
a Fermi National Accelerator Laboratory

FERMILAB-Conf-89/217

General Purpose Computers in Real Time *

Joseph R. Biel
Fermi Notional Accelerator Laboratory

P.O. Box 500
Batavia. Illinois 60510

September 18, 1989

* Presented at ECFA Study Week on Instrumentation Technology for High Luminosity Hadron Colliders, Bellaterra,
Barcelona, Spain, September 14-21. 1989.

e* eraied by Universiiies Research Association, Inc., under contract with the United States Department of Energy

General Purpose Computers In Real Time

Joseph R. Biel
FermiIab Computing Division

September l&l989

Introduction
I see three main trends in the use of general purpose computers in real time.
The first is more processing power. The second is the use of higher speed
interconnects between computers (allowing more data to be delivered to the
processors). The third is the use of larger programs running in the
computers. Although there is still work that needs to be done, I believe that
all indications are that the online need for general purpose computers should
be available for the SSC and LHC machines.

More Processing Power
The history of computers is a history of vast increases of computing power
with a simultaneous decrease in price. At present, the greatest contributor to
the continuation of this trend is found in the development of RISC @educed
Instruction Set computers). One manufacturers projections of RISC
performance are shown in figure 1.

MIPS Inc. Projection of Computing Trends

looO-

lOO-

8

i'"

l-

lllllllll111illlili1111111111~Il
196-I 1969 1974 1979 1964 1969 1994

Yeer Announced
Figure 1. MIPS Computer Systems, Inc. Projections

The basic ideas behind RISC are to construct a microprocessor with

l A relatively small set of machine language instructions
l Machine instructions that provide needed functions only with no

redundancy
l An instruction set that allows a simple, high speed implementation
l A highly optimized compiler well matched to the instruction set

A wide variety of RISC microprocessors have been designed. Among those
available commerciallv are the MIPS R2000/R3000, the Sun SPARC, the

-2-

Motorola 88000, the A’MD 29000, the Intel 860, and the Intergraph Clipper.
Among those companies with proprietary chips are Apollo, IBM , and
Hewlett-Packard. Approximate performance values for some of these chips
are

l MIPS R3000 (25 MHz clock) 20 VAX MIPS
l SPARC (16 MHz clock) 10 VAX MIPS
l Intel 860 (40 MHz clock) 14 - 17 VAX MIPS
l Motorola 88000 (20 MHz clock) 14 - 18 VAX MIPS

where a “VAX MIP” is the power of a VAX 780. Some of the complete
computer systems using RISC microprocessors are manufactured by DEC,
SUN, Apollo, and Silicon Graphics. It is rumored that IBM will soon make
some major RISC product announcements. As a specific example of a RISC
computer system, consider the Silicon Graphics model 4D/280S. One possible
configuration for this machine is

l Eight cpu boards each containing a MIPS 25MHz R3000 RISC chip
l 64 MBytes of memory
l 256 KBytes local cache memory for each processor
l VME bus (10 MB/set now, 30 MB/set early 19901

This configuration has a list price of about $230,000 which corresponds to
about $1,400 per VAX MIP.

The Fermilab Computing Research and Development department is working
on a RISC VME module. Like the Silicon Graphics machine, it also uses the
MIPS R3000 microprocessor. It contains 8MB of memory, 32KB of both
instruction and data cache, 256KB of EPROM, and a VME master/slave
interface. It is constructed on two boards which together fit within a single
width VME slot. A secondary data bus designed at Fermilab, called the “X
bus”, is also included. This provides an alternate DMA path into memory at
a transfer rate of 40MB/sec. This can, for example, be used to implement a
high bandwidth level 3 trigger. In such a system, a set of processors are sent
events in parallel over their X buses. The total bandwidth for this event
filling process is thus 40MB/sec times the number of processors being used.
Each module examines the event stream that it receives and rejects the vast
majority of them. If an event passes the trigger requirements, that event is
read out over the much smaller bandwidth VME bus.

Plans for future enhancements of MIPS chips (not including gallium arsenide
plans) include

l MIPS R3000
33 MHz version in 1989
40 MHz version in 1990
60 MHz version in 1991
100 MHz version in 1992

l SPARC
33 MHz version in 1989

-3-

40-50 MHz version by 1990
l Intel i860

50 MHz version soon
l Motorola 88000

100 MIPS 5-chip set by 1991

Several gallium arsenide RISC implementations of RISC are also being
worked on. TI and CDC have a chip that runs at 68 MHz and are working to
get it running at 200 MHz. McDonnel Douglas Astronautics Corp. has a chip
that runs at 60 MHz and are working to get it running at 200 MHz. Prisma, a
startup company in Colorado, is working on a GaAs RISC system that will
run at 250 MHz.

The TI/CDC and McDonnel Douglas chips both require external GaAs cache
memories to allow 1 memory access every 5ns. Both also require clever
compilers to keep pipelines full despite branches.

Higher Speed Interconnects
Computers constructed with the high speed RISC chips already being
developed or being developed must also be faster than those currently in use.
Fortunately, there are a number of new interconnection mechanisms that are
being developed. The Scalable Coherent Interface (SCI) is a standard being
developed to allow a lGB/sec connection to be made between processors. The
standard will allow up to 16K processors in a system. Future Bus is a new bus
standard being developed. Current plans are to support transfers of
200MB/sec with a 32-bit wide data path and to support higher rates with wider
data paths. Fermilab is working on an “event builder switch”. This device
has as its inputs, multiple streams of data -- each stream from a subdetector in
an experiment. It has as its outputs multiple streams of assembled events --
each event sent directly into the memory of a processor. These processors are
general purpose computers used as an upper level trigger farm.

Future Online Use Of General Purpose Computers
The expected event rates in the next generation of hadron colliders must be
massively filtered to get to an acceptable event recording rate. One scenario
for achieving this is shown in figure 2. This design uses a high level
processor farm to provide a factor of 10 to 100 reduction in the event rate.
The farm would accept 10,000 events per second which at an estimated event
size of 1MB requires a bandwidth of 1OGB per second. Current estimates for
checking if an event passes the filtering requirements are 10 to 100 seconds on
a processor with a power of 1 VAX MII’. The farm must, therefore, have a
computing power of from 100,000 to l,OOO,OOO VAX MIPS. This is an
impressive amount of general purpose computer power. There is at least one
project already underway, the Intel/DARPA Touchstone project, to build a
general purpose computer with a power of 100,000 VAX MIPS.

Even though it is theoretically possible to design a complete high luminosity
hadron collider trigger without a large general purpose computer farm, there
are important advantages in having such a farm. The programs running in
the farm can examine the entire event using the full power of FORTRAN (or

-4-

any other desired high level language). These programs can exactly duplicate
algorithms tested in offline computers. In fact, the experiment can use an
offline farm that uses the same RISC microprocessor. In this case, moving a
program between offline and online is especially easy. Another advantage is
that the filtering algorithms can be discussed with the entire collaboration in
terms of a FORTRAN program rather than some obscure trigger processor
programming technique.

r_____

! Processors (Ful mmts)
Specinl Pu

‘p”” I
I - _ _ _ _ - - - - - - - ’

. , lo4 events/Yx

1 DataRecording 1

Figure 2.

In order to have a online farm of fully general purpose computers, it is
necessary that the programs running in the computers have a complete
operating system environment. In particular, the programs should have the
usual FORTRAN access to disk files and terminal input/output. This allows
program development to be done for an online farm the same way it is done
for an offline computer. Initialization data files can be read from ordinary
disk files using FORTRAN OPEN and READ statements. Programs can be
debugged on the actual farm hardware by running a normal terminal session
with a symbolic debugger. If a program crashes, the operating system can
make its usual crash dump file. This file can then be examined later with a
crash dump analysis program.

It is not necessary to have serial lines and disk drives connected to each
processor. If the processors run UNIX, it is easy to make peripheral
connections over a network. Serial connections can be established with telnet
and disk connections can be established with NFS and ftp. For processors that
share the same high speed bus (e.g VME) can make a network connection
directly over that bus. For processors that do not share such a bus, a network
connection can be established over Ethernet or FDDI.

There are some potential disadvantages to running a full operating system on
the online processors. First, the processor modules will be somewhat more

-5-

expensive because they may need more hardware features to run the
operating system. These features range from the simple (i.e. perhaps an
onboard time-of-day clock chip) to the complex (e.g. a VME bus interface in
order that VME disk and Ethernet controllers can be accessed). Second, more
memory will be needed to hold the operating system. Third, the booting of
the farm is likely to be more complex with a full operating system. Fourth,
the operating system itself must be “ported” to the processor board. This
includes getting the appropriate license for the operating system.

Larger Programs
The filtering programs running in an online processor farm will probably be
longer and more complex than those being used now. How to write these
long programs is a very important challenge. It will become more important
that programs be properly designed. The tools of structured analysis and
structured design (SASD) are one way to help write the programs. Another
possibility is the use of new programing techniques such as “object-oriented
programming” (OOP).

FORTRAN is still the most used language in HEP, but it may be of great
benefit to switch to a more modern language. If UNIX is the operating system
being used, the C language is a good choice because UNIX is written in C.
Historically speaking, it has been easier to get a good C compiler for a new
microprocessor than a good FORTRAN compiler. The use of C also allows a
natural progression to be made to the object-oriented languages C++ and
Objective C.

