecting was exponentially smrdl for large N. This can also be understood by 

considering the measure we discussed above. As a simple case, consider constructing a’ 

and b on a simple cubic lattice. Since there are 6 directions for a” and g at each step, 

the number of closed loops on this lattice scales with N as 6NN-*, as discussed above. 

Now an intersection occurs on a loop if and only if Z(z + L) + @z + L) = C?(Z) + g(z) 

for some L and z. In other words, if a’ and -b’ trace out identical vectors along stretches 

of the same length L. In the case of our lattice, and intersection of length 1 occurs if 

a’ and b’ travel in the same direction anywhere (since both are closed curves, they must 

traverse both forwards and backwards along any direction they take). The only way to 

avoid such ‘intersections’ is if a’ lies in a two dimensional plane and clies along a line, and 

vice versa. Similarly intersections of length 2 can occur if a’ and b’ go forward and back 

along any link in two adjacent steps. g, the one dimensional closed walk, is guaranteed to 

do this at some point, but a’ can avoid it by never reversing on itself. Now it is easy to 

see that aII intersections up to length 6, and all odd length intersections, are avoided if 

the conditions imposed so far are met. Assuming that higher L intersections are rare, we 

estimate the total number of non-self-intersecting loops as (3N/N) x (2N/Nt) x (l/N), 

where the denominators come about because one curve is two dimensional and the other 
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one dimensional, and we include the overcounting factor N as before. Thus the fraction of 

all loops which are non-self-intersecting is proportional to N 6CN. Of course the details of 

the result depend strongly on the lattice, and our decision to treat intersections of length 

1 (which are really ‘cusps’) as intersections, but the conclusion that the probability of a 

loop being non-self-intersecting decreasing exponentially with N should be independent of 

these details. 

The finite fragmentation result means that if a string network is smooth on the fun- 

damental scale given by e,, then interactions between different loops are crucial to the 

equilibration process. It is only through reconnections that extra wiggles can be intro- 

duced in order to alIow fragmentation all the way down to the scale e,. The exponential 

result for the probability of non-self-intersecting loops means that we can expect the vast 

majority of final non-self-intersecting loops to be in ‘simple’ trajectories, of only a few 

steps on the relevant scale. 

One can estimate this scale, which determines when loop fragmentation stops, by 

determining when the probability per unit time for any loop to hit a long string falls below 

the expansion rate. The former is essentially x kl/(‘, with I the loop length , and k < 1 a 

factor determining the geometrical cross section for a loop to hit a long string. (Remember, 

<ma gives the length density of the long strings.) Thus loops with I << k-ly-l( are very 

unlikely to interact with the long string. One can check that they are even less likely to 

interact with similarly-sized loops. So the long string- loop system cannot ‘thermalize’ 

further than this scale, smaller than but proportional to [ cc RH in the scaling solution. 

What about the long string distribution? As the universe expands it proceeds to chop 

itself up into loops. As it does so, the scale [ on the long string grows. Provided the long 

string remains in a random configuration it wilI be characterised by the scale <, and there 

wilI be of order one string of length t per volume t ‘. In fact the distribution of long string 

on scales much larger than [ should look very much like the high density string phase 

(above the Hagedorn density), where the smallest allowed scale of wiggles on the string 

is taken to be [. This is so not because the string network has equilibrated, but simply 

because this is the most probable configuration. It follows that most of the energy density 

in long strings should be in strings much larger than the Hubble radius. We emphasize 

that this configuration occurs because the long string is random, and this is the most likely 

configuration. The often used ‘causality’ bound is quite misleading on this point[35]. 

The actual density of long string is set by the chopping efficiency (the parameter c 

described in section 3), and is considerably higher than one per Hubble volume (the naive 
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‘causality’ bound). The long string cannot be straight on scales much larger than the 

mean separation of long string segments, since interactions will tend to randomize it on 

that scale. This is exactly the picture we presented in section 3. 

Now we are ready to discuss the form of the energy production function. 

In flat spacetime and in thermal equilibrium we can calculate the spectrum of loops 

chopped off a long string by detailed balance. The process of chopping off a loop is the 

time reverse of the process where a loop collides with a long string. In equilibrium the 

two processes must therefore proceed at the same rate. The rate at which our long string 

collides with loops of length 1 to 2 + dl is given by Lkln.,(l)dZ where L is its length and k is 

a constant. We assume that the cross section for a string of length I to hit other strings is 

proportional to 1 and that the characteristic velocity involved is a constant of order unity. 

Thus in equilibrium the rate of loss of energy to loops of energy e to e + de is given by 

y = k+.,(e) s +(;) (4.5) 

which defines the energy production function for loops coming off the long string, f.rr(z). 

The production function f(z) of the previous section includes both this and the reconnec- 

tion function. Using necl from (4.3) we find 

f(x) = dz-*ewBZ Bx > 1 (4.6) 

A useful analogy is with a hot body, connected via a conducting rod to a radiating 

surface. The temperature is greatest at the hot body, and least at the surface. The long 

string network may be viewed as very hot, at the Hagedorn temperature in fact. This is 

so even though it has never had time to equilibrate - it is just because it is a ‘typical’ 

configuration of strings which are constrained to be straight (because smaller wiggles get 

chopped off) on a scale similar to the scale defined by their density, t. Because the long 

strings are at the Hagedorn temperature the production function from the long strings 

should have B = 0, and be a pure z-i at large z. This may also be understood more 

directly - the probability for a random walk to return to the origin after a length 1 scales as 

l-f, as we mentioned before. Thus if the long strings remain random walks, the number 

of fragments breaking off with length 1 to I+ dl should scale the same way. The energy 

production function should therefore scale as l-i, in agreement with the argument above. 

Going down in scale, the network explores smaller scales as chopping up occurs and is 

described by a configuration at a density lower than the Hagedorn density, and with B > 0. 
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Energy flows continuously from the ‘hot’ long strings to the ‘colder’ loops. Finally, after all 

chopping is done with, a distribution of non-self-intersecting loops will leave the network. 

The exact form of this distribution is determined by the nature of the ‘cooling’ process, 

and by how the loops which leave the network break into non-intersecting loops. We have 

yet to model all these effects in a detailed way, but we continue our discussion under the 

simple assumption that the distribution of non-intersecting loops is well described by a 

production function of the form (4.6). We shall see in section 5 that this assumed form 

gives a remarkably good fit to the numerical results. 

Now we turn to the reconnection of loops onto long strings. This is the main difference 

between the flat spacetime and expanding cases - in the former case all loops eventually 

reconnect, so the scale of allowed ‘wiggles’ can go to sero. As we have argued however, in 

the expanding case the allowed scale grows in proportion to [ 01 t, and a substantial fraction 

of loops never reconnect. For simplicity we shall deal only with non-self-intersecting loops. 

We shall consider the rest of the loops as part of the long string network. 

The rate of loss of energy in loops of length 1 to I+ dl due to reconnection onto long 

string is given by kpl(l)l/[‘. Using this, we have for the energy density in loops from 1 to 

I+ dl 

h(l) = -3Ep1f $f.,,(;) - k$p&) (4.7) 

which is easy to integrate using the form (4.6) (it is helpful to integrate with respect to 

e = l/t instead oft; we assume for simplicity that (4.4) holds down to I = 0 ) . For the 

final density in loops of length 1 to If dl in the radiation era one finds 

(4.3) 

and the net energy production function f(l/<) = fo,r(l/<) - ktalpl/p is found to be 

a fraction B/(B + yk/2) of the chopping off function fotr. The reconnection function 

r(l/E) = -k~‘lpr/p, defined as the negative contribution to the net production function, 

is a fraction yk/2B of the net production function. As we shall see later this prediction, 

that the reconnection function is an I-independent traction of the production function in 

the radiation era, is well borne out in our simulations. 
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Note that B plays a crucial role above . If we set B = 0 then we would find that 

production exactly cancelled reconnection and the string density would scale as matter. It 

is the fact that a substantial fraction of the energy lost from long strings goes into loops 

whose size is set by E that guarantees the scaling solution. We know that B has to be 

nonzero to ensure that equation (4.7) produces the correct Boltsmann distribution in flat 

spacetime. 

In fact (4.7) and our previous arguments put a much stronger constraint on the loop 

production function. The segments of long string should interact with the ‘sea’ of small 

loops that surround them just as the topologically constrained long strings mentioned 

before. In flat spacetime, at low string density, chopping off and reconnection of small 

loops onto a long string balance, with very little energy in the ‘wiggles’ on the long string. 

In an expanding universe, where many loops coming off never get the chance to reconnect, it 

must be that chopping off is at least as efficient as reconnection on small scales. Demanding 

this, (4.7) requirea that fofr(z) diverges at least as fast as 2-i at small z. In our numerical 

results we shall see evidence of this 2-i small z behaviour building up as the simulation 

proceeds. 

This in fact justifies our approximation above in assuming the form (4.6) down to 

z = 0. If we impose the condition that chopping off is greater than reconnection for all 1 

in (4.7) then our conclusions above are not qualitatively altered by deviations at small I 

from (4.6). Bennett (111 considered equation (4.7) for general f(z) in much the same way 

as we have. However he allowed a form for f for which small loops reconnected onto long 

strings at a faster rate than they were chopped off. This then allowed a string dominated 

universe. Our statistical discussion makes it clear that this cannot happen. 

As we explained above, as well as ‘infinite’ strings, there should be a distribution of 

large loops given by by (4.8) with B = 0. One of the striking results we shall show in the 

next section is how little density resides in loops with length greater than t. From (4.8) 

the density in large loops is suppressed by l/k. W e assumed that the cross section for all 

loops to reconnect was proportional to kl above, with k the dame constant. However large 

loops look more like a collection of random segments intertwined with the long strings, so 

k should be of order unity. In contrast, small loops are ‘curled up’ by some geometrical 

factor - whilst the cross section should still be proportional to 1, because they are mostly 

in the ‘simplest’ trajectories, k should be smaller. So the constant k should really also 

depend on 1, and have the effect of suppressing the density in large loops relative to small 

ones. 
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In the matter era the integrals are more complicated. However for small 1 one finds 

instead 

Pi(l) = Pi l;3 +e-+yz 
H 

(4.9) 

In this case the reconnection function is seen to be a decreasing fraction of the net pro- 

duction function at small 1. For small 1 the reconnections should be unimportant and 

equation(4.6) should give a good approximation to the net loop production function in the 

matter era as well. 

This picture of the string network as a radiating hot body characterised by the scale 

{ is quite different to previous analytic approaches to string networks which allowed for a 

string dominated universe. Our discussion makes it clear that this cannot occur - if the 

scale on the string network [ became much smaller than the horizon, then in a time of 

the order of a few t the string network would approach the equilibrium solution, with the 

long string chopping itself up into loops. Therefore (/RH would fall. Reconnection does 

indeed reduce the final loop density (equation (4.7) ) b u as long as B and k are finite we t 

are inevitably driven into the scaling solution. 

It may well be possible to calculate the loop production function from flat spacetime 

simulations. Certainly the production function in equilibrium may be calculated as a 

function of string density and the cutoff scale for wiggles. With knowledge of exactly 

how the interaction rate for the network depends on string density one should be able to 

calculate the effective t as well. Using our formalism in the previous section one could then 

calculate the scaling density. This would be worth doing - simulations in flat spacetime 

are much easier to do!. 

5. Numerical Results 

In the previous sections we have developed an analytic model for the evolution of 

the string network. In this section we shall compare its predictions with our numerical 

results. The reader interested in the details of our numerical methods should consult the 

Appendix. 

We shall also discuss some tests of our code in order to give estimates of the possible 

errors in our results. In the Appendix we discuss some extra checks. 

Let us begin by discussing the density in long strings. In section 3 we developed a 

simple model for the time evolution of the long string density. It contains a single free 
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parameter, the chopping parameter c. If we calculate c from the scaling density in the 

radiation era, we can use the model to predict the scaling density in the matter era, and 

the rate of approach to scaling in both eras. The model also predicts the string density 

throughout the matter-radiation transition, which is important in calculating the growth 

of density perturbations produced by strings. 

Figure 5.1 shows the model compared to our numerical simulations. In these sim- 

ulations there is one parameter which determines the initial conditions, the ratio of the 

Hubble radius RH to the correlation length [, which we have called 7. This determines the 

long string density: pr, = y’p/Rk. We define the long strings to be loops whose length is 

larger than ~RH. As we shall see, there is little energy density in large loops, so the results 

are very insensitive to exactly where the dividing line between ‘long string’ and ‘loops’ is 

drawn. For each run 7’ is plotted against scale factor. 

In Figure 5.la the results are shown for the radiation era. Three different runs are 

shown, in solid lines. In the first y falls, in the second it is steady and in the third it rises. 

We deduce from this that ya x 210 is the scaling solution. From (2.8) we see that this 

corresponds to c, = (1 + r)/r2 x .074. 

With this one parameter fixed, we can now calculate the predicted density evolution 

for each run from our scaling model. The predictions are marked in dashed lines - they 

clearly fit the numerical results very well. 

In the Figures the units are chosen such that the abscissa is also the Hubble radius 

in units of a comoving initial correlation length. For example, the longest run was in a 

box 26 initial correlation lengths across which contains a volume (26/45)3RL x 0.2Rk 

by the end of the run. The statistical fluctuations in these graphs are small - they are 

quite smooth. This is not too surprising since even by the end of the longest run the 

box contained N = 0.2R&/t3 z 600 correlation volumes. As we shall see, the long string 

segments are uncorrelated on scales larger than t, so an estimate of the statistical error 

in the long string density is simply l/a x 4%. The possible systematic errors, due to 

numerical errors in the string evolution code and finite cutoff effects, are more important, 

and we will discuss these later. 

Figure 5.lb shows the results for the matter-radiation transition. Again the model 

fits well. The abscissa here is the scale factor in units where it is unity at equal matter 

and radiation density. 

Figure 5.1~ shows the results for the matter era. We calculated c, above. Including 

the velocity correction we have c, x ~~(1 - i,&) x .064 so the predicted matter scaling 
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density is given by 7; = l/c, z 16. Using the scaling density from the radiation era, we 

have predicted the matter scaling density, and again the model fits the simulations very 

well. 

Judging from this we believe that the solution to our model shown in Figure 3 should 

give an accurate representation of the string density throughout the history of the universe. 

Our scaling model relies on an estimate of the amount of stretching for long strings, 

which is particularly important near the matter scaling solution. Figure 5.2 shows the 

average V’ on the long strings for each of the runs shown in Figure 5.1, as a function of 

conformal time. The predicted velocity is calculated from V2 = i(1 -[/RH) = +(l -y-l), 

with 7 as plotted in Figure 5.1. 

The velocity model gives slightly low predicted V2 during the radiation or transition 

eras (Figures 5.2a and 5.2b) although always by less than 10% . It fits the numerical 

results remarkably well during the matter era (Figure 5.2~). In these runs Vz approaches 

the predicted value and settles on it where the run continues long enough. Since this very 

simple model works well in the matter era, where stretching is most important, we have 

not tried to improve on it. 

Further support for both the scaling density model and the velocity model comes 

from calculating the shape of the long strings. In Figure 5.3 we have measured the average 

straight line distance squared dl between two points separated by a length (energy/p) 1 

along the string for the longest radiation run. We only did this for 1 < L/10 where L is 

the length of the loop involved, since otherwise the simple random walk formula breaks 

down [27]. As can be seen, 6 x lt to good accuracy throughout the simulation (during 

which < grows by almost 8 in physical units). We implicitly assumed this in constructing 

the velocity model. 

Another test of the long string configuration is shown in Figure 5.4, where the corre- 

lation function of the tangent vector along the string < Z’(l).Z’(O) > is shown as a function 

of the length (energy/p) along the string. In Figure 5.4a the correlation function is plotted 

for various times during the long radiation run, to check for scaling. In Figure 5.4b the 

radiation and matter runs are compared with the initial conditions. The correlation func- 

tions are non-zero for 1 > < in the scaling network, but not in the initial conditions. We 

interpret this as evidence of the ‘stretching’ we have assumed in our velocity model. The 

matter era network is somewhat more highly correlated, which corresponds to the greater 

degree of stretching we expect in the matter era. 
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Thus, aside from small stretching effects, the long strings look like random walks with 

step length <. Thus the initial conditions of the string network provide a surprisingly 

good approximation to the scaling configuration of the long strings (with the appropriate 

choice for < of course). This is very reassuring - it means that the initial conditions for 

our simulations are quite close to the final scaling solution, at least for the long string 

distribution. 

The energy lost from long strings goes into loops. It is an important consistency 

check on our simulations to see that enough energy is lost from the long strings to keep the 

network scaling. Figure 5.5 shows the energy production function f(l/l) (equation (3.16)) 

during the course of the longest radiation run. The function f (the solid line) is shown 

for five different ranges of the scale factor - the run started at 16, and the average value 

off is shown for the ranges 20-25, 25-30, 30-35, 35-40, 40-45. Whilst there are obviously 

quite large fluctuations in f, it settles down after 25 and is reasonably similar during the 

different time intervals thereafter. Thus it shows good evidence of scaling. As we discussed 

in section 3, the integral of f is equal to c, in the scaling solution - if the integral is larger 

than c, then yz will fall, if it is smaller then 7s rises. Above we calculated c, = .074. 

Comparing the value of the integral of f, shown with each Figure, with .074, one can see 

the value of 7’ rise or fall over the corresponding period in Figure 5.la. This is a good 

consistency check of our results. 

Also shown (the dashed lines) in each case is the reconnection function r(l/<), we 

briefly discussed in Section 4. This is defined as the (negative) contribution to f coming 

from loops reconnecting onto long strings. The other component of f is due to chopping 

off, and equals the sum of the solid and dashed lines in the Figures. It is very noticeable 

that the reconnection function has the same shape, and approximately the same magnitude 

as f. This is exactly as we predicted in Section 4. 

Our results for f show it going to zero at Z/RH x .02. Note that f = forr + T, and 

the reconnection function does grow at small 2, which implies that fO,f does as well. Our 

discussion in section 4 indicated that f.,f should diverge at least as fast as T at small 

2, which should go like z-i. Our simulations show forr N t at small z. However the 

corresponding loops are of order l/11 x .08 in rms radius, in units of an initial comoving 

correlation length, in which RH = 45 at the end of the run. This is certainly comparable to 

the resolution of our crossing detection boxes, & e .o7 in these units, and so could well be 

a cutoff effect. We checked this in a much higher resolution run, with five times the usual 

number of points per initial correlation length on the string, and six times smaller effective 
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crossing detection (see Appendix A). We could only do a small simulation - the box was 

12s. In Figures 5.6a and 5.6b the average production and reconnection functions f and P 

over the entire course of this run are compared with the results for our long radiation r= 

over the same period. There is indeed some enhancement of the loop production function 

at small scales, but contributing less than 10% to the integral. Similarly, the reconnection 

function is slightly smaller in the higher resolution run. Since the eventual scaling density 

rz o( l/c’ and e the chopping efficiency, is directly related to the integral off, we make a 

rough estimate of the error in c by doubling this, to obtain 20% Consequently our scaling 

density could be too high by 40%. A really systematic estimate of our errors would require 

a higher resolution run in a large box, which we have not yet performed. 

In fact our production functions look quite similar in form to those found by York [30] 

in exact simulations of the breakup of loops in flat spacetime. His results suggest that for 

isolated loops breaking up in flat spacetime f actually turns flat below the scale = < on 

the string. 

Now we turn to the matter era simulations. Figure 5.7 shows the matter era energy 

production function fm (solid line) and reconnection function +,.,, (dot-dashed line). The 

radiation era production function (the average of the last four graphs in Figure 5.5) is 

also shown for comparison (dashed line). f m is obviously quite similar in form to fr when 

expressed in units of <, the scale on the strings. f,,, does appear to be somewhat steeper 

however. As in the radiation case we calculate the integral c, = Jdzf,(z) N 0.051, which 

is a little lower than the predicted value .064 calculated from the radiation era run. 

The difference could be a statistical fluctuation - the matter run was smaller (21’)and 

may not have reached scaling. However, even if such a difference were real we would 

regard the simple one-scale model as quite successful. Most of the variation in the size 

of the chopping term (c<-‘) between the matter and radiation eras is given by the 4 

dependence. The < dependence is set by the one scale model and correctly accounts for a 

factor of (7r/7m)J x 3000 change in the chopping rate (in Hubble units). 

The final distribution of loops produced by the network is determined by fNr(z), the 

non-self-intersecting energy production function. For each loop we store the ‘birthday’ (the 

time it was produced) and a loop is defined as non-self intersecting if its ‘age’ is longer than 

one period (it’s energy divided by 2~). In order not to bias the result towards small loops, 

we require that all loops accepted as non-self-intersecting have lived as long as a period of 

the largest accepted loop. Every loop gives a contribution to the function fNI when it is 

born. If one is interested in the final loop distribution, it is of course important to measure 
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the contribution to fNI over some time interval by looking at the simulation at some much 

later time, so that the loops counted are those that do not eventually reconnect. We shall 

show graphs of fN1 calculated from the surviving loops at the end of the simulation. 

First, in Figure 5.8a we show fNr(l/<) in the radiation era, for different times in the 

simulation. The solid line is for scale factor 26-32, the dashed line for 32-38 and the dot- 

dashed line for 38-44. The most noticeable deviation from scaling is at small z, where one 

can see more and more smaller loops being produced. This accords with our discussion in 

section 4, where we showed that fotf(z) must diverge at least as fast as 2-i for small z. 

Over most of it’s range fN, does appear to be scaling, however. In Figure 5.8b we plot 

the integral s dzfNr(z) x 0.11 which does appear quite constant over the course of the 

simulation. This is higher than the integral of the total energy production function from 

long string discussed above, Jdzf,(z) x 0.071. As we discussed at the end of Section 

3, this implies that (pi + p~)/pr. = s fNI/ s f z 1.5. Thus approximately half the long 

string density is contained in eventually reconnecting loops shorter than ~RH. Figure 5.8~ 

shows the integral IdzfN~(z) in the matter era run for two time intervals. As can be 

seen, it falls during the run, to about .06. This is not very different from J dzf,(r) x .051 

mentioned above. In our model for the scaling network we expect these two quantities to 

be the same. 

Now for many purposes it is important to have the parameters X, and X, in the 

final loop distribution (3.17) and (3.18). In fact for loops produced in the radiation era 

it is better to define this in terms of rest mass rather than energy since some of the 

initial energy in a loop is redshifted away, and the most important effects (mass accretion, 

gravitational radiation) occur late in its lifetime. Redefining sll energies as rest masses, 

we have calculated 1 = j dzz! f,(z) from the radiation run, and this is shown in Figure 

5.9. It seems to scale quite well. The average value over the course of the run is I x .033, 

which results in a value X, = irf1 CC 11. As a check on this, we have calculated the loop 

distribution at fixed times in the simulation to compare with (3.17). In Figure 5.10a the 

number of loops with length greater than 1 in a hubble volume is plotted against ($-)-g . 

The slope of this graph, according to (3.17), should be fXr. As can be seen, the slope 

stabilizes during the course of the run, at a value corresponding to X, Y 10.5, in good 

agreement with the value obtained from fNr. Figure 5.1Ob shows the energy density (in 

scaling units) in loops greater than 1 versus ($-)-i. It is very noticeable that there is not 

much energy around in loops whose length is a few 6 - the long strings lose their energy 

primarily into smaller loops. The explanation for this was given in Section 4. 
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The matter era loop density parameter A, is given directly from the values of rrn and 

J” drfNr(c) quoted above, and equation (3.18) as approximately 2.1. 

In our previous paper on string simulations we worked in terms of radius T rather than 

rest energy (m) of the loops. For comparison with our original results, we use p = m/(pr) 

to convert between the two. In section 6 we find p x 11 on average. Originally we defined 

a parameter v giving the differential number density in loops of radius P; this is related to 

x r and fl by Y = X,/(Z# x .l, ten times higher than our first calculations[22]. 

In Section 4 we presented a statistical model for fNr(z). (equation (4.6)). We check 

this model in Figure 5.11 where h(fNr) is graphed against e/t. In the radiation era it 

is well fitted by the predicted form, as shown with the dotted line. In the matter era 

the statistics are poorer, and as we discussed, reconnection is expected to alter the form 

somewhat (recall that the reconnection term in (4.7) is constant for small I). For simplicity 

we have nevertheless fitted the result to the simple form (4.6). The fit in the radiation run is 

h(fNr) = -1.3-2.62-$ln(r) andin the matter runis h(fNl) = -2.0-2.52-~ln(r), so 

the matter era function is smaller. Of course the predicted form only applies for Bz >> 1 

- in fact it fits well down to Bz N 1 . Below that point, the results of York suggest fN1 
should turn flat. 

In Figure 5.12 we compare the matter and radiation non-self-intersecting loop produc- 

tion functions directly. Their similarity in form is evident but the matter f,RJl is definitely 

smaller. Resealing the matter fNr by a factor 1.55, the two functions look very similar 

as is shown in Figure 5.12b. The factor 1.55 can be accounted for almost entirely by the 

fact that the overall chopping efficiency is down by a factor 2 = & in the matter era. 

This should affect the oversll rate of producing non-intersecting loops, and thus the overall 

scale Of fNI. 

As we mentioned above, we also did a much higher resolution run in a smaller box to 

check for small scale cutoff effects, mainly due to our crossing detection method. In Figure 

5.13 we compare the non-self-intersecting loop production function fNI for this run (the 

average over the entire course of the run) with that for our long radiation run calculated 

over a similar period. The main effect is obviously an enhancement on small scales, but as 

the integral of fNr shows, apart from this finite correction, the functions are very similar 

in shape. 
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Finally the ‘thermal’ model we have used to describe the energy production function 

can also be used to predict the form of the velocity distribution expected for loops being 

chopped off the network. This is given by a relativistic Boltsmann distribution 

(5.1) 

where p is the inverse effective temperature of the network. Unfortunately this cannot be 

deduced directly from fN1 because B = (p - a)[, as we discussed in section 4. However if 

we fit (5.1) to the measured velocity distribution of loops in our simulations (Figures 5.14a 

and 5.14b) we find a reasonable fit for /L?t = 8 in the radiation era and 10 in the matter 

era. These values are indeed greater than B. For large loops, the predicted velocity scales 

as m -i , as one would deduce naively by arguing that large loops have N = m/t segments 

and the segments have uncorrelated velocities. 

We now note one way in which the distribution of non-intersecting loops is non- 

thermal. A standard characterization of the wigglyness of a loop is &, which is just the 

ratio of 1 to the rmd fluctuation in position of the loop (the ‘radius’, r). We use the 

subscript r here to distinguish from the inverse temperature. Our ‘random walk’ measure 

developed in this section would predict that /Jr should increase linearly with T. What we 

find, however, is pr 2 11 independent of T. It appears that the requirement that loops are 

non-intersecting selects only the relatively ‘simple’ ones. This result also indicates that 

the the velocity distribution can not be explained by the simple ‘uncorrelated segments’ 

argument. The fact that pr is independent of T means that the larger loops can not be 

thought of as having more uncorrelated segments than smaller ones. 

We conclude this section with some pictures from our simulations. In figure 5.15 

we show boxes of string with size (303 taken from our radiation run at different times. 

The boxes are re-scaled to be the same size, so the prediction of scaling is that the boxes 

should all look similar to one another. Of course, as time evolves and t grows our simulation 

populates the loop distribution down to smaller values of l/t. 

6. Measures 

The observable effects of cosmic strings depend in large part on distribution of non- 

intersecting loops which come off the network of longer strings. We will want to discuss 

31 



such things as average sizes and velocities of the loops, but there are many different ways 

to take averages. In this section we discuss different ways one can put a measure on the 

distribution of loops, so we can then make physically appropriate choices. 

Equation (3.16) defined the growth of energy density in non-intersecting loops per 

as a function of time in terms of the non-intersecting energy production function, fNr(l/<). 
As our attention shifts from energetic6 to actual numbers of loops it is useful to study 

Dividing by pl converts an energy density to a number density, and multiplying by as 

turns a number density into an actual number per comoving volume. Using Eq. (3.18) one 

gets 

In this discussion we are labeling each loop with two labels, its length 1, and the time t 

at which it is produced. This labeling can be made more explicit by considering N(1, ti), 

where N(l,t)dedt gives the number of loops in volume a3 with 1 between 1 and If dl and 

t between 1 and t + dt. Then N(l,t) is simply &N(l) as given above. Using 7 E RH/< as 

in section 3 we get 

N(l,t) = ;&fN& 

It will be useful to focus on the loops produced in the matter era, during which a3/RZ = 

constant = aJ,/R2, and one gets 

a”0 y’ fNI(&) 
W,t) = so l . 

0 H 
(6.4) 

One can change to any new set of variables ~(1, .t) and ~(1, t), as long as the transfor- 

mation is non-singular. One then gets 

WY,~) = W~,z),t(~,z)) I ;; - 2; I 

For example, using z s l/t gives 

(6.5) 

ai -I4 fNI(z) 
N(z, RH) = FzR1 

0 H r&i 
(f3.6) 
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and 

(6.7) 

As an illustration of the averaging procedure, let us calculate the average value of z 

for loops of a particular length. This average is given by 

which reduces to 

(6.8) 

(6.9) 
whereas the average value of z for loops produced at a given time (or value of RH) is 

For both averages the numerical values come from evaluating integrals over fNr from our 

string simulations. 

Note that both I and Z(Z) are independent of their respective arguments. This 

fact is insured by scaling. However, the two averages are different because a given loop is 

being averaged in with a different set of other loops in each case. The value of ~(1) depends 

more on the behavior of fNI(z) for larger values of z than does I . Although at a give 

time there are fewer loops produced at large t, the loops produced at fixed length with 

larger z must be produced at earlier times, when the overall densities are higher. Thus 

larger 2 loops are more important at fixed lengths than at fixed times. 

We conclude this section by calculating averages of two other interesting quantities. 

The parameter & (defined at the end of section 4) is the rest mass of the loop divided by 

its radius T, defined as the rm~ fluctuation in the position of the string. It is a measure of 

how wiggly the loop is. We find 

8(l) ~ .k-%)fdz)dr 
j,” fN&)dz = 11’4 

and 

(6.11) 

(6.12) 
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Similarly we calculate the the average speed of the loop when it was created: 

and 

I E 
jd” x-1 v(z)fm(z)dl: 

.fd”+-‘fnr~(t)dz 
= .75 

(6.13) 

(6.14) 

Note that there do not seem to be significant differences between the two types of averages 

in these cases. A simple explanation is that most loops with 1 x .( are very similar up to 

an overall scale. They just are the simplest possible non-intersecting loops there can be. 

It seems reasonable however, to expect the ‘effective ( ’ for a given small loop to vary, as 

a manifestation of fluctuations around the average ( for the network. Quantities like p 

and v would not depend on an overall scale, but only on the wigglyness of the loop, which 

determines the relative size of the radius, and how coherently the velocities of individual 

bits of string add up into net motion of the loop. Thus our two averages, one centered on 

loops with 1 x .4( and the other on loops with I x .2( give similar results. 

7. Accretion of Matter onto strings 

Cosmic string can initiate gravitational collapse in an initially homogenous distribu- 

tion of matter. It has been suggested that a scaling distribution of cosmic string might 

provide sufficient perturbation on an otherwise homogenous distribution of matter to ac- 

count for all the structure we observe in the universe today[2], [23], [36]. Preliminary 

calculations were encouraging, but hitherto the lack of a solid understanding of the scaling 

network has made precise calculations difficult. Whilst there are still uncertainties, we feel 

they are now small enough to justify the detailed calculation of large scale structure based 

on our string simulations. 

We shall not attempt this here. Instead we shall make a few preliminary estimates 

to indicate how suitable the real scaling network might be for the formation of observed 

large scale structure. 

Much initial work on this subject was based on the one loop - one object hypothe- 

sis[23], [37]. One assumes that individual non-intersecting loops seed the collapse of objects 

which are still distinct today. Larger loops form larger objects - there would be complete 

correspondence between loops of string and observed objects. There are several ways in 
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which the one loop - one object hypothesis may fall short, but as we shall see, it is still a 

useful starting point for the discussion. 

Let us first consider very large scale structure, formed by loops produced after the 

matter-radiation transition. It is well established that the mass M accreted on a loop with 

length 1 (rest mass divided by p) laid down in the matter era is given by 

M = ajd(l + z) (7.1) 

where z is the redshift at which the loop is laid down, and a is a factor which is generally 

of order unity. For example, in the spherical collapse model around a stationary point 

mass, if M is defined as the mass which has reached its final vi&l radius, a = .38. If M 

is defined as the mass ‘turned around’ then a = 57 [38]. This formula is true in the case 

where the universe is flat and the dark matter is cold. For hot dark matter it is also true 

for masses M >> MJ x 1.5 x 10’4h$Ma, the neutrino Jeans mass[39]. . Equation (7.1) 

can be written as 

(7.2) 

where 

M s apRo x ap6h;;10’TMQ (7.3) 

and & is the current Hubble length (R,, = h;,’ x 6OOOMpc), and ps (typically O(1) for 

grand unified strings) measures p in units of 10-aG-’ z 2.1 x lO’M~pc-’ . In what 

follows we shall set ps = a = hss = n = 1. 

We can use Eq. (7.2) and the techniques of section 6 to label loops according to the 

mass they accrete, and to arrive at 

N(M, z) = &~&7&&). 

Furthermore, one can construct 

N(M) = 
J 

m N(M,z)dz. 
0 

(7.4) 

Dividing out by ai (as is the scale factor today) gives the number density of objects of 

mass M today: 

+f) = $ $( $)32rm~z 
0 
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where 

Fn s 
I 

wr”f(z)dz. (7.7) 
0 

The dependence of n(M) on & means that it depends more on the behavior of the energy 

production function at larger values of +. For example, one can calculate Z(M) in the 

same manner as i?(z) and Z(Ra) were calculated in section 6. 

E(M) = 2 = .9 z 23(e) = ‘%f(&) (7.8) 

Even though at any give time most loops are produced with I < 4 (that is, I < l), as far 

as M is concerned these smaller loops are grouped together with loops that were produced 

earlier and at larger z. Because the overall density of string is higher at earlier times the 

large z loops dominate for any fixed M. This behavior is good for string simulations, since 

it will always be the low 2 regime which is most susceptible to finite resolution effects. 

This emphasis on larger z is most relevant on large scales, where the translation from 

perturbations to observable structure is least ambiguous anyway, and means that quite 

precise calculations of the predicted structure should be possible. 

Now we turn to smaller scales. A simple estimate of the virislised mass accreted on 

loops which appeared in the radiation era with cold dark matter is 

M = a$(1 + zen) (7.9) 

Where .zep x 6000 is the redshift at equal matter and radiation density. In the spherical 

collapse model, a zz .95. 

For these loops n(M) can be calculated from (3.19) by a simple change of variables (we 

ignore the small extra numerical factors obtained by evolving (3.19) through the transition 

era precisely). The result, evaluated for today is 

n(M)= $$ 
311 

(1 + Zen)3’4. 
0 

(7.10) 

The mean separation of objects of mass greater than M is 

d>M = (/;n(M)dM) -I/‘. (7.11) 

Using n(M) from Eq. (7.6) for loops laid down in the matter era, Eq. (7.11) gives 

d>M = ROE (r,,,~z)-~/3 (7.12) 
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and plugging in Eq.( 7.10) for loops put down in the radiation era gives 

(7.13) 

The smallest loops around at 1,, accrete masses of about 

Mmi,, x lO”M@ (7.14) 

Of course we have ignored the important transition era. It would be straightforward to 

use our numerical solution for 7 through the transition, the form of the energy production 

function, and the exact growth formula for seeds laid down during the transition, to solve 

for d>M for all M. In fact this is necessary for scales corresponding to galaxies. The mean 

separation of bright galaxies is d s lOhi, Mpc. If we assume the corresponding loops 

were formed in the radiation era, using (3.19), these have lengths 2 L .~RH x < where < 

is the scale on the network at equal matter and radiation density. This contradicts our 

calculation Z(l) x .4, and implies that these loops were produced in the transition era. 

In fact according to our new results, both galaxy-forming and cluster-forming loops were 

produced after equal density. 

We plot d>M in Figure 7.1. The plot corresponds to JL~ = hss = a = 1, and the solid 

line corresponds to cold dark matter. We have simply extrapolated the large M and small 

M results to where they meet. The kink in the curve corresponds to the radiation-matter 

transition, and we expect that corrections to our crude analysis will smooth it out. 

From the Figure, the mean separation of objects with a mass of 1Ol5 Me (the typical 

mass of richness class 1 clusters) is around lOOMpc, just what is observed for these clusters. 

On smaller scales the story gets more complicated - the loops have caused all the matter 

in the universe to go non-linear. One can estimate this critical scale MC by solving 

M,n,(M,) = pIot = $G-‘RE~ 

which gives 

M c m 1014Mo (7.16) 

One would expect that for masses below MC the correspondence between loops and indi- 

vidual objects would be lost. Figure 7.1 may also indicate that there may be too many 

objects around with masses of order 101’Mo. 
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If the dark matter is hot then the accretion is suppressed on scales M < MJ x 

1.5 x lO”h;~M~, the neutrino Jeans mass at equal density. Instead of (7.1) we have for 

the virialised mass M 
M = a(~l)~(l + Z..J3 

M: 
(7.17) 

where a = .47 in the spherical collapse model. In this case, accretion only starts on a 

scale M when the Jeans mass has fallen to that scale. The final distribution of low mass 

objects is now determined by the loop density in the matter era. We find 

d>M = R.X,‘($“(!%j’(l + ze,j-+ (7.18) 

The result is plotted in the dashed line in Figure 7.1. Now objects with the mean separation 

of galaxies have much lower masses than with cold dark matter. There is far less merging 

in the hot dark matter model, and the one loop - one object picture should be more 

reasonable. 

Due to the initial relativistic velocities of the loops, the matter they initially accrete 

forms in a pencil-like wake behind them[40]. We have ignored this so far. It is interesting 

to know the length of these pencils compared to their mean separation. If this number is 

large, one expects a large amount of interference between different pencils, which would 

reduce the time over which the one-loop one object correspondence is maintained. When a 

non-intersecting loop breaks off the network it has some speed vi which redshifts with time. 

The loops produced in the radiation era have had ample opportunity to slow down before 

gravitational collapse sets in. Loops produced in the matter era when the Hubble length is 

Ri travel a distance dt2Riui (in the Newtonian approximation) before stopping. To gauge 

the effect of this motion on the mass distribution we compare the comoving distance (dt) 

the loop travels with the mean separation of objects with mass > M: 

dr -= 
d 

2v7-1/3+-1 
>M 

( .A& = 2+@v x 5ij (7.20) 

where 

u(c)zfivr(z)dz = .7 
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The upshot is that individual pencils are not a whole lot longer than their mean separation. 

One should only get serious mixing of the pencils of a given mass when their corresponding 

mass density approaches the total mass density of the universe. 

It is also possible that these pencils fragment to form several objects rather than one. 

This would only alter our calculations by an overall factor - the scaling with M would be 

unaffected. 

Another very important factor which we have also neglected is the wakes of the long 

string. Because the scaling network has more long string inside a Hubble volume than was 

originally expected, wakes of long string will play a more important part in perturbing 

the surrounding matter. A very crude estimate of the magnitude of the perturbations 

induced by the long strings is obtained by multiplying the fractional density perturbation 

provided by the long strings in the radiation era, p~/p~.d = y2(8x/3)Gp x 1.6 x 10-s, by 

the linear growth factor for perturbations produced in the radiation era, i(l + Z.,). We 

find 6plp c 10 today, on a length scale oft FS RH/10 at the matter- radiation transition. 

This corresponds to a comoving scale of about 5h;df Mpc today. The wakes produced by 

long strings could well be a significant feature in the distribution of galaxies today. We 

shall leave this issue for later investigation. 

We conclude that at first glance the prospects for cosmic strings to play an important 

role in structure formation remain very good, despite changes in our understanding of the 

scaling network. A more thorough analysis, using the string from our simulation as sources 

for gravitational instability is underway[41]. 

8. Other Observable Implications 

One of the most promising aspects of the cosmic string theory is its unique set 

of observable predictions. We have already briefly discussed the consequences for large 

scale structure, but in this section we will focus on some of the even more specific signa- 

tures of cosmic strings - the gravity wave background, lensing and microwave background 

anisotropies. 

The microwave background anisotropies produced by strings are potentially their 

clearest signature [42], [43]. Stebbins has performed detailed calculations of the distor- 

tions produced by the direct effects of the strings themselves [44], and with Bouchet and 

Bennett has calculated the expected level of anisotropy from realistic string simulations. 

We have little to add to this here, but note that our matter scaling density is only a factor 
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of two above the density they used, and this difference is small compared to the uncer- 

tainties in the calculation - in particular the standard redshift of last scattering may be 

significantly altered in the presence of strings [45]. The limits these authors obtain from 

detailed comparison with observations is Gp < 5 x 10-s, so as yet the constraint is quite 

weak. The precise nature of the pattern, the magnitude of the Sachs-Wolfe and other indi- 

rect effects on the microwave background are all in principle calculable from our simulation 

results. The expected constraints from these effects are probably similar however. 

We have already discussed the importance of loop decay into gravity waves - this 

sets the scale of the smallest typical loops around at any moment in the universe. The 

gravity wave background in observable periods today is a result of many loops, so it is 

expected to be described by Gaussian statistics with a characteristic power spectrum. The 

observationally relevant gravity waves were produced in the radiation era, and for these the 

power spectrum has a very simple form, which follows directly from the scaling solution - 

there is equal power in each logarithmic frequency interval [46]. The amplitude is set by 

the parameter Gp, and the bounds provided by the millisecond pulsar timing observations 

[47] constrain Gp strongly as we shall see[48]. 

A string loop radiates energy into gravity waves at a rate h = -l?Gps with I? a 

constant which depends on the precise loop trajectory but for typical trajectories r F;: 50 

[21], [26]. The frequencies of the waves emitted are integer multiples N of the loop’s inverse 

period 2p/E, where E is its energy. Most of the energy is emitted in waves whose period is 

less than l/100 or so of the loop’s period. Waves observed today with a period of T x lyr 

were therefore emitted at a time t. given by lyrZ;d(t./t,,)) x l?G,&/(2N) obtained 

by redshifting the wave back and equating its period to that of the waves emitted by the 

smallest typical loops at that time. Using Z., FZ 10’ and t., = 10r2s we find t. F=Z lO’Nss, 

well before matter-radiation equality. So we need to focus on the gravity waves emitted 

during the radiation era scaling solution. 

The spectrum of gravity waves is easy to calculate in the scaling solution[26]. Using 

the number density in loops (3.19) we find that the total number density of loops in the 

scaling solution is n = X,/(3&(I’Gp)!t3). Each loop radiates at a rate I’GP’. The fact 

that the whole loop distribution is scaling tells us the spectrum must be scaling too: the 

energy density emitted in Gequencies w. to w, + &I. in the time interval t. to t. + dt, is 

nI’Gp2dt,g(w.t.)du./w, where g(z) is a dimensionless function whose integral J dzg(+)/s 

must be unity. At some time 1 later this energy density is redshifted by (t./t)2. Now, just 

as in our discussion of measures in Section 6, we change variables to the current frequency 
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w = ~.(t./t)i (assuming t is still in the radiation era) and integrate to find the energy 

density in waves from w to w + Q!U at some much later time, 

P(W)& = A, 
3&G/+ I 

63.1) 

Changing variables to I = w(tt.)i, integrating, and dividing by the density in radiation 

prod = 3/(32nGt2) we find 

WPb) 64~ (Gp) f A, -=- 
had 9A r! 

= 2.2 x 10-2x,l(l (GM)+ 

r+ 50 

where & = lOX,rs, Gp = lO-sGps and I? = 5OI’ss. This derivation makes it clear that the 

w-l dependence is a consequence of scaling. Because the waves of interest were emitted well 

before t., it is completely unnecessary to discuss the precise frequency distribution emitted 

by each loop. Present tentative limits from millisecond pulsar timing (D. Steinbring and 

J. Taylor, private communication) indicate that (8.2) is constrained to be less than 0.3 for 

frequencies of .68yr-’ , .Ol for frequencies of .25yr-l and .003 for frequencies of .16yr-‘ . 

At first sight, with our new parameters the cosmic string scenario with Gp = lOme is 

clearly ruled out. However this conclusion is not yet fully justified. There are several smsll 

effects that could decrease (8.2) by a few: the result is dominated by the smallest, longest 

surviving loops: if loops split up after they have lost a fraction of their energy this could 

easily decrease (8.2) by a factor of two or so, and there could be additional energy loss 

mechanisms operating - annihilation of regions of the string near cusps for example. Note 

that we have already included the loss of energy due to the redshifting of loops’ velocities 

by defining X, using the rest mass of loops. 

The greatest uncertainty in the limit comes from the accuracy of our simulations - 

the value for & from our simulations is sensitive to the small scale resolution of the 

simulations and is probably too high (see section 5). However there really is very little 

room to maneuver, and a modest improvement in the limits could convincingly rule out 

Gp > lo-‘, which is the minimum required for the simplest gravitational accretion cosmic 

string scenario (see Section 7). 

The gravity wave background from strings leads to another limit on Gp, from nucle- 

osynthesis. For the standard nucleosynthesis scenario to work, the total density in gravity 
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waves is constrained to be less than 18% of the total density at that time. A minor 

complication is that as the temperature falls through low mass particle thresholds, the 

photons are reheated whilst the gravity waves are not. This effectively dilutes the density 

in gravity waves, by a factor of x 2 if we only include the known quarks, leptons, and 

gauge particles (see e.g. [ll]). Integrating p(w) in (8.2) from frequencies emitted at the 

time when strings started moving freely w x l;dt down to those emitted at the time of 

nucleosynthesis w x t;:, and using Zn(t,,,/tgut) Y 60 we find that the density in gravity 

waves at nucleosynthesis is given by 

psut = I).&& (yf 
Prod 

(8.3) 

We see that the string scenario with our new parameters and Gp = 10-s is again past 

the edge of the nucleosynthesis limit. The uncertainties, which all go in the direction of 

weakening the bound, could produce the factor of 3 required to make the theory acceptable. 

Unfortunately this constraint is not likely to become any tighter! 

The second direct observational test is gravitational lensing by strings [49]. Recently 

Cowie and Hu have reported a candidate event for lensing by a string loop[50] - four 

double galaxies with angular separations of approximately 2.5 arc seconds in a region 

approximately 40 arc seconds square. Our numerical results enable us to ask whether such 

events should occur with a reasonable probability. 

The most numerous loops around today are those about to disappear into gravity 

waves, of length I, = rG& x 200kpc. Such loops at a redshift z would have an angular 

circumference of Et: 53-l arc seconds. From our matter era loop production function, we 

calculate that they were produced at a redshift of x 200, in the matter scaling regime. 

Thus the number density is given to a good approximation by (3.20). 

Strings produce a double image with separation [49] 

64 = 
r-d 
-8rGpsint3R 

9. (8.4) 

where d is the distance from observer to string, and T the distance from observer to object. 

R is a relativistic factor equal to (1 - u2)i/(l - - 3 n.v w h ere fi is the unit vector along the 

line of sight and v’ the string velocity. Expressed in angular units, the typical lensing angle 

is 6 = 47rG~ = 2.6(Gp)s arc seconds. A string loop of length 1 lenses everything behind it 
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within an angle 64. Thus the fraction of the whole sky which is lensed by string as we go 

out a distance r is given by 

F = &,,G,i l*dd4d2 ~<Rm”dln(l) lr’ dd&-F (8.5) 

where we integrate out in r’ and average the loop distribution over d. The loop distribution 

iscutoffatlx t x RR/~,,,. The factor of Ji arises in translating loop energy into spatial 

length and the factor of x/4 in averaging over sin0. We ignore the relativistic factor, which 

is of order unity. The result is 

F x 4nG~ln(l/SaG&&)’ 

z 2. x lo-‘Z2&,,sG P.3 
c3.6) 

where 2 is the redshift depth of the sample, and for 2 < 1 we use r L ZRH. 

Note that since n(l) 0: 1-l in the matter era, loops in each logarithmic interval of 2 

contribute equally to F. Taking GF = lo-‘, the number of loops with length greater than 

I contributing to (8.6) is similarly calculated to be x 2.1052s(Zc/I)Xms. 

Long strings would lens an additional fraction 

r 

F 4nd2dr’ ; 

= 4irGp$( &)’ (8.7) 

x10-42'7;' 

a slightly smaller fraction of the sky than that lensed by loops. For a sample extending 

out to 2 = 0.5, the spatial length in long string would be approximately 2”7;(/& UY St, 

and the angular scale subtended by a segment t would be approximately l/(ymZ) PZ 30 

degrees. So the long strings would appear quite straight. 

Thus out to a redshift of 0.5 almost lo-’ of the sky is lensed. There are approximately 

5000 galaxies per square degree with R magnitudes greater than 22.5 (which Cowie and 

Hu estimate to be a reasonable requirement for galaxies to be recognizable as twinned). 

We therefore expect one lensed galaxy per 2 square degrees on the sky. A typical CCD 

plate covers approximately 10m2 square degrees, so several hundred are needed to observe 

a single lensed galaxy. 
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What would the distribution of lensed galaxies look like? A priori a lensed galaxy 

is equally likely to be associated with loops in each logarithmic interval of the range 

1, < 1 < S&/Y, a range of 5000 in length. The small loops, however, will typically lens a 

single object - using the fact that the typical configuration is where the loop’s redshift is 

half of the object’s, in a survey of depth 2 = .S a loop of length I lenses on average .021/Z, 

galaxies. Thus most galaxy pairs lensed by loops in the interval I, < I < 1002, would 

be isolated. However most lensed galaxies would obviously come in groups lensed by the 

same string. If galaxies were randomly distributed then one would have to go an angular 

distance of approximately 1000 arc seconds along the string to see the next galaxy pair 

(given by multiplying 2.5 arc seconds by 6’ and requiring that this solid angle contain a 

galaxy). There is significant galaxy clustering at small separations, but for deep redshifts 

this is quite small (being washed out by random galaxies along the line of sight). Cowie and 

Hu’s event seems rather fortuitous from this point of view - typically the lensed galaxies 

would be far more widely separated. So the configuration they find is rather unexpected, 

but a more detailed analysis is required to put a precise figure on this. 

Cowie and Hu have seen a single event involving four ‘lensed’ galaxies in ‘several 

hundred’ plates, which is also on the fortunate side, since one expects one per 200 plates 

from the above, but not unreasonably so. As they note, these can be explained by a string 

loop at 2 x .07 with GF = lo-*. Cowie and Hu, and Bennett and Koo, are undertaking 

a deeper redshift survey in the same region to look for further double images along the 

‘lines’ between their lensed galaxies. It remains to be seen whether further searches will 

reveal more events. 

9. Conclusion 

In the course of this paper we hope to have convinced the reader that the evolution 

of a cosmic string network is both an interesting and solvable problem in nonequilibrium 

statistical mechanics. 

It is also important - the existence (or proven absence) of cosmic strings would have 

far-reaching implications for our understanding of grand unification physics, and the nature 

of the universe at very early times. And cosmic strings could also provide a firm foundation 

for our understanding of large scale structure in the universe. 

Our model for the scaling density, and our statistical discussion of the form of the loop 

production function, provide the necessary tools with which to follow the string network 
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through the transition from radiation to matter domination. This will be essential for any 

precise calculation of the final effects of the string network. The heuristic picture of the 

string network as a hot radiating body provides a good description of the network on all 

length scales. 

We have briefly discussed the consequences of our new results for large scale structure, 

and found that as far as predicting the observed mass spectrum of objects, the cosmic 

string scenario with Gp = 10-s is still in good shape. The cold dark matter scenario is 

now complicated, however, by merging of low mass objects. The hot dark matter scenario 

seems to fit the mass function from galaxies up to clusters quite well in the one loop - one 

object picture. The long strings are likely to be quite important, however, and we defer a 

discussion of their effects to future work[41]. 

The correlation properties of string-induced perturbations are now within reach of pre- 

cise calculation. While our simulations confirm the existence and approximate magnitude 

of the r-s loop-loop correlations originally found by one of us [lo], there is clearly more 

work ahead in translating them into a precise observational statement. We are optimistic 

that the result will soon be available. 

We have discussed in some detail the other observational predictions and constraints 

on the cosmic string theory. In particular we discussed the microwave background, the mil- 

lisecond pulsar timing constraint, the nucleosynthesis constraint, and gravitational lensing. 

The Gp = 10-s scenario is very close to being convincingly ruled out by pulsar timing, and 

is only m@nally consistent with the nucleosynthesis constraint. The millisecond pulsar 

constraint is the most likely to rule out (or confirm!) the theory in the near future. As we 

have emphasized, precise calculations of the string parameters are crucial in this. 
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Appendix A. Numerical Methods 

In this section we give some details of the methods we have used to form and evolve 

the strings and detect their crossings. We have run our program on a VAX 8600. A typical 

263 run takes around 50 hours of cpu time. 

We choose initial conditions by throwing down phases for the string-forming field at 

random on a cubic lattice and checking edges for the presence of strings [4]. These initial 

conditions are slightly artificial - the string is static and has 90 degree kinks on it. We 

believe this is not important - the string starts moving at relativistic velocities very soon, 

and all indications are that within a time of the order of a few correlation lengths the 

network approaches the scaling solution. 

To evolve the strings, as we emphasized in section 2, we use our new nonsingular 

variables with the gauge fixed throughout. We discretise the string in Q but the positions 

and velocities of the points on the string are continuous. We actually evolve the ‘left- 

movers’ 17 ‘right-movers’ T’ and c of equation (2.4). Our large runs are done in cubes of 

26 initial correlation lengths on a side with 10 points on the string per initial correlation 

length. We use periodic boundary conditions throughout. 

The program actually stores the positions S(oa) of the points ~a marked with crosses 

in Figure A.1 and the momenta tI = rg at the points half-way between, marked with 

circles. 5’ is calculated from the difference between the positions at neighboring crossed 

points divided by da, which is fixed (typically at l/10 of an initial correlation length) from 

the beginning. Thus left and right movers, and e = dv are defined at the circled 

points. 

In flat spacetime the evolution is trivial. If c is uniform along the string initially, it 

remains so. The left mover at k’ - 1 simply equals the left mover at k, and the right mover 

at k’ + 1 equals the right mover at k. 

In the expanding universe case this is no longer quite true. Nevertheless, the correc- 

tions are small, and we wish to remain close to the exact flat space solution. 

First, l is no longer uniform. To respect the Courant condition dn < cda required 

for stability (essentially the information used should be sufficient to fill the backward light 

cone of any new point) we must choose our timestep according to the minimum value of 

t on the entire network. This does not include small loops, which are evolved separately 

as we will explain. One could choose different timesteps for different loops, but we have 

not found this necessary. We find that the minimum value of c evolves approximately as 

a-1.5, where a is the scale factor. 
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We proceed by first calculating the left mover at the points Ar, and BL in Figure 5.1 

. This is sensible because in the Taylor expansion of qa - dn/c,n + dq), an infinite series 

of terms in F F P 1 7 ... cancel; ignoring derivatives of e and h-dependent terms we have 

flu - dq/e, q + dq) = it dq?+ z ,1 

= tic, 11) 
(A.11 

L. 
using I = I’/c to re-express all n derivatives as c derivatives. Of course this is just a 

reflection of the flat space solution. 

Including all terms up to d$ from the full equation for ?we find 

&T - dq/c,q + dq) = i+ dq(-W+ h(lfr’)ij + T(Br+ Cr’+ Dr’- 2hFi+ 2h;) 

B = -ha + 3ha(Lr3’ + @‘J 

C=f(f+h(l+lfi)) 

D = -in - 2h% 

(A.21 

Now we notice that to this order we may remove the r’ and ? terms by defining 

i-c @fC$,q) 
2= 7qu - $,q) (A.3) 

so that (A.2) becomes 

i(c - d,,/e,q + dq) = ?+ dq(-h;;‘+ h(i?):‘)ij + $(Bi+ Dr3 (A.4) 

How do we calculate (A.3) ? Recalling that in our scheme iand Fare unit vectors, we 

interpolate along a great circle on the unit sphere between ih and &+I a distance Cdq2/2 

(for C > 0) or between ia and i;-i for C < 0. We find ? similarly. Now we have rat 

AL, we calculate iat BL similarly. We then interpolate between iA& and r’,, to find <f. 

Note that (A.4) preserves the constraint $ = 1 up to terms involving dq3, but not exactly. 

We therefore rescale iat AL and Br. to make its length unity before interpolating on the 

sphere. This introduces errors of order dq3, no larger than those we have included anyway. 
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We calculate F’~I similarly. To update c we note that a = Zn(ae) obeys 

+ Q(n,q + dq) = a(o,q) - dqh+- T(hIF’+ h&J) (A.5) 

dq2.- 
= a(u,q) - $5L(lF+ L.T;) - +Lz.r 

up to order dq’. Here I, and F,, are the new values of 1 and r’at CT, i.e. I~J and Fkl. 

Now from the updated c r’ and c along a loop we can reconstruct Z and ii = ~2: 

However reconstructing the position of the whole loop is a bit more complicated. In 

particular the constraint s dai? = 0 required to close the loop may be violated by numerical 

errors. We deal with this by making sure that such errors are distributed evenly over the 

whole loop, so no ‘gaps’ appear. 

We use the ‘centre of mass’ of the loop 2’ c = $xzk which is evolved separately, as 

each point za on a loop of length N is evolved. This is exactly the centre of mass if c is 

not uniform, but is always perfectly well defined. Having updated & we reconstruct the 

positions of points on the loop by 

2; = & - ;((N - 1)2, + (N - 2)Z!! + . . . +ZNml) 

6 = sc - $((N - 1)Z” + (N - 2)Z” + . . . +gN) 
(A.61 

and so on. Here Sk ZE (Sk+, - sa)/ds. These formulae, being cyclically related, obviously 

treat all 2’6 on the same footing, and so errors in IPk = 0 are distributed evenly. 

Loops whose energy is less than ~RH are evolved separately as follows. c is treated as 

uniform along the string, and the left- and right-movers are evolved as if they were in flat 

spacetime, with the global timestep instead of the timestep appropriate to the loop. The 

centre of mass and c are evolved using the analytic approximations explained in section 

1 for loops well inside the Hubble radius. We do not believe that these two approxima- 

tions can lead to serious error- the first readjusts each loop once as it is chopped off by a 

small amount and the second means that the loop evolves slightly faster than it actually 

should. Since the oscillatory motion is periodic anyway, this results in self-intersections 

occurring slightly earlier than they should. There are no cwrdative numerical errors 

introduced in the internal oscillation of the loops with this procedure (it is periodic to 

machine accuracy), which is very important since small loops have to undergo many in- 

ternal oscillations over the course of the simulation, and cumulative errors would lead to 
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spurious s&intersections. This is particularly important for loops with smrdl numbers 

of points where evolving anything but the flat spacetime solution would quickly produce 

non-periodic motion. 

Now we turn to the method for detecting and enacting string interactions. 

This part of the program is the most time-consuming, and it is very important to use 

a method which is efficient. The most naive method, checking each string segment with 

every other for crossing each timestep obviously scales as Ns where N is the total number 

of points on the string (typically 250,000 or so in our large simulations) and is prohibitively 

slow. We use a method which scales as N. The procedure is first to divide all of space into 

small (comoving) boxes (typically i of an initial correlation length). Each box corresponds 

to an element of a large array. Then we look for self-intersections of all loops in turn. We 

do this by tracking along-a loop, calculating which box we are in, and recording the label 

of the present point in (the array element for) that box. We update the boxes as we go, 

with the result that each box contains the label for the last point on the string in it or is 

empty. If we come to a new box and find a point on the current string in it, we have a 

candidate crossing event. Now we track forward from the current point, and backward on 

the detected point up to and including the first point that leaves the box in both cases. 

We now have two stretches of string which may intersect in the current timestep. Every 

pair of segments, one segment from each stretch of string, is checked for crossing in detail. 

The detailed crossing check works as follows. We use the fact that in our chosen 

evolution method the velocity of a segment is always perpendicular to the segment. We 

assume that each segment has this velocity for the whole of the following timestep, so the 

worldsheet we assume for the segment during the next timestep is a rectangular blade of 

length do and width Vdq, where V is the velocity of the segment. Imagine going to the 

rest frame of one segment by a Galilean transformation (i.e. simply adding the negative of 

its velocity to the velocity of the other segment). Now the problem of whether the two seg- 

ments intersect becomes simply whether the first string segment (stationary in this frame) 

pierces the parallelogram swept out by the other segment. This is a simple geometrical 

problem which may be solved exactly using two cross products. The details are explained 

in Figure A.2. One.drawback with our method is that the worldsheet assumed, with rect- 

angular blades swept out by each segment, has ‘gaps’ between ~neighboring segments so 

that it is possible for us to miss intersections where the rectangular blades do not intersect. 

We have checked for the significance of this by increasing the number of points along the 
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string, which should have the effect of narrowing the ‘gaps’ for the same curvature along 

the string, and as we shall discuss this did not have much effect. 

If a pair of segments do intersect, then the values of Z at the ends of each new segment 

are determined but the velocities of the segments are not. We choose the magnitude of the 

velocity for each segment so that each segment carries off half the total energy of the initial 

two segments. The direction of the velocity is chosen as follows. First the centre of mass 

of the four points involved in the intersecting segments is found. Then for each of the two 

new segments, the vector joining this point to the centre of the segment is constructed. 

Finally this is projected onto the plane through the centre of each segment to make it 

perpendicular to the segment. Since the velocities of the segments before projection are 

away from each other, and projection changes each by at most 90 degrees, the velocities 

of the two new segments are guaranteed to be away from each other, so they will not 

intersect in the same timestep. Our procedure is rather artificial, and undoubtedly could 

be improved on, by solving for the motion of the intersecting segments in flat spacetime for 

example. One must however avoid creating low-energy new segments, since these would 

slow down the timestep of the simulation. 

Once a self-intersection is found, the new loop is broken off, the boxes it passes through 

(including the box where the intersection was found) reinitialised (i.e. labelled as empty) 

and the tracking process continued. This could in principle miss multiple self-intersections 

in the same box (which are rather unlikely). All self-intersections are found this way. We 

also impose the condition that any loop have at least 3 points on it, a fairly minimal 

requirement. 

Then loops are checked for intersections with other loops. One again tracks along each 

loop, leaving point labels behind in the detection boxes. If one enters a new box where 

a point from a different loop is located, then one checks all pairs of segments on the two 

stretches of string running through the box, just as above. The same procedure is followed 

for defining the new segments. 

Now the biggest problem with this method is that one may miss a) segments which 

cross over a face of two adjoining detection boxes or b) loops smaller than the size of the 

detection boxes. We remedy these problems by repeating the whole procedure outlined 

above not just once but three times per timestep, but choosing the lattice for the detection 

boxes to be displaced by 0, i and 3 of a detection box side in each of the z, y, I directions 

each of the three times. This makes our resolution for crossing detection (the maximal size 

of the largest loop which could escape detection) one third of a detection box side. This 
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is certainly a cautious estimate for the breakup of small loops, since these are moving and 

if a crossing is not detected in one period it may be the next time around. 

We found that repeating the detection three times did indeed increase the number of 

detected crossings significantly, but repeating it six times did not then produce a noticeable 

difference. We shall also discuss a test run where we used 50 instead of 10 points per initial 

correlation length on the string, and used detection boxes of & instead of $ of an initial 

correlation length. In addition we repeated the checking process in offset boxes six times 

instead of three, thus providing an overall factor of 5 increase in detection resolution. 
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Figure Captions 

Fig. 2.1: Two colliding strings always reconnect the other way. This is the case for the 

simplest, directional strings. We shall not consider nondirectional strings in this 

paper. 

Fig. 3.1: The solution to our ‘one-scale’ model for the long string density pi. The Figure 

shows 7’ c p~Rk/p (the long string density in Hubble radius units) as a function 

of scale factor a. The units are chosen so that a = 1 at equal matter and radiation 

density, and the single parameter in the model, the chopping efficiency c, is taken 

from our numerical results in the radiation era. 

Fig. 5.1: The model for the density in long string presented in section 2 compared to 

numerical calculations, for different initial string densities. Figure 5.1~1 shows the 

results in the radiation era. The numerical result is the solid line and the model 

prediction the dashed line in each case. The vertical axis is the long string density 

in Hubble radius units, 7s = p~R&jp, and the horizontal axis the scale factor. 

The single parameter in the model, the chopping efficiency c, is determined from 

the run for which 7s is constant, and approximately equal to 210. Figure 5.lb 

shows the model versus simulations in the matter-radiation transition. The scale 

factor is in units where it equals unity at equal matter and radiation density. The 

model predictions here are deduced from the value of c measured in the radiation 

era. Figure 5.1~ shows the matter era results similarly. 

Fig. 5.2: The model for the average velocity squared of the long strings is compared to the 

numerical results for each run in the previous Figure. Here the horizontal axis 

is the conformal time minus the initial conformal time. The model prediction is 

shown in dashed lines, the numerical results in solid lines. Figures 5.2a,b and c 

show radiation, transition and matter runs respectively. 

Fig. 5.3: The shape of the long strings as measured by d, the straight line distance between 

two points on the string, compared to I, the length (energy /p) along the string 

between them. 6 is plotted against 1 at different times in the longest radiation 

era simulation. 

Fig. 5.4: The shape of the long strings as measured by the correlation function for the 

tangent vector to the string, as a function of 1. Figure 5.4a shows the radiation 

era run at different times in the simulation (the solid line corresponds to an early 

time when scaling has not really set in). Figure 5.4b shows the radiation (solid 

line) and matter (dashed line) runs (when they have reached scaling) compared 

to the initial conditions (broad dashes)- some evidence of ‘stretching’ of the long 

strings is seen. 
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Fig. 5.5: The net energy production function f(l/[) defined in equation (3.16) is plotted 

(the solid line) against I/< for different time intervals during the course of the 

longest radiation run. It settles down and appears to be roughly constant towards 

the end of the run. The reconnection function is similarly shown in dashed lines. 

Note that the total energy coming off the strings equals the sum of these two 

curves, so reconnection is approximately one half of chopping off. The integral of 

it, J” f(r)d+, is also shown on each Figure. See the text for further details. The 

production function averaged over the whole scaling part of the run appears in 

Figure 5.7 

Fig. 5.6: Production and reconnection functions in a run with five times the usual reso- 

lution are compared with the same from a ‘normal’ run over the same period. 

Figure 5.6~~ compares the production functions f(z), with the high resolution 

run result being the dashed line and the ‘normal’ run the solid line. Figure 5.6b 

compares the reconnection functions similarly. 

Fig. 5.7: Matter era energy production function f,,, (solid line) and reconnection function 

T, (dashed line) as functions of I/<. Also shown is the average radiation era 

production function (dot-dashed line). 

Fig. 5.8: Non-self-intersecting loop production function at three different times in the ra- 

diation era. Figure 5.8a shows the function fNI(z), and Figure 5.8b shows 

j: fNI(z)dz versus z through the course of the simulation. Fig 5.8~ shows 

s,’ fNr(z) for the matter era run at two different times. 

Fig. 5.9: The integral Jl +i fNI(Z) (relevant in determining the final loop distribution) 

is plotted against z. It is shown over several ranges of scale factor in the long 

radiation run 

Fig. 5.10: The distribution of strings at fixed time in the radiation era simulation. Figure 

5.10a shows the number of loops in a volume Rf& with length greater than I 

versus ($-)-t at different scale factors in the long radiation run (conformal 

times 25,35 and 45 go with dashed, dot-dashed, and solid respectively). Figure 

5.10b shows the energy density (in units of pR&‘) in loops of length greater than 

I versus (I&)-+. Note the smsll contribution of loops greater than 4 sz .07R~ ( 
(l/RH)-‘/z x 3.8). The dashed line represents non-intersecting loops only. 

Fig. 5.11: The natural log of the non-intersecting loop production function (solid line) is 

plotted against l/f, and compared with a fit to the form (equation (4.6)) given 

by our statistical model (dashed line). Figure 5.11a is for the radiation era, and 

5.11b is for the matter era. 
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Fig. 5.12: Comparison of the matter (dashed) and radiation era (solid) non-self-intersecting 

loop production functions. Both are plotted as a function of l/t, and represent 

the average over the latter part of each simulation, when they appear to be 

scaling (the matter function only approximately so). Figure 5.12a compares them 

directly, and in Figure 5.12b the matter function is multiplied by 1.55, the ratio 

of the chopping efficiencies. After this resealing, the functions are very similar. 

Fig. 5.13: The non-self-intersecting loop production function for the high resolution test run 

(solid) averaged over the entire length of the run (scale factor 16 to 30) compared 

with the radiation era function (dashed) over the same period. Figure 5.13a 

compares the functions directly, and 5.13b compares Jt fNr(z)dt versus z 

Fig. 5.14: The velocity distribution for loops chopped off the scaling network. Centre of 

mass velocity is plotted against I/<. Figure 5.14a shows the radiation run and 

Figure 5.14b the matter run. The curve shown on each Figure is a fit using the 

‘thermal’ model explained in section 5. 

Fig. 5.15: A set of 3[s boxes of string from our radiation era simulations. The physical 

Hubble length (in units of the Hubble length at the beginning of the run) is 2.3 

for (a), 3.1 for (b), 3.5 for (c), 5.3 for (d) and 6.9 for (e). 

Fig. 7.1: The mean separation d>M of objects of mass greater than M in the one loop - 

one object picture. The solid line is the cold dark matter calculation, and the 

dashed line shows the correction on small scales if the dark matter is hot (a single 

massive neutrino making up fl = 1). d is defined as the inverse cube root of the 

number density. The cold dark matter curve cannot be taken literally for small 

M because merging is important, as explained in the text. 

Fig. A.l: The numerical string worldsheet. At a given value of the conformal time (7) 

the positions in space Z(Q) of a discrete set of points on the string labelled by 

parameter values Q, do apart, are stored. These points are labelled with crosses 

in the Figure. The velocities 2 and tangent vectors Z are stored at the points 

half-way between, labelled with circles. To update the left-mover at Ic one first 

calculates the left-mover at AL and BL and then interpolates on a unit sphere 

to find the the left-mover at k’. Similarly the right-movers at AR and BR are 
calculated and then interpolated between. Thus one recovers the velocity and 

tangent vector at Jc’. 

Fig. A.2: Detailed crossing detection for two segments on the string. In the Galilean rest 

frame of segment FG, the other segment traces out a paralhslogram ABCD (which 

is in the z-y plane in the Figure). Now the line obtained by continuing FG, given 
by z’(t) = A> + tF2, pierces the .s = 0 plane at the point E. This is found by 
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calculating w’ G A3 AA% and then solving i?(t).G = 0 for t. The first test is that 

we must have 0 < t < 1. Then we must have 0 < (A> A A%).$ < I?, so E lies 
between the parallel lines through AD and BC, and finally 0 < (A> A A%).G < 
fl, so E lies between AB and CD. If all three conditions are met, the segments 

intersect. 
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