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Differential algebras without differentials: 
an easy C++implementation. 

LEO MICHELOTTI 
Femnilab’, P.O.Box 500, Batavia, IL 60510 

1 Introduction. 

I” the lield of real ““mberr, R. difrercntialion is en andytic opcrstion le. 
quiring the evaluation of a limit. In non-Archimedcan 6eld extcn*ions of R, 
such as Robin.on’s ,S,b, *R, diiTermtia,ion may be d.hsble m an arith- 
m&c operation. Rd, [8,1] demonrtratrd the practicality of this observation 
by implementing the procedure on a romputer. Any problem combining 
di,~e,cn,iatian .,i,h ~umcrica, analysis seeme ripe br this ides; applicationr 
I”” the gam”t from rolving ,vnctions with Newton’s method to ralrvlsring 
t,yapunov exponrnta for the orhitr of a dynamical system. Bern hu intra 
duced the method into accelrrato, applications and has heroically written a 
FORTRAN prc-eompi,cr, DA, which can be used lo diKerentia,c automali- 
tally the nodinca, mappinga associated with tracking programs and thcrcby 
Co”.,,“Ct ,heir polynomial approximslionr.[2.3] Forert. Beta, and Irwin al- 
ready have shown how this capability can be u,ed to 6nd normsl forma lox 
the Hamillonians which these mapping. rcpre.ent.[6] 

In view of the importance of this technique, it is unforlunatc that mmt 
dercriptiO”l of the h&sic idea. still leave a number of readers confu.ed as 
to why it actually works. The confusion which arises usuall.~ is connecked 
either with employing th. notion or ‘diRcrcntial” or with the ronncc,ion to 
*R, snd il. implkd mschinery of ultmflltera. In fed, automated dxerenti- 
ation can he motivated and explained rather plainly without any rclcrenc. 
to inhnite.imslr o, dXerentis,r whstmever. We shall describr one po~riblc 
approach in thin pqlpc,. 

The method which we shall USC vi,, suggest its own implcmcntalion. How- 
CYCI, FORTRAN is not the mmt natural language in which to carry it out. 
In the accond section we she.,, describr an almosl trivial implcmcnlation us- 
ing C++ .(lO] (Indeed, one d the molinrtions for wiling this paper i. to 
persuade militant FORTRAN crtremiala LO invest the four 0, five days “cc- 
csary to lesrn thi. powerO,l and easy Isnguage.) Tab heed, hoveve., that 
what we describe belor ia only a atrippcd-down implcmcntation. mitten in 
three dt.ya, 0fdiKerentid algebra’s most esaenlial features; it ia not a5 rohuat 
as and does not contain the bstte~y or tools wailable in Bcrr’s DA psckag., 
thr product of a aignificsnt smount ofaork. 

2 Prolongation structures, pro-numbers, and 
differential algebras. 

With any smooth function, f : P + II, WC IU.OCi.tC it. “prolongation .,I”E- 
ture,” DI ‘prolong&m” for short.’ 

fS(f. v,, VOf, avo,, . ..) 

The brackets (. .) indicste an ordered set of objects of ditTerent kinds. b5 
opposed to the ~omponente of a vector, which are objecta of the same kind. 
The first mcmbo ori is Ihe function , itsel*, ihe MCO”d is its gmdicnt, the 
third ia its hcasian. and aoe6rth. Evaluating a prolongation at some Y.,UC of 
ita argument - my, i = f(s) - yields II new sttu~ture which WC shall call, 
for Ia& of anything hetler, a “prhnumbcr.” 

d=jk) = (fkl. Vf(r), cvfk), ~~Vfk). . ..) = (a,!?.~ ,...) 

The first member di is a rrd number. it8 second member i* a singly indexed 
array of reds. its third is II doubly indexed array ofrco,., and so forth. We 
shall cdl the numbc. of indices ~aociated with a member ita “order.” 

Now, Id the symbol c3 rcp*c*ent t. binary opezstion 00 smooth hctionr: 
addition, muhiplication, ~on~dution, or vhatevcr. We can extend its domain 
of dclinitjon to include prcdongstions in a natural manner. 
- 

*Or n.r.,rd by ,h. uni,mitio Fk.cu* *.lod~tion. Inc. Imd.r .on,rlc, ri,h a,. U.S. 
DIpd ,A”<“, or E”.rs(. 

‘This object may have B more accepted name; if so, I do not know what 
it i*. My calling it a prolongation ir based on an abuse of terminology 
introduced on pege 3 drcfcrence (I]. Th c word alr.ady haa scwra, meaning., 
depending on the mathematical context, so I do not consider it very harmful 
to add one Inore. 

i@B=f~s7=(fb3sl, V(f@d. ~V(f@S), . ..) 

This definition assures that information aboot the derivatives of functions 
propagates corrc~tly through the spcratim. The aimplc$ of these ia sddi- 
tion. IA f and g be two functions with prolongations f end 8. Then WC 
define ,hc sum, f+ c, as fallows. 

!+a-fTg=(f+g, vf+vg, ovf+vag, . ..) 

oe*chJpment orproduct and quotient operations is (L littIc more camplicskd 
but follows straightforwardly Imm repealed spplication of the chain rule. 

O(fg) = llVf +fvll 

VVfb4 = sPOfl+ fP~9) + PdPf) + (-JfVo) 

V(f/s) = (Ils)Vf - (f/rr’)Vs 

VV(f/e) = U/v)~ Vf - (f/s’P vi? 

-Wrr’)vJfPg) + P9Wf)) t Pfi&Ps)Pe) 

Upon cvdustion, these analytic identities >come ruks for do- 
ing arithmetic with pro-numbers. LFt d=f(~)=(c,!&g,n..) and 

is = h(r) = (kg 4,. ) he two arbirsry pm-number.. The rules for con- 

structing their sum, i = 6 + i, product t = .& snd quotient, .$ = iI6 are 
obtained dbrclly from the .bovc identities. 

l =o+b, s=a+&, $=Eti, 
p=d. P=*+k p=&+$+oh+P., 
q = 46, ;= (Ilbk Wb’lb, i= Wb)p - (I/b’l(~b+h~) (I) 

+(2o/b’#b_ - (o/Q 

A hw observations: 
(a) Pm-““mtws along vi,h their adthmetic operations cmn an algebra 
which obeys the samr commul~li~c, associative. and diatributivc Imvs m 
red numberr. There i. L “sero” and “unit” of this algebra: if we define 
i = (I,& 0,. ,) and 6 = (o,Q,O,, ), then it is cary to conRrm that for any 

d, i + 6 = d and i i = h. Unlike rd~, howcucr. the algcbrs is not an in- 
tcgrd domain, much lcsr a field: not .I, non-sex elemcnt~ can be inverted: 
the inverse of any pro-number whose hrst member is (the real number) mm 
in not de&.d. Its l xrst algebraic classification is a commutative ring with 
identity. 
(b) For a prrrnumbcr to be interpretable ca the evduation of s prolongation. 
111 its multi-indexed mcmbera should be symmetric under pwmtation of 
their indices. Hovevcr, it is posaiblc to cnlargc the set ofpronumbcrs by ad- 
mitting non-symmetric members which obey the sm~c arithmetic rules. Since 
&wmutslion symmetry ia ptscrved by Lhe arithmetic operationa, the rym- 
metric pro-numbera lorm an invariant subalgebra of this larger prenumbrr 
a&bra. 
(c) A nice test of division is to note that for all invertible 8, 
b/b=(~,o,q ,... )=i. 

Ofcounc, any im+ncntation ofthis algebra must be truncsted. In Light 
of this, an important festurc of the arithmetic rdn is that the m’h member 
of the result of an operation depends o”Iy on mcmbcrr of the operands in 
positions 5 m. For examplq p depends on a, b, p, and 6, but not on CZ, CY, or 
any other members of higher order. This means tha, if we truncate the pro- 
number algebra at rarious order. we ob‘ain new dgebrsa, ‘h. “ddi‘Term,ial 
algebras,” that obey the aamr commutative, associative, and distributive 
laws aa Lhc original. (Thcsc arc related to the ,D. algebras in Brra.(lj) 

Suppose WC trun~st~ at the first order (sxond member). so that i = ( e, p) 
is nmv a americ drmrnt of the algebra. II a = 0, then, by the rule for 
multiplication, 2 = (O,O) = 6. Thus. Lhc truncated algebra possesms ele- 
ments whose vquarc i. (the troncated) sem. This is one of the fundsmentd 
properties of an ‘inhniterimd.” If we truncate at the accond order, then 



i = (0, &a) rould be the rorm of a difkrential Flemcnt. Hoacver, an de- 
ment d,be form 6 = (0, p, g), with a + 0, would Satirry CiJ = ti rbi,e 8’ + ii, 
which is not at dl the same thing. If we truncate the prolongation algebra 
a, or&r m, ,hen ‘“y elemd, 2, whose crrt member ir zero Will s~~isrr 
n”+’ = 6. Rsthcr than cdling these “infiniksimdr.” Iv< aball refer to them 
8s “nilpotcnt” element.. There arc no nilpatent element. in the lull pdo”. 
@iOn dgebn, with its infinity or mcmbera; they BP&ear when we t,uncate 
Operations at smm finite order. 

By rcpratcd UK orthe arithmetic apcrations, ue can define rational runt- 
tions olproloogation.. There can be extmded to tranrcendcntd r”“clions - 
cm(i), cxp(<), and so rortb -either using a power IFIiCS, ea i” rrrerence (31, 
or by the rdloaing spprMch. Let Y: R” d R and * : R - R be functions, 
with ditTerent domains, and conCle~ their eoncatcnation, h(r) = g(+)). 
Since h : R” - R, ic domain is appropriate for the sanlc dimension ofpm- 
longation 1Ls C. we shall extend the domain erg by defining #(II) s i. (In 
principle, it *bould not be necessary to invent e nea symbol Ior this extended 
function; cxmnining the type of tb l srgumcnt should tesolve ambiguilics. 

Nonetheless, ve shall Ict g” represent crtended g to aroid co”r”urion.) Ita 

mcmbets MC obtained by “ring chain rule onct again. 

Ys(41 = P’(4V. 
0 V[g(m)] = d’(Y) (VU)(VY) + g’(u) v vu 

AS with the titbmetir operations, upon cvshation ,bnc dc. translate into 
definition. for tranrccndentd runctionl orpro.n”mbcrs. For ‘“y i we have 
g*(d) E i. abcre 

a=&). s_=g’(a)., ~=g”(‘)n.+g’(a)!& 

For cxamplc, ror g = cm we have, 

co*~(q=(eos(o). -sin(a)., -ms(rz)~~-si”(~)~. . ..) , (2) 

*bile for g = cxp WC would have, 

q*(a) = (e’, c-e, cyf3_a +n), .) 

* rptcial srl of prolongations are obtained from projections onto the CD 
omIinstcs. WC shall dcnole tbcsc by 2,; ,bcir pr*number .“d”stions ale 
given by 

ik(~)-(sb.h~ ,...) , (V 

where the companents of 3 arc (&)G = hi,, and all members or i, vanish 
kpnd the find order. Notice that the second memkri~ indeed *be gradient 
of tbc aswxiated projector. These special dcmrnla generalize the notion of 
“variable” and tlrc just what is required to initialhe II numerical computation 
ordrrivalivc.. as WI shd see below. 

3 An implementation in C++. 

The hportsnce or the pro-numbe, algebra and analysis, or il. rrunrsred 
~ounlerprts, is that they provide a mecbsniam for propagating derivatives 
lbrovgb aritbmctic operations, which are the most complicated things that 
computcrr can .ctvally da with numbe.s. and runction dla. In ,bir way, dir- 
rercntiation becomes an arihmetic, rather llm” analytic, procedure, thereby 
rendering it appropriate for mlomatcd computation. Suppose, for example, 
that 0°F wants to eraluate the dcrivativcs or 

f?(z, y, I, I) = CM(Z1’&q + * .rp(z+-) - 3& 
111 *mix parlicvllr dvc. or its srgumcnts, ‘YLy at z = -1.54, y = -1.17, 
I = 0.35, and t = 1.59. Rather than analytically writing there derivatives 
and tbm c*r.hsting o* numericdly taking finite difrercnces to approximarc 
&Rercntiation we could proceed by uring ViRctential” algcbrcr variablea. 
Tb. cdc”lation is i”i,idild by mtting 

i=(-1.54,$,$ ,... ),i=(-1.,7,Q,,cJ ,... ), (4) 
i=(o.ss,Q,~ ,... ), i=(,.5!3,Q,g ,,.,) (5) 

and proceeds by evaluating @(i,&i,i), in the pxCM of which we obtain 
not only tbc value of the function but its derivatives as well, since they are 

‘We bavc not in~roduccd a” ordering within which the nilpotcnts are 
“smdl,” as is done in the field. ‘R orRobi”ron 0, No dConvay.[9.5,4] Ben 
ha3 rcmowd this d~ficicncy by defining 8 lcxicograpbic ordering rchcme, and 
shown ibat ,hc connection with true diRcrcntia,a procceda M you would cx- 
pect. (Howcvrr. the resulting ordoed dgcbra is still no, a field. Nor do 
theoran. pro*cn in tllc algebra a”tcmatica”p lm”61.tC into rbeolemr in R, 
a5 is the clyc with ‘R.) 

propagsted through the computation. There are then oblained by rrading 
the memberr of the rC.“lt. 

lmaginF * propmming lsnguagc which contains pro-numbera 86 a type or 
variable ~ me realr. integers. or complex variables - and whose eompilcl 
mogni,rs sri,bmc,ic operations on these varisbk as well 116 pmvider the 
standard transcendental hunctionr. A program for carrying out the above 
computation might contain SLstcmcnts like tile follosing:~ 

r0t.i I, Y. =. t. .si I, *n”.tz.tis. 
I, progrmm 

x...rrui.al,c -1.64. 0 I; ,, s.p.nt. 
t.s.t,ari.bl,r 1.60. 1); 
,.,.Wlri.bl.( -1.11. 2 1; 
r...tvui*bl.r 0.36. 3 I; 

8 = ec..r 2.0.~.*.l*~y*~*y, I 
+ l.O..rp~ r+t,x 1 - 3.o.y.y; 

The first line declares Lhc rnrisbles to be prenumberr; the name of the 
decla,ed type is n.td , lot “non-standard.“’ The ..tmri.bl. rtatemcntr 
which blloa simply initialisc these variables to their &sired values and tell 
the progrm, the index which ia to bc associakd with .a.h; they implement 
tbc assignmcntr shown in Q.(S). (The ordering is arbitrary; I bavc made 
t follmr E just to be pcwersc. It is mnwnknt to begin indicts in C and 
C++ at 0 rather than 1, but this ia ml c. necessary matdiction.) The tinsl 
*tatcnlent will cw.hatc no, only the runction but its derivatives as well. 

Now, ,,o languages posacas n&d type vsriables e.s pa,, oftheir basic stt,,c- 
ture. However, some modem, nmrc powerr”l languages, like c++or Ada. 
dlow one e!Teetively to enlarge the language by defining new “claaser” of 
variables. Loo& speaking, a c,... is created in C++ by specifying the data 
peculiar to it and the function. snd qxrstionr which can ncce~s ,bo*e data. 
I” p.dcYI.r, Lbc c++ class vufd i. p”tially defined by the rohving urr 

I, ..td 
I, xrd.rf.C. 

/I Lin. 5 

,I Lin. 10 

,I Lin. 16 

To saw spare, ,‘ve truncaled at the serond order, included only t-0 *ran- 
sccndmtd runctiom, snd &l.rwise shortened the cI*.s deR”ition. “owcver. 
enough mneims to illustrate tbc ideas behind the implrmenlstian. Lines S-7 
describe the data appropriate to a n,mtd variable: a double precision real, 
vector, and malrix - all o* which corrcrpond (0 saying that 6 = (a, 0. g ).I 
The he of the arrsya is contained in L mll~ro variable, 0111~~~101. -hi& is 
defined by the user prim lo compilation. These lines comprire the *p&ate” 
part of the dcdarstion; the “public” part that follovis lists the functions and 
operstors which a,< allowucd to accceBl(l ,b.a. data. 

When the c++ compiler conlcI to a Di.tcl *misb,c declaration in a” ap 
plication prcqram it will dlocatc enough memory to sccomodate the data 
de&red in the chss definition. Forlber, it will initialize these data accord- 
ing to rulea apecifird in the “Co”6L,“ctOl” function declared in Ihc 9. The 
con*trudor which I use simply initidi~er everything to em* 

‘I hope theBe pmgram *egments arc tra”sparent enough to mske this 
retion readable without C++ erpertiae. Nonetheless, thee rho hwc used 
C++ undoubtedly aill understand tbr examples belter. 

‘This dcaignation is probably L mistelq in light of my reluctance to csll 
the ni,pot.nt .,cments diiTwenh,s. 

Tbia is ee.ailily extended; arrays in C++ can have an arbitrarily large num- 
bcr of indices. 

‘For the record, rmu.~ ia not II part ol the C++langusge; it is a nmcm I 
preduincd to m&c subsequrnt p,og,mmi,g .&CT and more tran~parrnt. 



n,td::nstdo f 
int r.j: 
* = 0.0: 
FORIL‘~i> f 

but, once again, these details me tranapaient to Ihe “ICI. 
Finally, tiince C++docs type checking, we cm ovcdod ~uunctionr as well 

as operators. This allow us, for trample, to define aned mcmbr, function 
eded “~0s” which pdorms exactly as specified in E+(Z). 

d.fb, = 0.0; 
IDRILUj~ ddfLil[jl = 0.0; 

1 
1 

astd 5.‘( me.3 I ) f 
doubl. .II.C.i 
imt i,j; 

I 
Ilea .i 

stsrting a calculation ia done ulitll the ..tl.riabl. (public) membe* r”unr- ,P = #id I.f I; 
tion, which implcmcntr the operation shown in E+(3) and &q.(S). 5. = 50.r x.i 1; 

void nmtd::setVlriableC Qonble =, int j ) f ..i = S‘i 

in* i.Li IOnALL f 

i = xi ..df~il = - ‘n*r.dfril; 

ILmALLri~ f FORALL 

&fLi, = 0.0; 
m.<[i]Ljl = - c~rx.dfW*x.lu~jl - sn*x.ddfhl~jl; 

POULLW ddfri, h, = 0.0; > 

) t.*urn vi 

df[jl = 1.0; > 

1 The other elcmcntaly ,ranscrndcntd run.tionr are extended in II similar 

Bi.ary opcratio”~, rurh as m”ltipbcati0” OI r.cbJitim me d.4”L.l rot these 
clssser by “averloading” the arithmetic symbol., which is accomplirbrd by 
defining corresponding member functions for the class. For example, the 
mcmbcr runction oper.tor*, which is &dared in Line 15 and is meant to 
implement multiplicstio”, is written (truneeted a, recond wh) a.5 ro,,ows. 

n.ta op.*.to.*~ r.,tda I* n*tda 7 1 f 
int i.j; 
.sta 7ci 
Z.f = x.i . y.i; 
POP.ALL~i, f 

r.dfri, = c l.i l y.dfM 1 + t ,.i l I.dfM 1; 

p‘ 'OBILLCj) 
a.ddf[ilEjl = C 7.f * r.dditil[jl ) 

+ ( x.9 l y.dcu til tjl ) 

+ ( x.ditil l y,dftjl ) 

+ r y.dfEil l r.dftjl I i 

, 

The op.r.tor, r”ncti0” is v,it,rn similsrly By comparing with Fq.(l) we 
see that these functions a*e nothing mwc than a literal translation of the 
arithmetic rules. There is no need fat table lookup or explicit computations 
afmcmory location.: c!++ takes care or those details sutomaticdy. 

Of cow~c, the applications prog,ammc. neither needs nor wants to know 
bow op.x.tor*, r,.td: :,.IPYI.~I.. n.td: :n.~td or my other member 
runction is implcmentrd. He only cares that ir I, y, and z (Lre &&red 
to be netd vsriablrs in hie program. then II atalcment like z = 1.7 will be 
interprrtcd correctly and perform ~5 crpcrlrd. Only tbr intrrhrc is rrquirrd 
LO do tbst: the ‘“toolkit’ which rontains tbc implemenlation is completely 
transparmt, buried in a libmry with which be will eventually link hit pro- 
grams. Further, iftbc inlcrfsce is containcd in a Sk, ray an*td.hxx then the 
applications pmp%m riced mly contain ,bc lines 

Xd.iim DTMmsIOII 4 I, or 2 01 0 or .Im*.s.r 
*insmud. “n.td.hn” 

to sllow tbc use ofn.td variables. 
By ibelt, oprntorr specifies the rule for multiplying two nstd variables, 

but in the “,Uuslratirr program s.~“ent” viriltcn above we multiplied ..td 
variables by constants, 2.0 and 3.0. This worked prope.ly because of the 
second COn6tl”Clol runction, declared in Line 10 or the interface. Bccauae 
the cIa3. contains ibe member r&IN *dd. 1 the c++ compiler Will auto- 
mstically ConYLlt any x.1 (i.e., type dmlbl.) constant or rariablc appearing 
in e.n crprcsaion with add variabks to its n~tdmunte~part. This avoid* the 
necessity (1) olv*iting sepamtc multiplication routines lot d possible corn- 
binalions ofvariablea. nstd op.r.tor.C do,xbl... nmtdt 1, and thr like, 
or (2) of declaring all variable in a progw.m m type nmtd. The ~on~tru~tm 
is implemented M one would cxpcct, 

manner. 
bnd that redly is all there in $0 it. The rerult ia thal nstd vsriablea act 

as though tbcy were part of the original language: the compiler knows bow 
to initishc them, arithmetic operations USC the smm rynbols, tte.n~~cn- 
dental functions mre cdled by their same ~WIXI, and type conuersion take. 
place automatidly in mixed variable erprearion~. Of COUISC, there ia no 
reara” to ‘itop; 0°C can go 0” to &v&p toottitr ror r.ti0n.l. p0lymai.l. 
lor.ntrDrcq, barnLine .ab‘.lT.t.l., qu.t.mion, .rtm.ic.nFi.ld. or 
any other matbcmslical abject which may be useful. Using C++ , OI other 
object-micnled Isnguagcs, even changes the approach to problem aolving. 
R.tber tbsn immcdiat.ly asking, “How do I WritC ,hr program?” 0°C 4ir.t 
steps bark and uks, “What objects are most convenient for erprnsing the 
problem and obtaining a solution. ” Toolkita crratcd lo aid the solution of 
one problem ax then easily reusable and appear naturally in later programs. 
I&ally, ~ivm mrn~ level of communication smong a group of umrs, toolk- 
it. csn be shared themby mdtiplying the group’s productivity. In short, 
the arrival of object-oriented programming (which is what this amounts to) 
npresen~a a significant breakthrough of almost limirleaa posaibilitics. 
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n.td::n.tdr dOUbl. x 1 f 
iat i.j; 
i = xi 
POLALui~ I 

dfri, = 0.0; 
PORALLCjJ *dfElCjl = 0.0; 
> 
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