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ABSTRACT 

The evolution of a 4-dimensional h&erotic string is considered in the background of its 
massless excitations such as graviton, antisymmetric tensor, gauge fields and scalar bosons. 

The compactified bosonic coordinates are fermionized. The world-sheet supersymmetry 

requirement enforces Thirring-like four fermion coupling to the background scalar fields. 
The non-abelian gauge symmetry is exhibited through the Ward identities of the S-matrix 
elements. The spontaneous symmetry breaking mechanism is exhibited through the broken 
Ward identities. An effective 4-dimensional action is constructed and the consequence of 
spontaneous symmetry breaking is envisaged for the effective action. 

The string theory(‘) offers a promise of unifying all the fundamental forces of nature. One 
of the marvels of the string theory lies in its rich symmetry structure. It has been argued by 
Gross(r) that all the string states are gauge particles and most of the string symmetries are 
spontaneously broken leaving only the familiar local symmetries of the theory. Moreover, 
the high energy behavior of the scattering amplitudes at Plan&an energies reveals many 
interesting features of the string theory t3). However, at low energies, energies much smaller 
than the Planck scale, the string theory is expected to exhibit the salient features of those 
theories which describe the low energy phenomena adequately. Therefore, all the gauge 
symmetries, manifest at Planck scale, do not remain unbroken at lower energies. It is 
now recognized that the Higgs’ mechanism plays a cardinal role in the models unifying the 
fundamental forces. Recently, there have been several attempts to contruct four dimensional 
string theories following the work of Narain. t4-al The mechanism of symmetry breaking and 

the Higgs’ phenomena has been envisaged for 44dimensional h&erotic string theory.tn-r2) 

In this talk, I shall consider the evolution of a 4-dimensional h&erotic string in the back- 
ground of its massless excitations and investigate the phenomena of spontaneous symmetry 
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breaking. The invariance of the action under world-sheet supersymmetry transforma- 

tions imposes stringent constraints on the coupling of the string to the relevant background 
fields. We consider a 4-dimensional heterotic string model where P arc the four space- 
time coordinates and +’ are their world sheet super partners. The compactified bosonic 
coordinates are fermionized(r3*“l such that the 22 right moving compactified bosonic co- 
ordinates give 44 Majorana-Weyl fermions denoted by qA, A = 1,. . .44. The left moving 
sector consists of 12 Majorana-Weyl fermions obtained from six compactified bosonic co- 
ordinates and six of their super partners collectively denoted by X’, a = 1,. . 18. These 
18 fermions must transform in the adjoint representation of a semi-simple Lie group G in 
order to facilitate non-linear realization of world-sheet supersymmetry and the choice of 
G is restricted to SV(Z)s, SU(3) @ SO(5) and SCJ(4) @ SU(2) for the 4-dimensional case. 
In the fermionic formulation, various solutions arc obtained by suitable choice of mutually 
commuting boundary conditions diagonalieed in some general complex basis for the fermions 
consistent with the requirements of modular invariance(g). Let us choose a simple boundary 
condition where all fermions satisfy Neveau-Schwarz boundary condition. This theory has 
a tachyonic ground state and several massless encitations; however, the mechanism of spon- 
taneous symmetry breaking can be demonstrated through this simple example. The ground 
state and the massless states of this theory are as follows: 

a) The ground state is a taelyon in the vector representation of SO(44) 

TA : $‘,@ > Ma = -l/2 (1) 

b) There are massless gauge bosons in the adjoint representation of SO(44) and G, 
respectively 

AA= P : x+l:,2171B/210 > (2) 

w; :xy,2ax;10 > (3) 

c) Massless scalar bosons in the adjoint representations of both SO(44) and G. 

GB : X~,2d,,&O > (4) 

d) The usual massless states such as graviton, dilaton and antisymmetric tensor fields 
are present in addition to the massless states presented above: (2), (3) and (4). The action 
for the evolution of the 4-dimensional heterotic string in the background of massless fields 
is(16) 

s = ~Jd20[G~y(x)a+x~a_x~+~~ba~x~ab~~~~(x) 

+ il/l’a-# + i@ (w: - sz) @a-xu 

+ iuAa+nA + iX”&X” + ~AT&~BA;n(X)a+Xp 

- $AT,mBq”F~(X)$p$” - ifO”~AT~‘~a~~(X)xbxc 

A m - i71 TAB? B44f?xm~“x” - ~Cm”p~ATf;,~B~~(X)~~(X)xoxb] (5) 

obtained by generalizing the earlier method to construct action for heterotic string in back- 
ground fields.(‘sl Our notations are as follows: G,,,,(X) and BP(X) are the background 



graviton and antisymmetric fields respectively. 4’ = e~(X)$+’ being the vierbeins and u$ 
are the torsion-free connections whereas S ,,- = +(&BP, + a,, + a,&,) is the field strength 
associated with Bw; I$ are the field strength of the gauge background potential Ay. The 
structure constants of the group G and SO(44) are denoted by f”” and C”“‘s respectively; 

and D,,.C;(X) = a&,(X) + C”‘“pA;(X)c,O(X), c,“(X) being the scalar background. We have 
coupled only the gauge fields A:(X) to the stringth for the sake of simplicity in order to il- 
lustrate the mechanism of spontaneous symmetry breaking; however, the gauge fields W,“(X) 
can be coupled to the string in a similar manner@). We set G,, = q,,V and B, = 0, in what 
follow, to study the mechanism of spontaneous symmetry breaking. The action is invariant 
under following super-symmetry transformations (G,, = qrY and BF = 0). 

6X’ = e*p (‘3) 

Sp = iea+Xp (7) 

6qA = icqBTgAAF(X)@’ + icqaT~A[~(X)x” 63) 

by = sfDhxby (9) 

Notice the Thirring-like coupling of the fermions to the scalar background and the coupling 
corresponds to similar ones for a constant background field considered earlier.(“) However, 

we note that the world-sheet supersymmetry forces us to include additional terms in the 
action (5). Our strategies are as follows: 

Define the S-matrix generating functional 

C [A, <] = / d [phase space] d [ghosts] ezp (iSH) (10) 

where &hose space] is the Hamiltonian phase space measure involving zp,@‘,qA and Xa 

and the corresponding canonical momenta P,,, rr@, ?yA and ?ra respectively. The ghosts appear 
as a consequence of the (1,0) superconformal symmetry. 5’~ is the Hamiltonian action given 

by 

and 

SH = / d’a [+‘i’,, + ## + qAliA + x”li” - H] + J dlUlgh,,at (11) 

+ ;q*T&.q’A;X’” + ;qATa”8qBF;@‘fl $ ;~kXbXC[;qaT&qB 

+ ;qAT~BqBD,f:$‘xa + ~~mnp~AT~B~Bf~f:X”Xb 

i; = P,,- $qTqA, (12) 

L shoat is the ghost Lagrangian which has the same form as the LghO,t for the heterotic string 
in the absence of background fields and we do not need its explicit form to derive WI and 
the effects of spontaneous symmetry breaking. Let us introduce the following infinitesimal 
generator of a canonical transformation of the form(“) 

+ = ; / dnqAT,“,qBA”(X) (13) 



where A(X) is an arbitrary function. The variations induced by Q are 

6+qA = iT&q’A”(X) (14) 

6+P, = ;q~TA”aqBa,n-(x) (15) 

cf+X’ = 6,@’ = 6,x” = &(ghosts) = 0 (1’3) 

The Hamiltonian action satisfies the following relation 

6&H = -bcps~ (17) 

where S&H means that we perform the gauge variations of the background fields A;(X) 
and Q,(X) only 

SGA;(X) = &A-(X) $ CmnpA;(X)Ap(X) (18) 

6c(;(X) = C-“p~~(X)Ap(X) (19) 

Now we argue that the path integral phase space measure remains invariant, at least clas- 
sically, under the canonical transformations (14)-(16). Th ere f ore, the generating functional 

C[A,(‘] exhibits the following gauge invariance property due to (15). 

c [A Cl = c [A + 6~4 C + &XT (20) 

Consequently, 

1 ( dY 6A$Y) 
‘= &A:(Y) + 6cffy)6d,3Y) 

) 
= 0 (21) 

m 

Using eq. (18) and (19) in (21), we arrive at 

< 1 dZc [V;“(X) { aPA- + CmnP A;(X)AP(X) + V~(X)Cm”~,(X)AP(X)}] >= 0 (22) 

where V,,“(X) and V,“(X) are the vertex functions given by 

aL 
BA$X) = v;“(x) = -iqATrBqB (j + XL) + ~qAT;BqB$‘flav 

+ ;CmnpqAT~BqBA;(X)~p$ 

t ;C”‘npqAT;Bq&(X)f (23) 

aL 
a,..(x) = V,“(x) = ;f.kxbxc~AKid 

+ ;qAT~BqB$‘f’a, + +-‘qAT~BqBA;(X)+‘~a 

+ ;Cp”qATPqB~~(X)x’xb (24) 



< . . . > means expectation value with the measure exp(iSH)d(phase space). Notice that 
A”‘(X) appearing in (22) is an arbitrary function, therefore, if we take functional derivative 
of (22) with respect to A*(y) and th en set As(y) = 0 the relations still hold good. 

</d%(V,“(X)[8P6(s(cr)-y)6”‘q+CmwA;6(X(a)-y)] 

+V;(X)C-v<;(X)S(a(u) - y)) >= 0 

This is the fundamental relation that gives Ward identities for amplitudes involving gauge 
and scalar bosons. We take appropriate number of functional derivatives of (25) with respect 
to the gauge and scalar bosons and then set them to their background values. 

N M 

2 i 
6 6 

6A?(Xi) Sp(Xj) < / d2+‘” (x (0)) [a, (x (0) - Y) p* i 1 j 1 

+CmnqA; (c (0)) 6(X (q)- Y,] + V: (x (~1) Cmnqf: (x (~1) 6(X (cl- Y,) ‘= 033) 

Here X; = Xi(oi). The functional derivative acting on < . . . > brings down extra vertex 
functions and therefore, the Nt 1 point amplitudes are related to the lower point amplitudes. 
We denote the background value of gauge and scalar fields by b.y. which are required to be 
consistent with conformal invariance. 

It is worthwhile to emphasize that the WI presented here are to be considered as the 
tree level result. Indeed, anomalies might creep in when we carefully compute the Jacobian 
associated with the fermionic measure under the transformations (14)-(16). This question 
has been examined by us recently and the results are reported elsewhere. 

Now we proceed to discuss the phenomena of spontaneous symmetry breaking in the 
string theory from our point of view. It is interesting to note that if the scalar background 
takes a constant value [i(X) = pi th en we precisely reproduce the Thirring-like four 
fermion interactions considered by ABK(“1 in the content of spontaneous symmetry breaking 

and Higgs’ mechanism in the string theory. However, we encounter additional terms in the 
action (5) for nontrivial scalar background fields. These terms arise due to the invariance of 
the action under world-sheet supersymmetry transformations. We may envisage the effects 
of spontaneous symmetry breaking if we closely examine the two point function for the gauge 
fields in (26) (modulo complications due to miibius invariance). It is easy to see from (26) 
that the two point function exhibits a mass term for constant scalar backgrounds and we can 
interpret it as the analog of the Higgs’ mechanism. Indeed, a more elaborate computation(rsl 
reveals that the consistency conditions, satisfied by the gauge and scalar background fields, 
are obtained from the equations of motion of a four dimensional effective action 

S eff 

- ~f”“cm~*f~(x)f~(x)f~(~) 



Thus, if the scalar field acquires a non-zero vacumn expectation value, classically the system 
undergoes spontaneous symmetry breaking and exhibits Higgs’ mechanism. 

To summarize, we have considered a four dimensional heterotic string theory in the gauge 
and scalar backgrounds. The generaling functional is constructed in the path integral formal- 
ism and Ward identities are derived using the local symmetry properties of the generating 
functional. The model exhibits spontaneous symmetry breaking phenomena for constant 
vacuum expectation values of the scalar background fields. 
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