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1. Lecture 1 

1.1 The QCD parton model 

The treatment of heavy quark production which I shall present relies on the QCD 

improved parton model. This model is generally applicable to high energy pro- 

cesses which involve a hard interaction. The parton model as originally envisaged 

by Feynman[l] provides a physical picture of a high energy scattering event in a 

frame in which the hadron is rapidly moving. In such a frame the hard interaction 

leading to the scattering event occurs on a time scale short compared to the scale 

which controls the evolution of the parton system. The characteristic evolution time 

for the parton system has been dilated by the Lorentz boost to the rapidly moving 

frame. During the hard interaction the partons can be treated as though they were 

effectively free. Only in such a frame does it make sense to talk about a number den- 

sity of partons. The number of partons of type i with a momentum fraction between 

z and z + dz is given by a distribution function fi(Z). 

Much of the structure of the parton model can be demonstrated to follow from the 

QCD Lagrangian, but with certain significant modifications. The QCD parton model 

has been introduced by Hinchliffe in his lectures[2]. I shall therefore only review the 

salient features of the model. The QCD parton model expresses the cross section (r 

for a hard scattering with characteristic momentum scale Q as follows, 

fl(Pl,Pd = c 
J 

d Cl C2 I +I,P)fj(*lTP) ~ij(aS(P)~zlpl~z2p2) d f4 (1.11 
$93 

This formula is illustrated in Fig. 1. The short distance cross section & is evaluated at 

resealed values of the incoming hadron momenta Pi and Ps. The sum on i and j runs 

over the light quarks and gluons. p is an arbitrary scale which should be chosen to 

be of the order of the hard momentum scale Q. Note that the impulse approximation 

is used in Eq. 1.1. Interference terms which involve more than one active parton 

per hadron are not included. They require the transfer of the large momentum Q 

from one parton to another. Such interactions lead to terms which are suppressed by 

powers of the large scale Q and are not shown in Eq. 1.1. 

The important features which distinguish QCD from the naive parton picture 

are as follows. The short distance cross section is now calculable as a systematic 
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Figure 1: The parton model picture of a high energy scattering. 

expansion in the strong coupling as because of the property of asymptotic freedom. 

The short distance cross section is defined to be the perturbatively evaluated parton 

cross section from which the mass singularities have been factorised. For details of 

this factorisation procedure I refer the reader to ref. [3]. The physical purpose of this 

procedure is to remove the long distance pieces (which are signalled by the presence 

of mass singularities) from the hard scattering cross section and place them in the 

parton distribution functions. The short distance cross section then contains only 

the physics of the hard scattering. In the Born approximation the short distance 

cross section is just the normal perturbatively calculated parton cross section, since 

no mass singularities occur in lowest order. The Born approximation is sufficient in 

many circumstances to extract the qualitative features of the physics predicted by 

the parton model. I shall therefore not explain the factorisation procedure in detail. 

In QCD the parton distribution functions depend on scale p in a calculable way 

as determined by the Altarelli-Parisi equation[4]. f;(z,p) is the number of partons 

in the infinite momentum frame carrying a fraction between I and z + dz of the 

momentum of the incoming hadron and with a transverse size greater than l/p. The 

scale p which occurs both in the running coupling and in the parton distributions and 
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should be chosen to be of the order of the hard interaction scale Q in order to avoid 

large logarithms in the perturbative expansion of the short distance cross section. 

The doubly differential form of the parton model result will also be necessary for 

our purposes. Consider a hard scattering process in which two incoming hadrons of 

momenta Pi and Pr produce an observed final state with two partons of momenta ps 

and p4. The predicted invariant cross section is, 

d~ld21fi(Z1,CL)fj(dZ,~) E3E4 db(~~~3~~~~p1’r2p2) . (1.2) 1 
I shall discuss the sensitivity of the physical predictions to the input parameters in 

detail in the second lecture. Suffice it to say at this point that the distributions 

of quarks and gluons in the proton are determined experimentally, mainly by the 

analysis of deeply inelastic lepton hadron scattering experiments. At present these 

experiments determine the form of the light quark distributions, and to a lesser extent 

the form of the gluon distribution function, in a range of z 2 10-r and p < 15 GeV. 

1.2 The theory of heavy quark production 

The dominant parton reactions leading to the production of a sufficiently heavy quark 

Q of mass m are, 

(=I q(m) + $~a) + Q(P~) + g(pr) 
(1.3) 

@I g(n) + g(m) -+ Q(P~) + B(pr) , 

where the four momenta of the partons are given in brackets. The Feynman dia- 

grams which contribute to the matrix elements squared in O(g’) are shown in Fig. 2. 

The justification of the use of perturbation theory in the calculation of heavy quark 

cross sections relies on the fact that all the propagators in Fig. 2 are off-shell by an 

amount at least mr . The invariant matrix elements squared[5,6] which result from 

the diagrams in Fig. 2 are given in Table 1. The matrix elements squared have been 

averaged (summed) over initial (final) co 1 ours and spins, (as indicated by C). In order 

to express the matrix elements in a compact form, I have introduced the following 

notation for the ratios of scalar products, 

2P2 *P3 4772 
71 

2Pl .P3 
= -, i-z=- > P=--r 8 = s 3 8 (PI + P# 
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Figure 2: Lowest order Feynman diagrams for heavy quark production. 

,:_;;I 

Table 1: Lowest order processes for heavy quark production. c/i+f/’ is the invariant 

matrix element squared with a factor of g’ removed. The colour and spin indices are 

averaged (summed) over initial (final) states. 
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The dependence on the SU( N.) colour group is shown explicitly, (V = Nz -1, N. = 3) 

and m is the mass of the produced heavy quark Q. 

In the Born approximation the short distance cross section is obtained from the 

invariant matrix element in the normal fashion[7]. 

d&;j z L PP3 
“’ 2s (2~)~2E3 (2n)32E, (2n)‘6*(Pl + pl - p3 - p*) g’J+JMij/2 0.5) 

The first factor is the flux factor for massless incoming particles. The other terms 

come from the phase space for two-to-two scattering. 

I shall now illustrate why it is plausible that heavy quark production is described 

by perturbation theory[8]. Consider first the differential cross section. Let us denote 

the momenta of the incoming hadrons, which are directed along the E direction, by PI 

and Pz and the square of the total centre of mass energy by S where S = (PI + Pz)‘. 

The short distance cross section in Eq. 1.2 is to be evaluated at resealed values of the 

parton momentapr = zIPI, pl = +pPa and hence the square of the total parton centre 

of mass energy is s = rrcrS, if we ignore the masses of the incoming hadrons. The 

rapidity variable for the two final state partons is defined in terms of their energies 

and longitudinal momenta as, E + P. y=iln E- . 1 1 (1.6) 
P. 

Using Eqs. 1.2 and 1.5 the result for the invariant cross section may be written as, 

du 

dy&&T 

The energy momentum delta function in Eq. 1.5 fixes the values of z1 and zr if we 

know the value of the pr and rapidity of the outgoing heavy quarks. In the centre 

of mass system of the incoming hadrons we may write the components of the parton 

four momenta as ((E p p p )) , D, Y, I 

p1 = 43/q+1,0,0,~1) 

pa = Js/2(z,,O,O, -22) 

p3 = (“TcoshYS,PT,O,mTsi=hy,) 

p4 = (mrcoshy,,-pT,O,mrsinhy*) (1.8) 
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The transverse momentum in the final state has been arbitrarily routed along the 

+-direction. Applying energy and momentum conservation we obtain, 

cl = ~(e” + e”), +2 = s(eCM + e-Y*), 3 = 241.+ cosh*y) (1.9) 

The transverse mass of the heavy quarks is denoted by mr = J(mr $ p$) and 

Ay = ys - y1 is the rapidity difference between the two heavy quarks. 

Using Eqs. 1.7 and 1.9, we may write the cross-section for the production of two 

massive quarks calculated in lowest order perturbation theory as, 

da ai(cl) 
dy3dy&q = 47&l + cosh(Ahy))’ ,~ 

C zlfi(zl,P) zPfj(zl,P) JJl&l’ (lqlo) 

Expressed in terms of m,mr and Ay the matrix elements for the two processes in 

Table 1 are, 

~b%i’ = & (1 + co;h(Ay)) (cosh@d + $-) (1.11) 

~IMJ2 = & (!,~~~s;$,') (coah(Ay) t 22 - 2%) (1.12) 

Note that, because of the specific form of the matrix elements squared, the cross 

section, Eq. 1.10, is strongly damped as the rapidity separation Ay between the 

two heavy quarks becomes large. It is therefore to be expected that the dominant 

contribution to the total cross section comes from the region Ay x 1. 

I now consider the propagators in the diagrams shown in Fig. 2. In terms of the 

above variables they can be written as, 

(PI t ~2)’ = 2~1.~2 = 274 1 + cash Ay) 

(PI -pa)* -m’ = -2pl.p~ = -f&(1 + ewAv) 

(pz - p3)’ - mz = -2pa.p~ = -mi(l + e”‘) (1.13) 

Note that the denominators are sII off-shell by a quantity of least of order mr. It is 

this fact which distinguishes the production of a light quark from the production of 

a heavy quark. When a light quark is produced by these diagrams the lower cut-off 

on the virtuality of the propagators is provided by the light quark mass, which is less 

than the QCD scale A. Since propagators with small virtualities give the dominant 
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contribution, the production of a light quark will not be cdculable in perturbative 

QCD. In the production of a heavy quark the lower cut-off is provided by the mass 

m. It is therefore plausible that heavy quark production is controlled by crs evaluated 

at the heavy quark scale. 

Note also that the contribution to the cross section from values of pr which are 

much greater than the quark mass is also suppressed. The differential cross section 

falls like ms’ and as rn~ increases the parton flux decreases because of the increase 

of zr and 21. Since all dependence on the transverse momentum appears in the 

transverse mass combination, the dominant contribution to the cross section comes 

from transverse momentum of the order of the mass of the heavy quark. 

Thus for a sufficiently heavy quark we expect the methods of perturbation theory 

to be applicable. It is the mass of the heavy quark which provides the large scale in 

heavy quark production. The transverse momenta of the produced heavy quarks are of 

the order of the heavy quark mass and they are produced close in rapidity. The heavy 

quarks are produced predominantly centrally because of the rapidly falling parton 

fluxes. Final state interactions which transform the heavy quarks into the observed 

hadrons will not change the size of the cross section. A possible mechanism which 

might spoil this simple picture would be the interaction of the produced heavy quark 

with the debris of the incoming hadron. However these interactions with spectator 

partons are suppressed by powers of the heavy quark mass[O,lO]. For a sufficiently 

heavy quark they can be ignored. 

The theoretical arguments summarized above do not address the issue of whether 

the charmed quark is sufficiently heavy that the hadroproduction of charmed hadrons 

in all regions of phase space is well described by only processes (a) and (b) and their 

perturbative corrections. 

Integrating Eq. 1.5 over all momenta we can obtain the total cross section for the 

production of a heavy quark. In general the total short distance cross section can be 

expressed as, 

~ij(s,m’) = ~~j(p,~), ~!s = %. (1.14) 

Eq. 1.14 completely describes the short distance cross-section for the production of 

a heavy quark of mass m in terms of the functions Tij. The indices i and j specify 

the types of the annihilating partons. These short distance cross sections can be used 
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directly to predict the total heavy quark cross section using Eq. 1.1. The dimensionless 

functions ~ij have a perturbative expansion in the coupling constant. The first two 

terms in this expansion can be expressed &s follows, 

Ej(P7$) = @)(P) + 4rQ(P) [6;!‘(P) + $i)(p)ln($)] + O(4) (1.15) 

The energy dependence of the cross-section is given in terms of p and p, 

P=+-T (1.16) 

The lowest order functions $f) 

Eq. 1.5 using the results of Table 1. 

defined in Eq. 1.15 are obtained by integrating 

The results are, 

F$(p) = gg (2+ PI 
c [- 1 

$3P) = &$ 
i 
31~’ + ~V(P + lW(P) + 2(V - 2)(1+ P) + P(~P - N.‘) 

c 1 e;)(p) = T+(p) = 0 
C(p) = $ln (s) - 2 (1.17) 

Note that the quark gluon process vanishes in lowest order, but is present in higher 

orders. 

Using the results in Table 1 we can also calculate the average values of the trans- 

verse momentum squared. The qq contribution to the pg weighted cross section is, 

J d& _ a;np=V 
44 P$ - - 

dp$ SON; 1 1 3+2p (1.18) 

and the IJ~ contribution is 

J d%w _ c&P 
d& P; z - 12OVN. [7p1(2 + 3P) - 15/a + W(P)] - 15PW) 

-6( 5p + 2)P’ 1 (1.19) 
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1.5 I I ! I I I I I I 

< & >/mu versus S/4/m’ in pN collisions 

Figure 3: The average value of p$ in heavy quark production. 

with L(p) defined in Eq. 1.17. The results of Eqs. 1.14 and 1.17 allow us to calculate 

the average value of pg. 

(&)= ~Jdr$p; -& (1.20) 

This leads to an average transverse momentum of order of the heavy quark mass. This 

is illustrated in Fig. 3 for the particular case of pN collisions. For all values of the 

beam energy which are sufficiently far above threshold to have a sizeable number of 

events, the average value of p$ is of the order of m s. As shown in Fig. 3 p$ continues to 

have a small dependence on p, because of the n dependence in the structure functions. 

Far above threshold the average transverse momentum squared grows approxi- 

mately linearly with a. 

The net transverse momentum of the produced heavy quark pair reflects the distri- 

bution of transverse momenta of the incoming partons and is therefore small. 
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1.3 Parton luminosities 

Consider a generic hard process initiated by two hadrons of momenta PI and P2 and 

s = (PI + Pz)‘. 

u(S)= c 
w 

(1.22) 

In many circumstances the flux of partons with a given invariant mass squared will 

play a major role in the determination of the cross section. It is therefore convenient 

to define a parton luminosity L as a function of r = s/S where s is the invariant mass 

squared of the partons. 

TdLij 1 
dr =- 1 + 6ij 

dzldz2 [(~~fi(~~,~l) Qfj(+l,ll)) + (1 - 2Mr - ~2) (1.23) 

Hence any parton cross section can be written as, 

(1.24) 

where J = zlzlS. .C has the dimensions of a cross-section. The second object in square 

brackets in Eq. 1.24 is dimensionless. It is approximately determined by powers of the 

relevant coupling constants. Hence knowing the luminosities, we can roughly estimate 

cross-sections. For this purpose we show the parton luminosities for 99, uii and dd in 

Figs. 4, 5 and 6. The luminosities are shown at the present energies of the CERN and 

FNAL pp colliders and at the energies of the proposed UNK collider(& = 6 TeV, 

pp), the LHC (a = 17 TeV, pp) and the SSC (a = 40 TeV, pp). 

As an example of the use of these plots we examine the flux of partons with 

fi = 100 GeV. Since for heavy quark production .s z 4m$ this value is appropriate 

for the production of a quark of mass m rz 35 GeV. From Figs. 4, 5 and 6 we find 

that, 

f&, = 1 x lO’pb, &, = 1.5 x lO’pb, &,J = 2 x lOspb, fi = 0.63 TeV 

& = 3 x lospb, cc, = 5 x lo’pb, .Cd = 2 x lO’pb, fi = 1.8 TeV (1.26) 
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Figure 4: Luminosity plot for gluon-gluon. 
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Figure 5: Luminosity plot for up quark-up antiquark. 
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Note that L,, is about 30 times larger at the Tevatron than at the CERN SppS. The 

quark-antiquark luminosities at CERN are about the same size as the gluon-gluon 

luminosity, whereas they are a factor of ten smaller than the gluon-gluon luminosities 

at the Tevatron. We conclude that the production of a 35 GeV top quark at the 

Tevatron is dominated by gluon-gluon fusion. At CERN energies both the gluon-gluon 

and the quark-antiquark mechanisms are important. The cross section is expected to 

be about 10 times bigger at FNAL than at CERN. The estimate for the cross section 

for the production of a 35 GeV heavy quark at the Tevatron is (QS x O.l), 

n r=z a; x 3 x 1Ospb x 3 x 10’pb (1.27) 

In later sections we shall see that this rough estimate is confirmed by a more detailed 

analysis. 

1.4 Higher order corrections to heavy quark production 

The lowest order terms presented above are the beginning of a systematic expansion 

in the running coupling. 

(1.28) 

Eq. 1.28 completely describes the short distance cross-section for the production of 

a heavy quark of mass m in terms of the functions 3;j, where the indices i and j 

specify the types of the annihilating partons. The dimensionless functions 3;j have 

the following perturbative expansion, 

Ej (P,$) = 6?(P) + 4rWS(P) [@‘(P) + *j’(p) ln( $)I + O(g’) (1.29) 

where p is defined in Eq. 1.16. The functions 3$) are completely known[ll]. Examples 

of the types of diagrams which contribute to 3$’ are shown in Fig. 7. The fuIl 

calculation involves both real and virtual corrections. For full details I refer the reader 

to ref. [ll]. The gluon-gluon contribution is also considered in ref. [12]. In order to 

calculate the 3ij in perturbation theory we must perform both renormalisation and 

factorisation of mass singularities. The subtractions required for renormalisation and 

factorisation are done at mass scale /I. The dependence on p of the non-leading order 

term is displayed explicitly in Eq. 1.29. 
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da luminoritv 

---pi, 4S=O.83 TeV 

Figure 6: Luminosity plot for down quark-down antiquark. 

:+x+x+... 2 
Real emission diagrams 

Virtual emission diagrams 

Figure 7: Examples of higher order corrections to heavy quark production. 
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Note that p is an unphysical parameter. The physical predictions should be 

invariant under changes of p at the appropriate order in perturbation theory. If we 

have performed a calculation to O(cli), variations of the scale p will lead to corrections 

of O(a$). 

p$/ = O(a>) (1.30) 

Using Eq. 1.30 we find that the term $” which controls the ~1 dependence of the 

higher perturbative contributions is fixed in terms of the lower order result 7(O). 

dtl 3,!$)(~,Si(~,)-/ dzl ~~)(~)P*j(s) 1 (1.31) 

In obtaining this result I have used the renormalisation group equation for the running 

coupling, 

fi sd Gas(p) = -b&l + b’as + . . .) 

b= 
33 - 2nf 

, b”= 
153 - 19nf 

12n 2x(33 - 2nf) 

and the Altarelli-Parisi equation, 

(1.32) 

(1.33) 

This illustrates an important point which is a general feature of renormalisation group 

improved perturbation series in QCD. The coefficient of the perturbative correction 

depends on the choice made for p, but the p dependence changes the result in such 

a way that the physical result is independent of the choice made for p. Thus the ~1 

dependence is formally small because it is of higher order in as. This does not assure 

us that the p dependence is actually numerically small for all series. A pronounced 

dependence on p is a signal of an untrustworthy perturbation series. 

I shall illustrate this point by showing the ~1 dependence found in two cases of 

current interest. Firstly in Fig. 8, I show the ~1 dependence found for the hadropro- 

duction of a 100 GeV top quark in leading and non-leading order. The inclusion of the 

higher order terms leads to a stabilisation of the theoretical prediction with respect 

to changes in p. The situation for the bottom quark is quite different. In Fig. 9 the 

scale dependence of predicted bottom quark cross section is shown. The cross section 
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is approximately doubled by the inclusion of the higher order corrections, which do 

nothing to improve the stability of the prediction under changes of p. It is apparent 

that the prediction of bottom production at collider energies is subject to considerable 

uncertainty. 

I now turn to the question of flavour excitation. A flavour excitation diagram 

is one in which the heavy flavour is considered to reside already in the incoming 

hadron. It is excited by a ghmn from the other hadron and appears on shell in the 

final state. An example of a flavour excitation diagram is shown in Fig. 10a. Note 

that in calculating the flavour excitation contribution the incoming heavy quark is 

treated as it were on its mass shell. If we denote the momentum transfer between the 

two incoming partons as 9, the parton cross section will contain a factor l/q’ coming 

from the propagator of the exchanged gluon. Therefore these graphs appear to be 

sensitive to momentum scales all the way down to the hadronic size scale. This casts 

doubt on the applicability of perturbative QCD to these processes. 

In the following I shall sketch an analysis[S] which leads to an important con- 

clusion. When considering the total cross section, flavour excitation contributions 

should not be included. The net contribution of these sorts of diagrams are already 

included as higher order corrections to the gluon-gluon fusion process. This analysis 

begins from the observation that the flavour excitation graph is already present as 

a subgraph of the first two diagrams shown in Fig. lob. Does the flavour excitation 

approximation accurately represent the results of these diagrams? In particular is the 

l/q’ pole, which is the signature of the presence of the flavour excitation diagrams, 

present in these diagrams? 

I shall now indicate why the l/q’ behaviour is not present in the sum of all three 

diagrams indicated in Fig. lob. Let us denote the ‘plus’ and ‘minus’ components of 

any vector q as follows, 

qf = q” + q3, q- = qQ - q=, ‘11 = q+q- - qT.qT (1.34) 

We choose the upper incoming parton in Fig. lob to be directed along the ‘plus’ 

direction, pr = pt. and the lower incoming parton to be directed along the ‘minus’ 

direction, ps = p;. In the small qz region the ‘plus’ component of q is small, because 
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Figure 8: Scale dependence of the top quark cross section in second and third order. 
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Figure 9: Scale dependence of the bottom quark cross section in second and third 

order. 
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a) lymph 0f nav0u s~aain graph 

b) Graphs contalniq spin-one exchange in the t-channel 

Figure 10: Graphs relevant for discussion of flavour excitation. 

the lower final state gluon is on shell. 

(pz - I# = 0, q+ = & (1.35) 

since in the centre of mass system p: z pi N a. In the low q’ region the ‘minus’ 

component of q is determined from the condition that production is close to threshold. 

(PI + q)Z z 4m2, q- x $ (1.36) 

q- is therefore also small in the fragmentation region in which p: x 0. We therefore 

find that in the fragmentation region of upper incoming hadron, 

4’ = q+q- - qT.qT = -W.PT (1.37) 

The current J to which the exchanged gluon of momentum q couples is determined 

by the upper part of the three diagrams. In the fragmentation region only the ‘plus’ 
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component is large. 

QT.& q’Jp = q+J- + q-J+ - qT.JT = 0, J+ = - 
q- 

(1.38) 

where the Ward identity is a property of the sum of all three diagrams. The explicit 

term proportional to QT in the amplitude shows that one power of the l/q’ is cancelled 

in the amplitude squared. 

This cancellation only occurs when the soft approximation to J+ is valid. This 

requires the terms quadratic in q to be small compared to the terms linear in q in 

the denominators in the upper parts of the diagrams in Fig. lob. The momentum q- 

must not be too small. 

qz < 2p+q- = ma (1.39) 

We therefore expect the soft approximation to be valid and some cancellation to occur 

when q” < nx2. For further details I refer the reader to ref. [8]. The calculation of 

ref. [ll] provides an explicit verification of this cancellation in the total cross section. 

1.5 Heavy quarks in jets 

A question of experimental interest is the frequency with which heavy quarks are 

found amongst the decay products of a jet. Since hadrons containing heavy quarks 

have appreciable semi-leptonic branching ratios such events wilI often lead to final 

states with leptons in jets. If we wish to use lepton plus jet events as a signature for 

new physics we must understand the background due to heavy quark production and 

decay. 

This issue is logically unrelated to the total heavy quark cross section. As discussed 

above the total cross section is dominated by events with a small transverse energy 

of the order of the quark mass. Jet events inhabit a different region of phase space 

since they contain a cluster of transverse energy ET >> m.,mb. This latter kinematic 

region gives a small contribution to the total heavy quark cross section. A gluon 

decaying into a heavy quark pair must have a virtuality k’ > 477~’ so perturbative 

methods should be applicable for a sufficiently heavy quark. The number of Qa 

pairs per gluon jet is calculable[l3] using diagrams such as the one shown in Fig. 11. 

The calculation has two parts. Firstly one has to calculate n,(E’, k’), the number 
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Figure 11: Heavy quark production in jets. 

of gluons of off-sheIIness k’ inside the original gluon with off-shellness El. Secondly, 

one needs the transition probability of a gluon with off-sheIIness k2 to decay to a pair 

of heavy quarks. 

The number of gluons of mass squared k’ inside a jet of virtuality E2 is given by, 

ln(Es/As) ‘exp J[(2N./*b)ln(Ez/hZ)] 
dEa, k’) = ln(kl,Al) 1 1 exp &W*b)ln(k2/A2)l 

(1.40) 

a= -- 
2 

1+ (1.41) 

where 

and b is the first order coefficient in the expansion of the p function, Eq. 1.32. The 

correct calculation of the growth of the giuon multiplicity Eq. 1.40 requires the im- 

position of the angular ordering constraint which takes into account the coherence of 

the emitted soft gluons[l4]. 

Rqg is the number of Qg pairs per gluon jet. Ignoring for the moment gluon 
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branching calculated above, we obtain 

RQ4=~~~~~s(k’)~dr~~+(1-r)‘+~] (1.42) 

where the integration limits are given by t+ = (1 f /3)/2 with p = J(1 - 4mZ/k2). 

The term (z’ + (1 - z)r)/2 is recognisable as the familiar Altarelli-Parisi branching 

probability for massless quarks. Integrating over the longitudinal momentum fraction 

L we obtain, 

1 
RQV = G 

% 
_:$xs(k’)[l+ g]{t (1.43) 

The final result including gluon branching for the number of heavy quark pairs per 

gluon jet is, 

1 
RQv = g 

P 
:~~,(k’)[l+~]~~n.(E’,k’) (1.44) 

The predicted number of charm quark pairs per jet is plotted in Fig. 12 using 

a value of A(s) = 300 MeV and three values of the charm quark mass. Also shown 

plotted is the number of bottom quarks per jet with A(‘1 = 260 MeV. The data point 

shows the number of D’ per jet as measured by the UAl collaboration[l5] and by 

the CDF collaboration[l6]. In order compare these numbers with the cc pair rates, 

a model of the relative rates of D and D’ production is needed. For example, if all 

spin states are produced equally one would expect the charged D’ rate to be 75% of 

the total D production rate. The points in Fig. 12 needed to corrected upward for 

unobserved modes before they can be compared with the curves for the total cz pair 

rate. 

2. Lecture 2 

2.1 Phenomenological predictions 

In this second lecture I will illustrate the application of Eqs. 1.1 and 1.2 to the 

production of hadrons containing heavy quarks. It is evident that in order to have a 

reliable estimate of the cross section one needs information on the running coupling, 
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Figure 12: Heavy quarks in jets compared with UAl and CDF data. 

the form of the parton distributions and a calculation of the short distance cross 

section as a perturbation series in the coupling constant. 

To give an idea of the order of magnitude uncertainty to be expected in these 

estimates, I show a partial compilation[l’l] f 0 coupling constant measurements in 

Fig. 13. Also shown plotted is the expected theoretical form for several values of the 

QCD parameter A. By convention as is determined from the QCD parameter A by 

the following solution of Eq. 1.32. 

1 

as(P) = bln(pr/Ar) 
1 _ ~l=l=b21Aa) + 

b ln(pr/As) “’ ’ 1 (2-l) 

b and b’, which are also given in Eq. 1.32, depend on the number of active light 

flavours. Consequently A also depends on the number of active flavours. The rela- 

tionship between the values of A for different numbers of flavours can be determined 

by imposing the continuity of QS at the scale p = m, where m is the mass of the 

heavy quark. Here A is the QCD parameter in the MS renormalisation scheme with 

five active flavours. It is apparent from Fig. 13, that the value of as is still subject to 

a considerable uncertainty. For definiteness I shall consider A to lie in the following 
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Figure 13: Behaviour of the running coupling. 

range, 

100 MeV < A(s) < 250 MeV (2.2) 

but clearly other less restrictive interpretations of the data are possible. With this 

spread in the value of A the variation of c~ at /J = 100 GeV is as follows, 

0.104 < a& = 100 GeV) < 0.118 (2.3) 

The uncertainty in (IS is larger at lower values of ~1. It appears squared in any estimate 

of the heavy quark cross section. 

The extraction of A from deep inelastic scattering is correlated with the form as- 

sumed for the gluon distribution function. A given set of data can be described by a 

stiff gluon distribution function and a large value of A, or by a softer gluon distribu- 

tion and a smaller value of A. In order to make an estimate of the uncertainty due to 

the form of the gluon distribution function, I shall use three sets of distribution func- 

tions due to Diemoz, Ferroni, Longo and Martinelli[l8]. These distribution functions 

have A@) = 100, 170 and 250 MeV and appropriately correlated gluon distribution 

functions. 
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The value of the heavy quark mass is the principal parameter controlling the size of 

the cross section. This dependence is much more marked than the l/m’ dependence 

in the short distance cross section expected from Eq. 1.14. As the mass decreases, 

the value of + at which the structure functions must be supplied becomes smaller 

(cJ Eq. 1.9) and the cross section rises because of the growth of the parton flux. 

The approach which I shall take to the estimate of theoretical errors in heavy quark 

cross sections is as follows[19]. I shall take A to run in the range given by Eq. 2.2 

with corresponding variations of the gluon distribution function. I shall arbitrarily 

choose to vary the parameter P in the range m/2 < p < 2m to test the sensitivity to 

/.L. Lastly, I shall consider quark masses in the ranges, 

1.2 < m. < 1.8 GeV 

4.5 < rnb < 5.0 GeV (2.4) 

I shall consider the extremum of all these variations to give an estimate of the theo- 

retical error. 

We immediately encounter a difficulty with this procedure in the case of charm. 

Variations of p down to m/2 will carry us into the region /J < 1 GeV in which we 

certainly do not trust perturbation theory. A estimate of the theoretical error on 

charm production cross sections is therefore not possible. In preparing the curve for 

charm production I have taken the lower limit on p variations to be 1 GeV. 

The dependence on the value chosen for the heavy quark mass is particularly acute 

for the case of charm. In fact, variations due to plausible changes in the quark mass, 

Eq. 2.4, are bigger than the uncertainties due to variations in the other parameters. I 

shall therefore take the aim of studies of the hadroproduction and photoproduction of 

charm to be the search for an answer to the following question. Is there a reasonable 

value for the charm quark mass which can accommodate the majority of the data on 

hadroproduction? In Fig. 14 I show the theoretical prediction for charm production. 

Note the large spread in the prediction. Also shown plotted is a compilation of 

data taken from ref. (201 which suggests that a value of m, = 1.5 GeV gives a fair 

description of the data on the hadroproduction of D’s. After inclusion of the O(ai) 

corrections, the data can be explained without recourse to very smdl values of the 

charmed quark mass[l9]. 
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This conclusion is further reinforced by consideration of the data on photopro- 

duction of charm. The higher order corrections to photo-production O(cra:) have 

been considered in ref. [21]. After inclusion of these higher order terms we obtain 

predictions for the total cross section as a function of the energy of the tagged photon 

beam. The principal uncertainty derives from the value of the heavy quark mass, so I 

have plotted the minimum cross section which is obtained by varying A and the scale 

p within the range 1 GeV < p < 2m for three values of the charm quark mass. The 

comparison with the data on the photoproduction of charm[22,23], shown in Fig. 15, 

indicates that charm quark masses smaller than 1.5 GeV do not give an acceptable 

explanation of the data. 

In conclusion within the large uncertainties present in the theoretical estimates, 

the D/D production data presented here can be explained with a mass of the order 

of 1.5 GeV. This is not true of all data on the hadroproduction of charm, especially 

the older experiments. For a review of the experimental situation I refer the reader 

to ref. [24]. 

2.2 Results on the production of bottom quarks 

The theoretical prediction of bottom quark production is very uncertain at collider 

energies. This has already been briefly mentioned in the discussion of Fig. 9. The 

cause of this large uncertainty is principally the very small value of + at which the 

parton distributions are probed. In fact, at present collider energies the bottom cross 

section is sensitive to the gluon distribution function at values of z < 10-r. Needless 

to say the gluon distribution function has not been measured at such small values of 

z. An associated problem is the form of the short distance cross section in the large s 

region. The lowest order short distance cross sections, fl”), given in Eq. 1.17, tend to 

sero in the large s region. This is a consequence of the fact that they also involve at 

most spin i exchange in the t-channel as shown in Fig. 2. The higher order corrections 

to 99 and gq processes have a different behaviour because they involve spin 1 exchange 

in the t-channel. The relevant diagrams are shown in Fig. lob. In the high energy 

limit they tend to a constant[ll]. Naturally these high s contributions are damped by 

the small number of energetic gluons in the parton flux, but at collider energies the 

region fi > m makes a sizeable contribution to bottom cross section. The fact that 

this constant behaviour is present in both 7(r) and 7”’ indicates the sensitivity of 
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Figure 14: Data on hadroproduction of D/d compared with theory. 
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Figure 15: Data on photoproduction of charm compared with theoretical lower limits. 
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Table 2: Cross section for bottom production at various energies. 

the size of this term to the value chosen for ~1. There is therefore an interplay between 

the size of this term and the small z behaviour of the gluon distribution function. 

At fixed target energies the cross section for the production of bottom quarks is 

theoretically more reliable. The p dependence plot has a characteristic form similar 

to Fig. 8 and it is possible to make estimates of the theoretical errors. A compi- 

lation of theoretical results[25] and estimates of the associated theoretical error is 

shown in Table 2. The experimental study of the production of bottom quarks in 

hadronic reactions is still in its infancy, but Table 2 also includes the limited number 

of experimental results on total bottom production cross sections. 

The calculations of ref. [ll] also allow us to examine the pT and rapidity distribu- 

tions of the one heavy quark inclusive cross sections. Although the prediction of the 

total cross section at collider energy is uncertain, it is plausible that the shape of the 

transverse momentum and rapidity distributions is well described by the form found 

in lowest order pertubation theory. The supporting evidence[tO] for this conjecture 

is shown in Fig. 16, which demonstrates that the inclusion of the first non-leading 

correction does not significantly modify the shape of the transverse momentum and 

rapidity distributions. At a fixed value of JL, the two curves lie on top of one another 
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if the lowest order is multiplied by a constant factor. Similar results hold also for the 

shape of the top quark distribution[30]. The UAl collaboration have provided exper- 

imental information on the transverse distribution of the produced bottom quarks. 

In Fig. 17 comparison of the full (~35 prediction with UAl data is made. The data is 

plotted as a function of the lower cutoff on the transverse momentum of the b quark. 

At lower values of k the agreement is satisfactory, but the experimental points lie 

somewhat above the theoretical curve at high k. It would be nice to have an inde- 

pendent confirmation of this experimental result. An inability to predict the value of 

the bottom cross section for large transverse momenta pi, casts doubt on our ability 

to predict the top quark cross section for rnt N pi. However in view of the difficulties 

of the experimental analysis, this discrepancy is probably not yet a cause for alarm. 

The corresponding prediction for the shape of the bottom production cross section 

at the Tevatron is shown in Fig. 18. 

2.3 Decays of the top quark 

Consider first of all the decay of a very massive top quark which decays into an on- 

shell W-boson and a b-quark. The process has a semi-weak rate. In the limit in which 

mt >> rn~ the width is given by, 

l?(t + bW) = $$lV,,l’ x 170 MeV I&l’ s 

When the top quark is so heavy that the width becomes bigger than a typical hadronic 

scale the top quark decays before it hadronises. Mesons containing the top quark are 

never formed. 

This should be compared with the conventional top quark decay for mt < mw --ma 

which is a scaled up version of p decay, 

5 

J?(t + be) = - G-4 ,K,,z 
192ns 

z 2.3 keV IV,$ (2.6) 

The top branching ratio to leptons is given in the simplest approtimation by 

counting modes for the W decay. Assuming the decay channel to t8 is forbidden 

because mt > mw - mb, the branching ratio is given by counting over the decay 
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Figure 16: The shape of the cross-section for bottom quark production. 
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Figure 17: The cross-section for bottom quark production at CERN energy. 
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modes ebb., PC,,, ~17, and three colours of ud and CS. 

BR(W+ + e+~) = 
1 

3+3+3 
= 11% 

It is important to investigate unconventional decays of the top quark, especially if 

they alter the branching ratio into the leptonic decay mode. The leptonic decay mode 

is the basis of most searches for the top quark. A simple extension of the standard 

model involves the introduction of a second Higgs doublet. Top quark decay in this 

model has been investigated in ref. [31]. I n order to avoid strangeness changing neutral 

currents[32] one must couple all quarks of a given charge to only one Higgs doublet. 

After spontaneous symmetry breaking we are left with one charged physical Higgs 

and three neutral Higgs particles. The dominant decay mode of the top quark is not 

to a leptonic mode, but rather to the charged Higgs, 

mb’ - -; + 27&7@(%, mb, %,) (2.8) 

where z) is the normal vacuum expectation value and ,!(a, b, c) = ,/((a’ - b2 - ca)l - 

4b’2). In turn,‘the q+ decays predominantly to cs and TV,. If the vacuum expectation 

value of the two Higgs fields is taken to be equal the branching fraction into cz is 

found to be 64% and r+ is 31%[31]. 

2.4 The search for the top quark 

The belief that the top quark must exist is based both on theoretical and experimental 

evidence. The theoretical motivation is that complete families are required for the 

cancellation of anomalies in the currents which couple to gauge fields. Hence the 

partner of the b,r and V, must exist to complete the third family. 

An anomaly occurs in a theory because symmetries present at the classical level 

are destroyed by quantum effects. They typically involve contributions to the diver- 

gence of a current which is conserved at the classical level. If the gauge currents are 

anomalous, the Ward identities, which are vital for the proof that the gauge theory 

is renormalisable, are destroyed. 

Anomalies occur in the simple triangle diagram with two vector currents and one 

axial vector current. Elimination of the anomalies for a particular current in the 
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lowest order triangle diagram is sufficient to ensure that the current remains anomaly 

free, even after the inclusion of more complicated diagrams. If the currents which 

interact at the three corners of the triangle couple to the matrices L”, Lb and L’ for 

the left-handed fields, and to the matrices R”, Iz” and Be for the right-handed fields, 

the vector-vector-axial vector triangle anomaly is proportional to, 

A = Tr [R”(Rb, R’}] - Tr [L’{Lb,Lc}]. (2.9) 

For the specific case of the SU(2)n x U(1) theory of Weinberg and Salam we have the 

following weak isospin and hypercharge assignments for the third family (& = Ts+Y), 

tL, Ts = ;,YL = ;, 
2 

tR, T3 = 0, YR = -, 
3 

bL, T3 = -;,YL = +, bR, T3 = 0, YR = -;, 

vL, T3 = +,YL = -i 

TV, T3 = -;,YL = -;, Q, T3 = 0, YR = -1 (2.10) 

Substituting these couplings into Eq. 2.9, with all combinations of the SU(2) matrices 

T” or the U(1) matrices Y we obtain the form of the anomaly for the gauge currents 

of the Weinberg-Salam theory. Two of the resulting traces of the couplings vanish for 

each fermion separately, 

Tr T”{T’, T’} = 0, Tr T”{YL, YL} = 0 (2.11) 

The other two traces vanish only for a complete family[34] 

Tr (Yi - Yj) = 0, Tr Yh{T”,T’} = 0 (2.12) 

It should be noted that there are still anomalies in global (non-gauged) currents in 

the Weinberg-&lam model. For example the normal isospin current corresponding to 

a global symmetry (in the absence of quark masses) is anomalous. It is this anomaly 

which is responsible for x0 decay. 

The experimental reason to believe in the existence of the top quark is the mea- 

surement of the weak isospin of the bottom quark. The forward backward asymmetry 

of b-jets in e+e- annihilation[33] is controlled by acab, the product of the axial vector 
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coupling to the electron and the b quark. The produced b and 6 quarks are identified 

by the sign of the observed muons to which they decay. The measurement is therefore 

subject to a small correction due to Be-B” mixing. Assuming that the axial coupling 

to the electron has its standard value the measured weak isospin of the left-handed b 

quark is[33], 

T3 = -0.5 zt 0.1 (2.13) 

The simplest hypothesis is that the bottom quark is in an SU(2) doublet with the 

top quark, although more complicated schemes are certainly possible. 

Thus assured that the top quark exists, we must only find it. The expected cross 

section for the process 

p+ij-+-*+++x (2.14) 

is shown at in Fig. 19. The cross section is calculated using the full O(ai) calculation 

of [ll] and the method of theoretical error estimate described in the previous sections, 

(c$ [19]). In addition, production of top quarks through the decay chain W -+ t6 is 

also shown. Note the differing proportions of the two modes at CERN and FNAL 

energies. At & = 1.8(0.63) TeV the tfproduction is due predominantly due to gluon- 

gluon annihilation for rut < lOO(40) GeV. On the other hand the W production comes 

mainly from 6q annihilation at both energies. This explains the more rapid growth 

with energy of the tf production shown in Fig. 19. 

From Fig. 19 the range of top quark masses which can be investigated in current 

experiments can be derived. In a sample of 5 inverse picobarns about 2500 tE pairs 

will be produced if the top quark has a mass of 70 GeV. One can observe the decays 

of the top quark to the .ep channel or to the e+ jets channel. With a perfect detector 

the numbers of events expected is, 

Number of ep events = 2 x .ll x .ll x 2500 = 50 

Number of e + jet events = 2 x .ll x .66 x 2500 % 300 (2.15) 

The e plus jets channel gives a more copious signal and does not require muon de- 

tection, but the background is larger due to the process pp -+ W + jets. This 

background may become less severe with increasing top mass as the jets present in 

top decay become more energetic. 
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Let us assume that a limit of about 80 GeV will be set with the data from the 

1988-1989 collider run. If the efficiency of extracting the signal from the data does 

not change with the mass of the top quark, we can expect to improve the limit by an 

additional 40 GeV above the present limit, by increasing the luminosity accumulated 

at the Tevatron by a factor of 10. Note however that the efficiency of the e+ multi-jets 

channels will increase for a heavier top quark. As the mass of the top quark increases 

the b quark jets ocurring in its decay will be recognised in the detector as fully-fledged 

jets. This occurs with no extra price in coupling constants. The background due to 

normal W+jets production is suppressed by a power of czs for every extra jet. It will 

become less important if we look in the channel with an electron and three and four 

jets. 
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Figure 18: The cross-section for bottom quark production at FNAL energy. 
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Figure 19: The cross section for top quark production at CERN and FNAL. 


