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Abstract 

We analyze how the assumption of hierarchical chiral symmetry breaking 

can be systematically used to create phenomenologically satisfactory mass ma- 

trices. In place of postulating a particular set of maw matrices at the outset, 

we emphize that once a particular basis for the fust stage of cbiral sym- 

metry breaking is selected, the following steps are determined by the known 

information on quark masacs and mixings. We illustrate this procedure for the 

basis originally chosen by Fritz& and find a modi&d set of quark mass matri- 

ces in the minimal Higgs tramework which fits the data much better provided 

mt z 88&V and the 6 -+ u/b -+ e mixing ratio is large. 
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Although the standard model (SM) f 1 o co or and electroweak interactions based 

on SU(3), x SU(2)r. x U(l)y is highly successful, the number of generations and 

mass spectra of the quarks and leptons remain unexplained. Part of the problem 

can be traced to the fact that insight into the mass-generating mechanism taking 

place in the helicity-flipping Yukawa mass sector is obscured due to the freedom of 

choice of basis and to the question in which particular basis the mass dynamics should 

be studied. For example, the nonidentity of the mass and weak eigenbases leads to 

Cabibbo and Kobayashi-Maskawa mixing angles .1 Clearly, all important features like 

quark mass hierarchies and relatively small mixing angles survive in any basis and 

strongly suggest a mass mechanism generated by successive stages of chiral symmetry 

breaking (XSB). While it may be desirable to use nearly diagonal mass matrices to 

pursue the consequences of the XSB chain, one can also attempt to pursue these ideas 

in other bases like the weak basis. Such reasoning, in fact, led Fritzsch’ more than 

ten years ago to postulate a rather attractive set of mass matrices which, however, 

are not in good agreement with experimental information unless the Higgs structure 

is enlarged.s Here we reexamine the issue of hierarchical XSB in the light of the 

freedom to choose any basis for the mass matrices. In the framework of a hierarchical 

sequence, we shall illustrate that in comparing with experimental data it is possible 

to determine the form of the corrections of the second and third step of XSB once a 

basis is choosen for the first step. We exhibit the generality of this balance between a 

choice for the first stage and the necessary form of the following stages. As a concrete 

example we indicate how the original Fritz& model with minimal Higgs structure 

can be improved systematically, before and after renormalization effects are taken 

into account. Comments are made for a mass matrix in the coherent basis which is 

in analogy to the BCS gap phenomenon.’ 

The real issue is which eigenvector basis should one adopt to shed most light 

on the mass-generating mechanism. This, in turn, is tied up with the existence of 
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certain unphysical transformations which may or may not have physical significance 

in a proper extension beyond the SM. Within the framework of the SM, the weak 

eigenbasis and mass eigenbasis seem to be rather special. A typical term in the Yukawa 

Lagrangian, which yields mass contributions through the spontaneous symmetry- 

breaking mechanism, can be written in these two bases as 

&M$R = (&U~)U~MU~(Un~n) = GLDD’I!n (1) 

where Un and Un are SU(3) transformations in flavor space and we have allowed 

for the possibility that the mass (sub)matrix M may be non-Hermit&m. In the weak 

basis, Mij = g<j < 4 > in terms of Yukawa couplings and the vacuum expectation 

value, while in the mass eigenbasis D D = diag (Xl, Xp, As). On the other hand, a 

typical term in the weak charged-current Lagrangian can be written as 

4,“Y,%w,’ = (~Z”u~+Y,u~u~+(u,“~,,“)w,’ 
= Sfy,v,,*fw; 

where the KM mixing matrix is’ 

[I Dt VKM = u,u, 

Pa) 

WI 

(up to diagonal SU(3) phase transformations) and contains just four physical mixing 

parameters, e.g., three angles and one phase for the case of three families of quarks. 

Any general SU(3) transformation of type (1) simply corresponds to a different choice 

of basis. If one thinks of mass matrices as vectors in a suitable vector space, this means 

that one can rotate the vectors to any basis and only the relative angles between 

the up and down sectors given in (2b) h ave to be fixed. While these ambiguities are 

completely unphysical within the SM, it may very well happen that in physics beyond 

the SM, the spontaneous symmetry-breaking mechanism assumes more significance 

such that a special basis is singled out in which mass matrices are explained in a 

particularly simple way. 
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As mentioned above, the observed quark mass hierarchy strongly suggests a hier- 

archial XSB sequence as emphasized long ago by Fritzsch.’ This sequence could be 

generated by a series of new scales associated with a series of new physics, but it 

seems more natural to assume that there is only one new scale and that the hierarchy 

is generated by small (seesaw or radiative) corrections to a rank one matrix, G,. The 

fact that a, is rank one ensures that only one mass is generated in the first stage of 

XSB. In the second and third stages, the full mass matrix then receives successively 

smaller correction terms: 

(3) 

If the first stage of XSB selects the same basis for the up and down quark sectors, 

small mixings are automatically ensured, since they are attributed to the differences 

in the diagonalization of the full matrix coming from the second and final stage 

correction terms. From the above discussion, it is also clear that the choice of basis 

for 6?, is very important. While in a certain basis the corrections might have a very 

simple interpretation, it is clear that in another basis this apparent simplicity may 

be destroyed completely. 

For example, if one boldly assumes that the basis for @r is already diagonal and 

l%, and 6& arise from nearest neighbor interactions in this basis, then one arrives at 

the well-known Fritzsch model? 

M=(% ; ;)+(% ;. ;)+(; ; j; A<B<C (4) 

But the same type of correction terms in other bases lead to very different results, and 

one is left with a huge number of matrix types in different bases and with different 

corrections. Since the Fritzsch model with minimal Higgs structure fails to explain all 

the experimental information,s*s we now reexamine its basic assumptions and show 
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how a more general form can emerge which improves the predictions. 

To construct a sequence of XSB one has to start with the limit where all quark 

masses vanish and the Yukawa terms of (1) are missing, so one need not adopt any 

particular basis. All terms in the Lagrangian are flavor-diagonal and are invariant 

under separate L’(3) transformations of the lefthanded and righthanded fields, i.e., 

the Lagrangian exhibits a full global U(3) .L x U(3)n chiral symmetry. The first stage 

of XSB at some high scale will give a mass to the t and b quarks via two, in principle 

independent, rank one matrices %y - and Mf. Although the form of these matrices 

is related to the unknown mass generation mechanism, it is clear that a random 

choice for @’ and aif would typically result in some large mixings. Since the 

corrections of stage 2 and 3 are small, the initial basis will introduce a, stiffness 

which will nearly preserve the mixings first introduced; therefore, it seems natural 

to assumet Gy = (@)t = cmat. x %f for the basis where the first stage of 

XSB occurs. By a suitable SU(3) rotation UL, we can then always simultaneously 

diagonalice the up and down sector of this first stage of XSB without picking up 

any mixings, while the second and third step are transformed into new, probably less 

transparent, corrections: 

M = U,(fi, + l i& + &,)TJ; = &g(O, 0, C) + eM1 + qMs (5) 

In this basis the Lagrangian exhibits at the first stage just a cbiral U(Z)L x U(2)n 

symmetry in the first and second family subspace. Alternatively, one can regard the 

residual symmetry as a discrete chiral 2(3),r, x .2(3)~ symmetry which has certain 

advantages for the Goldstone sector.’ 

At the second and third stages of XSB, we shall rely heavily on the observed form 

1 An approximate relation of this type wlyl observed some time ago for the full up and down mass 

matrices, ref. 6. 
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of the KM matrix* 

0.9754 i 0.0004 0.2206 f 0.0018 0 f 0.0087 

V KM = -0.2203 f 0.0019 0.9743 i 0.0005 0.0460 dc 0.0060 

0.0101 f 0.0086 -0.0449 f 0.0062 0.9989 i 0.0003 

0 0 0 f 0.0087 

+ i 0 f 0.0004 0 f 0.0001 0 

0 f 0.0085 0 f 0.0019 0 

(6a) 

which in discussions of chiral symmetry breaking is conveniently parametrized bye 

VKM = R33(B33)R13(813,s)R13(811) 

i 

CllC13 ~llC13 s13ewid 

= -c13~11 - cll.%3~13e 
i6 

k-33 - me3be 
i6 

Cl3333 ('3 

hlJl3 -cnc13313e 
i6 

-C11h - c23511513~ 
i6 

c13c23 1 

The data suggest a rotation of 82s N 3” occurs first, followed by rotations of 6’13 1: 0.5O 

and phase 6 and finally by the Cabibbo angle rotation with 6’11 Y 13”. The EMU terms 

of (5) introduced at the second stage of XSB will bring us to rank two matrices and 

will turn on the c and s quark mases. If the mixing matrix element IV,31 is not 

set properly at the second stage by the choice for EMU and EM?, the even smaller 

qM3 final corrections have no chance to overcome the stiffness in the IV,,/ element 

introduced by the terms of the second stage. As we shall see, this gives generally 

upper and lower bounds for the top mass. Depending on the chosen form of the 

second step, other KM matrix elements may also get contributions at this level. If 

this is the case, then there is also s. stiffness problem in these elements and the entries 

created at this level must be very close to their.final values. If, however, the second 

step does not determine a given KM element, then it is controlled by the third step 

alone. 

Whatever form we adopt for the mass matrices at the second stage of XSB , it 
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must be rank two and in the basis of (5) we must therefore have 

0 = Det [diag (0, 0, C) + EMU] z CC Det ml2 (7) 

where ml2 is the submatrix composed of the first two rows and columns of Ma, and 

the last line follows from the fact that C is much larger than any entry in Ma; hence 

we conclude that Det ml2 N 0. Given the fact that the choices for my2 and rng 

will, in general, introduce a Cabibbo angle already at this second stage of XSB , 

there are three possibilities. First, it could be that the Cabibbo angle is already 

determined at this second stage and that the third stage of XSB serves only to give 

mass to the u and d quarks; however, without a delicate cancellation it is hard to 

understand the smallness of VI, both before and after the third stage. The second 

possibility is that the ml2 submatrices are aligned so that CD&‘my. N CUPmP, with 

Det (mya) = Det (mfi) = 0. Since the submatrices are carefully scaled, simultaneous 

rediagonalization is possible, and no Cabibbo angle emerges at this second stage. This 

could very well be the case for a dynamical mechanism involving radiative corrections; 

unfortunately, without a detailed model in mind, no particular form of ml2 is singled 

out. 

We now pursue the third possibility that the Cabibbo angle vanishes at this second 

stage without the scaling requirement above, eg., (Mz)I~ = (MZ)IZ = (MS)21 = 0, so 

the rank two mass matrices are of the form 

M(‘) = diag(O,O, C) + eMa = 
I 

(8) 

with D” or E” and DD or ED set equal to zero to guarantee rank 2. Note that the 

matrix invariant6 require 

C”+EU =mt-Tn., 2 [lB”I1 + ID’I’] + (E’)’ + (C”)l = m: + m:, 

C”+E” =mb-mm., 2 [IBDIa + IDDI’] + (ED)’ + (CD)a = rn; + mf 
(9) 
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In order to insure the upper limits IV,31 s 0.0123 and IV,,l & 0.052, we find that E” 

or ID’/ s mf/q s 0.04 and ED or lDDI & m:/ms 21 0.0027 which in turn bounds 

the t mass at this second stage of XSB to lie in the range 

33 A mt(lGeV) rj 145 GeV 

phw (10) 
25 A m, .S 90 GeV 

Since the magnitudes of E”, ID’I, ED and ID” 1 are forced to be anomalously small, 

we take them identically zero at this stage. In this limit, the Lagrangian exhibits a 

maximal chiral U(~)L x U(~)R or Z(2)& X Z(2), symmetry.7 

Based on the assumption of an aligned first stage of XSB (natural smallness of all 

mixings), we cast the first stage into a diagonal basis and introduced a general term 

for the second stage. If we exclude the alternatives as indicated above, we arrive at a 

model which to this point is identical to that of Fritz&, although we started with a 

much larger class of matrices. We chose to discuss this step in a certain basis but the 

results are still general in terms of symmetries and rank. The form written down is 

only one representation of the class of matrices which explain the data sucessfully. If 

we knew which basis is relevant for understanding the first stage, we could transform 

back and see what the second stage corrections have to be in this basis. If the initial 

basis were, for example, 

(11) 

instead of diag(O,O, C) as proposed recently,’ then the two different rank one matrices 

are connected by 

MI = R;:(O,)R;;(Oa)R;,l(O,) h@,O,C) Rla(Ol)R13(0a)Rla(03) 02) 

where &j is B rotation in the subspace ij, Ol is arbitrary, tun(Oz) = fi and a3 = :. 
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If we go to rank two as discussed above, we can find approximately the corresponding 

corrections in the new basis (11) by applying the same transformation (12), and we 

get (sl = sin 01, cl = co6 01): 

M(l) = C (B+B’)cl 
3+ 3Ji 

Em 

(B + B’)sl (B - B’)sl Bsl - &B’q 

(B’ - B)sl -(B + B’)sI - Bsl - &iB’cl (13) 

B’s1 - fiBc, -B’s1 - &iBcl @(B + B’)cl 

Depending on the arbitrary choice for O1 (e.g., 2 and f seem to be special), B and B’, 

we can get interesting patterns in this basis which should be ultimately explainable 

by the mechanism that selects this basis. 

In the third and final stage of XSB, the II and d quarks obtain small masses and 

all mixing6 must take their final values consistent with (6). For given first and second 

stages, we can take the even smaller third stage corrections as perturbations and find 

which form this third stage can assume to give the right masses and mixings. We 

have performed this calculation in the basis where the first stage is diagonal, and with 

small approximations we find that the diagonal elements of M3 must be extremely 

small, even at the final stage. The element (M 3 11 is fixed very precisely by the de- ) 

terminant and (M3)13 and (M3)23 are essentially free numbers of the order of (M3)11. 

Compared to these results, the original Fritz& model with nearest neighbor interac- 

tions is a very special choice. Since (M1)z3 is anyway much larger than (M3)23 we can 

safely ignore the latter correction. If we look only at the KM matrix elements and 

known masses, then (Ma)13 is not constrained. But in B” - B” mixing experimentslo 

enters a combination of the yet unknown top mass and mixing6 containing additional 

information which is quite sensitive to (M3)13. The (M3)13 element is then very im- 

portant, and we have performed a numerical search of possible fits to the data in the 

presence of the minimal Higgs structure. We found that good fits are centered about 
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/(M3)13/ = /(M3)121 which leads us to write the full mass matrices in the form 

M = ( Ad. ; ‘;) (14) 

This set of matrices is then characterized by nine parameters, one less than the ten 

independent physical parameters for three quark families.’ Note that our search for a 

solution in the SM framework suggests that we must give up the Fritzsch assumption 

of nearest neighbor interactions, which requires D” = DD = 0. 

The conventional treatment is to assume these matrices apply at the low scale of 

1 GeV, evaluate the parameter magnitudes and calculate the KM matrix elements 

for comparison with data. But in a previous paper,” we have emphasized that in 

general the above form of the matrices is only relevant at the XSB scale, ASB, which 

we shall take to be 100 TeV for our calculations. One should then evolve the matrices 

downward to 1 GeV, for example, with the help of the renormalization group equations 

(RGE’s) for the Yukawa couplings. Following the prescription discussed in detail in 

our previous work and with our earlier notation, we find for the more general form of 

(14) 
0 A D 

M”(t) N A+ gD*(r - 1) g(r - 1) By 

D’7 B-r 3 

(15u) 

0 A’ I)’ 

MD(t) 21 A’* + +D’*(?’ - 1) ;B’*(,’ - 1) B’ + $C’(+ - 1) WI 

Dl*-ft B”r’ (7-f 

IIfone would like to minimize the number of parameters one could try the simplest cake (Ms)l2 = 

(Ms)ls = (Ma)la, i.e. 4~ = 0, and M we will see this fits the data best. In that case we have only 

6 parameters. 
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where 

t = Zn(p/lGeV), tsB = In(Ase/lGeV) (15c) 

dt),7’(t) = ed&b,o /’ dt’C’(t’)} (154 fSB 

and the matrices are conveniently made dimensionless by dividing out by the expec- 

tation value < 4 >N 175 GeV. The coefficients bu and bD are given by” 

bu =-bD= 1 minimal Higgs model 
(15e) 

bu = 3bD = 1 double Higgs model 

for the two models we shall consider. Note that here both M” and MD evolve into 

non-Hermitian forms, unlike the Fritzsch mass matrices. 

With the identification D = Aexpi& and D’ = A’expidD, the magnitudes 

of C,B and A can be determined from the invariant quantities Det H”,Z’r H” and 

TT (H”)’ evaluated in both the weak and mass eigenbases, where H” = MUM”+, and 

similarly for C’, IB’I and IA’I. The relations obtained are quite complicated and best 

solved by the method of successive approximation. We use the Gasser-Leutwyler” 

quark mass determination at the 1 GeV scale and use explicitly the set 

m, = 3.5 MeV, rnd = 6.1 MeV 

m. = 1.35 GeV, m, = 120 MeV 06) 

rnt = ? rnb = 5.3 GeV 

to compare with our previous results on the Fritzsch model. To determine the “phys- 

ical” top quark mass, the running mass is evolved from mt( 1 GeV) to m,(m,) by the 

relation 

m(m) = rm,nt(mt) IpauOe rvdution (17a) 

where T,,,~ = y(t,,)/y(O), and then the first-order QCD correction is applied to 

obtain” 

mp = m,(m,) [1 + $a,] WI 
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The projection operator technique of Jarlskog13 can be applied to the renormalized 

matrices H” and HD to calculate the squares of the KM matrix elements at the 1 GeV 

scale according to 

IV-j/’ = TT [PaPj’] (18a) 

PI = (Ai 1 -H”) (Xi 1 - H”) / [(Xi - #!:)(A: -A:)] , etc. (lf’b) 

where they can be compared directly with the data in (6). We fit all IV,;/’ KM matrix 

elements squared within one standard deviation by varying mt(l GeV), da, and &, - 

only two of which are independent in the Fritz& model. In the new model proposed 

in this paper, we also vary 4~ to keep the J-value ” of CP-violation fixed near its best 

experimental valuels 

J = Im(K3&3v;V;,) 

= C~3C:,c33s~3sl3s33ainb 

N Iv,,llv,3llK3llv,,l8ins 
(19) 

N 0.30 x lo-’ 

in the parametrization introduced in (6b). The physically-allowed KM regions are 

indicated by the annular rings in Fig. 1 for the Fritzsch and new models, both 

without and with evolution, where the phase angle $s, is plotted against ml( 1 GeV) 

and &“’ for the tightly- constrained (%2”) phase 41,. Contours of fixed 4~ within 

the rings are clearly marked which yield the correct J-value of (19) for the new model. 

For each point on the 4~8 va.mt plots, we then calculate the lefthand side OF” 

~:I~3V3~13R(zt,z,,v3/v1) N (2.0 f 0.5) 
(0.140)” 

Bsf:, (20) 

where the righthand side is determined by the ARGUS and recent CLEO resultslo on 

B; - & mixing. As noted in earlier publications,3 the allowed B - l? mixing band 

overlaps the physically-allowed KM ring only in the two-doublet Higgs version of the 

Fritz& model. With the new model proposed here, the standard Higgs structure is 

also acceptable. The combined allowed KM and B - B mixing regions favor a top 
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quark mass of 88 GeV in both the Fritz& model with two-doublet Higgs and our 

new model with standard minimal Higgs structure. Note that the preferred value for 

4D = o”, which could be used to propose a model with fewer parameters. The top 

mass can range down to 70 GeV, if one insists on our new model with two Higgs 

doublets. 

Other parameters of interest include the CP-violation phase angle 6, the B,” - B,” 

mixing parameter r,, the charmless-to-charm ratio jV~zl/lVzsI, the bag parameter Bx 

in K decay and finally e’/c. The predictions for the “best” point in each one of the 

graphs are presented in Table I, along with the presently best-determined experimen- 

tal or theoretical values.‘“JSJ7-‘* A t ‘ki 1 -’ s n ng y Invariant feature to be observed from 

the Table is that the Fritzsch model favors a relatively low b -+ u/b + c N 0.05 ratio, 

while our new model favors a rather high N 0.15 ratio. This dichotomy occurs exactly 

along the lines of the CLEO vs. ARGUS findings. It is also interesting to note that 

only the new model with standard Higgs structure gives a bag parameter in excellent 

agreement with the large N calculations of Bardeen, Buns and G&ard.‘s 

As a further comparison, we present the KM matrices for the two best fits of Fig. 

lc and le: 

i 

0.9752 0.2209 -0.0004 0 0 0.0026 

vFRIT - 
KM - -0.2206 0.9741 0.0498 i i 0.0001 0 0 (=a) 

0.0114 -0.0485 0.9987 1 i 0.0026 0.0006 0 1 

l 

0.9751 0.2211 -0.0069 

1 t 

0 0 0.0028 

vgw = -0.2205 0.9740 0.0504 f i 0.0001 0 0 Plb) 

0.0179 -0.0476 0.9986 0.0027 0.0006 0 1 

The fact that increasing V,, in the new model to accommodate the large B-B mixing 

in turn leads to a larger VI3 and hence larger b -+ u/b -+ c ratio can be understood 
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from the unitarity condition 

v,lv; + v,lv,3 + v,lv,, = 0 @a) 

or 

v; + v& - 0.011 (22b) 

where note must be taken that the CP-violation phase is changed considerably. 

In summary, we have carefully demonstrated how the stages of chiral symmetry 

breaking can be phenomenologically constructed. The main point is that, without 

a particular dynamical theory in mind, the first stage of chiral symmetry breaking 

is completely arbitrary within the class of physically equivalent mass matrices and 

probably only in a special basis does the mass-generating mechanism become trans- 

parent. While we do not try to construct any dynamical theory, we show that the 

selection of a particular basis for the first stage allows one to construct the following 

stages by direct comparison with known masses and mixings. We have illustrated 

this point in the basis originally chosen by Fritz& by showing how our procedure in 

the minimal Higgs framework leads to a modified set of quark mass matrices which 

fit the data much better provided mt 21 88GeV. A key difference is that a large 

b + u/b + c mixing ratio is expected in the new model, while the Fritzsch model 

gives a satisfactory fit to the data only with an expanded Higgs structure and small 

b -+ u/b + c mixing ratio. 
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Figure Captions 

Figure 1: Phase angle 48, vs. mt(lGeV) and m, phy* plots showing the physically- 
allowed annular regions for the KM matrix elements based on the one 
standard deviation results of Schubert given in Eq. (6a) and the Bj - B; 
mixing bands single-hatched for the standard Higgs model and double- 
hatched for the two-doublet Higgs model. Results for the original Fritz& 
model are givenin (a) without evolution and in (b) and (c) with evolution; 
results for the new model of Eqs. (14) and (15) are presented in (d), (e) 
and (f), respectively. The quark masses are those of (16). 
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Ref. 

Fritzsch Model with Two-Doublet Higgs Structure and m, = 50 GeV, vs/vr = 1.0 

150 94 85" 0” 0.30 99” 1.86 17.2 0.99 0.053 0.94 15 

130 88 85" 0’ 0.28 99” 1.53 17.2 0.98 0.053 1.12 18 

New Model with Minimal Higgs Structure 

145 91 80“ 20 100 0.30 157' 1.79 6.9 0.91 0.149 0.72 13 

135 88 80" 0” 5O 0.30 158" 1.74 7.0 0.91 0.147 0.74 12 

New Model with Two-Doublet Higgs Structure and m,, = 50 GeV, Q/VI = 1.0 

110 71 80° 14“ 45O 0.33 1530 2.06 6.8 0.93 0.156 1.01 22 

105 70 80" 12" 38" 0.32 153" 1.97 6.5 0.92 0.162 1.08 24 

Experimental Results and Theoretical Predictions 

? 0.30 ? 2.0 f 0.5 ? ? 0.07 - 0.17 0.66 f 0.10 33 f 11 

15 10 17 18 19 

Table 1: Values of parameters associated with selected points in the plots of Figs. 1. 

A mass of 120 MeV has been used throughout for the strange quark mass. 


