
dk Fermi National Accelerator Laboratory

FERMILAB-Conf-89/130

FEREAD
Front End Readout Software for the

Fermilab PAN-DA Data Acquisition System *

Terry Dorries, Margaret Haire, Cannenita Moore, Ruth Pordes, Margaret Votava
Fermi National Accelerator Laboratory

P.O. Box 500, Batavia, Illinois 60510 U.S.A.

May 1989

* Presented at “Real Time. Computer Applications in Nuclear, Particle, and Plasma Physics,” Williamsburg, Virginia, May
16-19.1989.

e* waled by Universilks Research Assoclatlon, Inc., under contract with the United Slates Department of Energy

FEREAD
Front End Readout Software for the Fermilab

PAN-DA Data Acquisition System

Terry Dorties, Margaret Haire,
Chnenita Moore, Ruth Pordes, Margaret Votava

Online and Data Acquisition Software Groups
Fermi National Accelerator Laboratory (*)

Batavia, I1 60510

The FEREAD system provides a multi-tasking framework
for controlling the execution of experiment specific front end
readout processes. It supports initializing the front end data
acquisition hardware, queueing and processing readout
activation signals, cleaning up at the end of data acquisition.
and transferring configuration parameters and statistical data
between a “Host” computer and the readout processes.

FEREAD is implemented as part of the PAN-DA [l]
software system and is designed to run on any Motorola 68k
based processor board. It has been ported to the FASTBUS
General Purpose Master @PM) interface board and the VME
MVME133A processor board using the pSOS/Microtec
environment.

OvERvlEw

Most fixed target experiments at Fermilab have employed
data acquisition archiwtures in which the “intelligence”
of the front end data acquisition system resided in computers
(VAX?.. MicroVAXs. and PDP-11s) outside of the front end
electronics path. The availability of general purpose
processor modules in FASTBUS and VME allows the front
end intelligence to move down from these computers and into
the front end electronics crates.

In order to facilitate these new architectures, the Front
End Readout (FEREAD) software provides a framework
within the front end electronics for controlling the
execution of user supplied front end readout and monitoring
processes. To achieve this, the FEREAD system offers the
following functionality:

o Allow for control of data taking from a host. This
includes initializing, starting, stopping and pausing the
front end data acquisition system.

(*)spo~Ored by DOE Contract No.DE-AcM-76CH03ooO

o Provide for multiple readout and/or monitoring
programs selected on the basis of user activation
triggers. These activation triggers can originate from
the Host computer, external electronics (NIM, ‘ITL.
etc.). or from previously activated user prwesses.

o Supply a mechanism for multiple user processes to
share the backplane I/O port and any auxiliary I/O ports
that may be present on the board.

o Allow for the transferring of configuration parameters
and statistical data between the host computer and the
readout prccesses.

c Provide for the reporting of error and status messages
to the Host computer.

A So&are Requirements

The current implementation of FEREAD is built on tbe
Fermilab enhanced pSOS/pROBE multitasking operating
system kernel L5.81. This operating system must be ported to
the board before using FER!2AD.

The communication between the FEREAD systems and
the Host computer is accomplished using the Remote
Pmcedure Execution [7] (RF’X) software package. The RPX
software package is described in detail in a paper submitted to
this conference. Briefly, RPX allows subroutines to be
executed on a remote CPU. ‘Ibis in turn allows a substantial
portion of the FEREAD system to be implemented as an
object library, thus reducing the design restrictions placed on
the Host data acquisition system in order to interface to
FEREAD. For example, if the Host wishes to start the front
end data acquisition system it simply calls the appropriate
FEREAD subroutine which is then executed on the readout
board containing the FEREAD software.

2

B Hardware Requirements

FEREAD is designed to run on any Motorola 68K based
processor board residing within the front end hardware system.
It requires 50 KBytes of memory for the FEREAD software,
64 KBytcs for the pSOS/pROBE multitasking operating
system kernel and 45 KBytes for the Remote Procedure
Execution software.

The processor board running the FEREAD system most
have a suitable communications path (RS232, Ethernet, etc.)
to a “Host” computer, as the FEREAD programs are tightly
coupled to one or more Host processes responsible for
controlling and monitoring the overall data acquisition
system. For simple data acquisition hardware systems it is
feasible that these controlling and monitoring processes could
reside on the same board as the REREAD system.

FEREAD DESIGN

Figure 1 depicts the overall design of the FEREAD
system.

HOi, FIXBAD Pmmc,el “r;;z
DA ca”aoi Sum
OFM Manager .+.P

AT-
VAX

Front End
Readout

Figure 1: FEREAD System Design Overview

FEREAD is split into three components: the Host
computer, the front end readout module, and the high speed
DATA I/O ports available to the readout module. For the
GPM implementation of FEREAD (2.3.41 these components
consist of a VAX or MicroVAX acting as the Host computer,
the GPM 68K processor board acting as the readout module,
and FASTBUS supplying the high speed Data I/O ports.

The FEREAD software system is divided into five
subsystems: user readout and monitoring processes, data
acquisition control, user activation trigger management,
parameter store management, and high speed data I/O port
management.

A User Processes Subsystem

It is expected that the kernel readout and monitoring
processes will be written by the users IO match the specific
requiremens of their experiments. The FEREAD system has
a well defined structure in which these user processes are to
execute and includes a set of user callable subroutines to
allow the user processes to interact with the FEREAD
system.

User processes are divided into classes according to when
they are allowed to execute. The classes currently supported
are:

o Class I - Process is to be downloaded to tbe readout
module but never executed.

o Class II - Process is to execute when its User
Activation Trigger is encountered by the User
Activation Trigger Manager.

o Class III _ Process is to be executed each time the
Initialize User Processes DA control signal is received
from the Host (see DA control subsystem).

o Class IV - Process is to be executed each time the Stop
User hocesses DA control signal is received from the
Host (see DA control subsystem).

Class I user processes can be dynamically changed to
Class II, III, or IV processes. This allows diagnostic
programs to be built into the FEREAD system and inserted
intc the data acquisition processes as needed.

Class III and IV user processes are used to perform pre-DA
and post-DA functions. For example, a Class III user process
could be used to initialize a bank of TDCs or ADCs.

Class II user processes are used to perform the main
readout functions. Each Class II user process has associated
with it a User Activation Trigger. Once created, these

3

processes execute any required initialization code and enter a
sleep state until their trigger is processed by the User
Activation Trigger Manager, at which time they begin their
readout operation. After completing their readout task they
again emer a sleep state until their next trigger is processed.

A.1 Example User Subsystem Implemented On
GPM

The first implementation of the FEREAD system has
been done on the FASTBUS CPM. This includes an example
user process for reading out data from LeCroy 1892 memory
modules and then pushing the data into VME ACP [lO,ll]
nodes. Data may be further manipulated in the ACP nodes
bcforc being logged to tape. This example process includes
code for initializing the board specific hardware of the GPM.
While a particular readout process may be unique to a given
implcmcntation of FEREAD, the framework within which
the process runs remains the same for every FEREAD
system.

B Data Acquisition Control Subsystem

The front end data acquisition control subsystem consists
of two FEREAD DA control programs, one that resides on
the Host computer and one that resides on the front end
readout module. These control programs are implemented
using a set of RPX subroutines. The Host control program
rcccives control commands from the user and calls the
appropriate subroutine which is cxccuted on the readout
module. Once the control operation has completed, the
overall status of the operation is returned to the Host. The
current state of the front end dala acquisilion system is
communicated to other FEREAD subsystems through a
System State control word (see Figure 1).

The following control subroutines are currently
supported within FEREAD.

B.1 Initialize User Programs

This control subroutine causes the front end DA control
program to initialize its internal data structures and to
sequentially create tbe Class II and III user processes as
dciincd in the table of user processes (see section on user
processes). Once created, each user process is allowed to
execute any initialization code required by the process. The
user process is free to use any input and/or output ports
available on the board. Once a user process completes its
initialization, it signals Completion of Initialization back to
Ihc front end DA corm01 program. The Class II user processes
then enter a sleep state waiting for the User Activation
Trigger Manager to send their activation signal.

B.2 Enable Data Taking

The Enable Data Taking control subroutine places the
FEREAD system in Ihe Running state. thus enabling the
User Activation Trigger Manager to begin processing user
activation signals.

B.3 Pause Data Taking

Calling this control subroutine causes the front end DA
control program to set the System State to a Pause Pending
state. It is up to the user processes to periodically monitor the
System State to determine if a change in state is pending (the
FEREAD system supplies user callable rourines to facilitate
this Sywrn State monitoring). Once all user processes have
completed or paused, or the pause timeout has occurred, the
front end DA control program disables further user activation
signals and places the System in the Paused state.

All user processes are prevented from running while the
system is in a Paused state. The FEREAD system locks out
the user processes by executing a high priority “idle” loop
until the Host calls the next control subroutine.

8.4 Resume Data Taking

This control subroutine causes the front end DA control
program to enable user activation signals, set the FEREAD
System System to the Running state and activate all user
processes waiting at the pause queue.

BJ Stop Data Taking

The Stop Data Taking control subroutine causes the front
end DA control program 10 set the System Slate to Stop
Pending and wait for any active user processes to signal that
they are done. Once all active oser processes have signaled
their completion, or a timcout condition has occurred. the
front end DA control program disables further user activation
signals, delctcs all user processes. cleans up the system tables
and sets the system to a Stopped state. It then searches the
table of user processes (see section on user processes) and
sequentially creates and executes any Class IV user processes.

B.6 Abort Data Taking

The Abort control subroutine causes an immediate Stop to
occur _ acIive user processes are given no notification that a
Stop state is pending nor are the Class IV user processes
allowed to execute.

C User Activation Trigger Management Subsystem

User Activation Triggers are 32-bit unsigned integers sent
to the FEREAD system informing it that a particular user
process, or set of user processes, are to begin execution.
These activation triggers can be sent from the Hosl computer,

from the front panel input port (assuming the readout module
contains such a port), or from running processes. User
processes wait at Activation Trigger Exchanges[5.8], in a
blocked state (i.e. not absorbing any CPU cycles), until
informed that their trigger has arrived. Once informed, they
perform the readout or monitoring functions associated with
the trigger and reattach to their Activation Trigger Exchange
(Figure 2).

T[&’ Process
TYpc 2 Pmccs

E

-Exchange .,_ Mmgcr
Type 3 .,.- L-- ‘-);r Type 2 Activllion EIChw

“$a< J\ I T”DC 1 ACllVIlion
,

UT---/;
t .

\25i$l
Figure 2: Activation Trigger Subsystem

The User Activation Triggers are sequentially prccessed by
the User Activation Trigger Manager. The Trigger Manager is
responsible for locating the Activation Trigger Exchange
corresponding to the trigger and informing the user processes
waiting at the exchange that their trigger has arrived.
Activation Triggers arriving while a particular uiggcr is being
processed are queued until all user processcs associated with
the current trigger have signaled the Trigger Manager that
they have completed. User Activation Trigger sources can
choose to have their triggers placed at either the top or the
bottom of the queue.

D Parameter Store Management Subsystem

This FEREAD subsystem provides transferring of
configuration parameters and statistical data between the Host
computer and front end rcadout controlicr. When the
FEREAD system is generated space is created for B set of

cross computer parameter stores. The number of stores, their
lengths, and the name of a global symbol pointing to the
starting memory location of each store are specified by the
user in an ASCII text file residing on the Host computer.

These stores may in principal be written to and read from
at any time by the Host computer and user processes.
However, in order to insure the integrity of these stores, a
process may temporarily lock read and write access to a
particular parameter store.

The FEREAD parameter store management subsystem
includes a set of subroutines for reading from and writing to
these stores, as well as subroutines for locking parameter
store read and write access. These subroutines are available to
processes executing on the Host using the RPX software
PXhge.

E High Speed Datu II0 Port Management
Subsystem

Although the FEREAD system supports multiple user
processes to be activated upon receiving a single user
activation signal, the data input and output ports are single
user resources (i.e. it may be essential that a user process
perform several uninterrupted operations through the port).
The FEREAD I/O Port management subsystem supplies a
locking mechanism allowing a particular user private access
to one or both ports.

The FEREAD system also supplies a set of subroutines
and associated configuration parameter stores for using the
data I/O ports. These routines are hardware specific and may
require tailoring by the users to match their experiment
specific requirements.

The GPM implementation of FEREAD includes a set of
output port subroutines for pushing data through a
FASTBUS to VME interface. These output port
subroutines allow users to incorporate their FASTBUS data
into the PAN-DA VME buffer management system.

CONCLUSIONS

FEREAD provides the framework for incorporating front
end readout routines into data acquisitions (eg. VAXONLINE
and PAN-DA). This frees experimenters to concentrate their
software efforts on the specific front end readout requirements
of their particular experiment. FEREAD is highly
modularized. with many of its subsystems completely
hardware independent. This allows it to be easily ported to a
variety of front end readout modules.

5

The first implementation of FEREAD is for the
FASTBUS GPM. The GPM FEREAD system includes a set
of user proccsscs for reading oat LeCroy FASTBUS 1892
mcmorics. It also includes output routines for pushing this

Conference on High Energy Physics, Berkeley.
California, July 16-23 1986. 12. S .Hansen et al..
“The Fermilab Smarr Crate Controller”. IEEE
Transactions on Nuclear Science, Vol. NS-34. No. 4.
August 1987.

daw into VME using the PAN-DA VME buffer management 12. S. Hansen et al., “The Fermilab Smart Crate Controller”,
schcmc. Throughput for this system has been measured at IEEE Transactions on Nuclear Science. Vol. NS-34. No.
just over 4 MBytes per second. 4. August 1987.

FEREAD will be ported lo the FASTBUS Smart Crate
Controller (FSCC) [I21 which is currently under
devclopmcnt at Fermilab. It is predicted that the throughput
for this implementation of FEREAD will be in the 20-30
MByle per second range.

REFERENCES

1. See accompanying paper: “The PAN-DA Dala Acquisition

2. T.

3. T.

System?. ihi i’euavick. et al.

Dorrics. et al. “Front End Readout for PAN-DA”.
Fcmxilab Computing Department Note DS-181.

Dorrics. et al. “FEREAD Output Port Control for
CPM”, Fermilab Computing Department Note DS-
186.

4. Struck Camlog Module 500. General Purpose Master

5. “pSOS-68K Real-time Mulli-tasking Operating System
Kcmcl”. Solware Compancn~ Group, Inc. 1985.

6. David Berg. et al.. “SYS68K Compound Product for
pSOS/68K Development”, Fermilab Computing
Department Note PN-387.

7. See accompanying paper: “Kemote Praccdure Execution
Software for Distributed Syswms”. Eileen Berman, et
al.

8. See accompanying paper: “A Real Time Intcgrared
Environment for Motorola 680x0 Based VME and
FASTBUS Modules”. David Berg et al.

9. Set accompanying paper: “Soflware for FASTBUS and
Motorola 68K Based Readout Controllers lor DZI1a
Acquisition”. Ruth Pordcs. et al.

10. H. Arcli et al, “The ACP Muhiprocessor System al
Fermilab”, Proceedings of the XXIII In~ernarional
Conference on High Energy Physics, Bcrkcley.
California. July 1986. ACP. “ACP 68020 CPU hlodule
User’s Manual”. Feburary. 1986. ACP. “VMSbus
Resource Manager”. March 1986. ACP. “VME Crate
Hardware”. March 1986. ACP. “Branch Bus
Specifications”, March 1986. ACP. “Qbus Branch BUS
Conrroller”. March 1986. ACP, “Branch Bus to
VMEbus Interface”, Ocrobcr 1985.

11. T. Nash et al, “The ACP Multiprocessor System at
Fermilab”. presented at the XXIII InLer”slional

