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Orbital dynamics in the Tevatron double helix.

LEO MICHELOTTI and SELCUK SARITEPE
Fermilab®, P.O.Box 500, Batavia, IL 60510

A key feature of the Tevairon upgrade is the placement of proion and
anti-proton bunches on the branches of a double helix which winds around
the current closed orbit. Elecirostatic separators will transfer the bunches
on and off the double helix so that they experience head-on collisions only at
the experimental areas, BO and DO, all other encounters occurring at large
transverse separation. In this way the number of bunches, and the lumi-
nosity, can be increased without a proportionat growth in the beam-beam
tune shift. The scenaric raises & number of beam dynamies {viz. stability)
issues, especially (a) the consequences of sampling magnetic fields far from
the magnets’ center lines, and (b) the effects of Lthe long-range beam-beam
interaction. This report presents the results of (admittedly incomplete) cal-
culations and simulations done to date to explore (b); n Fermilab team (in-
cluding Ernie Malamud, Glenn Goderre, Norman Gelfand, Gerry Jackson,
and many others) have been studying (a), both experimentally and theoret-
ically, but we shall not review those efforts here. The constraint of a page
limit has forced us to bound this discussion rather stringenily, but a more
complete paper will be available as a Fermilab Technical Memo.

1 A model

Modeiling is the art of simplifving until one reaches a problem that has a
chance of being solved and perhaps — dare we hope? — understood. Some
of the particular simplifications made for these firsi calculations were:

Lattices and Separators

Calculations were carried out using two low-beta (50 em 2*) Tevatron lattices
designed by Tom Collins and Karl Koepke. The first is an old (September
23, 1987) laitice with horizontal and vertical tunes placed almost exactly at
20.5; we shall refer to it as the “resonant” lattice. The second is more recent
{September 27, 1988), and its tunes are shifted slightly to w. = 20,678 and
vy = 20.590; we shall refer to it as the “nonresonant™ lattice. The most sig-
nificant simplification is the neglect of all magnetic field nonlinearities. The
locations and excitations of the twelve elecirosiatic separators were speci-
fied by Ernie Malamud; typically, the kicks range from a few to aboutl 20-30
wrad. (4]

Bunch configuration

Calculations were done using a configuration of evenly spaced bunches: in
particular, we used a set of 21 x 21 bunches, as this number was both a
multiple of 3, which assured collisions at boith B0 and D9, and a factor of
1113, the number of available buckets.

Beam-beam interaction

Montague’s expression for the form of the beam-beam kick, based on a round
or elliptic transverse distribution of particles, has been derived in many
places, including Evans|l], Gluckstern|3], and Furman[2]. For the calcu-
lations described in this paper, the charge distribution in each bunch was
taken to be circular gaussian. All calculntions were carried out using a
“weak-strong” (or “large-small”) approximation. There was thus a distinc-
tion between “probe” particles and “source” bunches, or macro-particles, the
formet having no effect on the latter. The source bunch width was recalcu-
lated at each collision site, and & nominal 24 mm-mr invariant emittance
was assumed throughout. In mest, but not all, of the calculations the source
bunches contained 6 x 10'° particles ench.

Longitudinal momentum
We assume the energy to be 1 TeV; the lattice contains dispersion and nat-
ural chromaticity, but it is assumed that ép = 0.

2 Linearized Dynamics

We discuss in this section results for small amplitude orbits, those which
literally are infinitesimally close to the closed orbit. Exploration of moderate
to large amplitude orbits will be described in the next section.

*Operated by the Universities Research Associatlion, Inc. under contract with the U.5.
Department of Energy.

2.1 The closed orbit

The eiectrostatic kicks are designed to position proton and anti-proton
bunches on helical orbits while maintaining head-on collisions at B0 and
DO0. At full separator excitation the spacing between the two branches of
the double helix is approximately 6 mm over most of the ring, roughly a 10
separation for an invariant emittance of &= 20x mm-mr. This separation is
displayed, for the nonrescnant lattice, in Fig.{1). However, this “bare” orbit

MILICAL ORBIT | dpn-roaareni Wpllice )
Seporotion Scole = 1.0

SEPARATION DISTANCE { bn wnite of » )
-

° J H 3 H H i
Apimuth (resiens )

Figure 1: Orbit separation for the model’s design orbits.

does not take into account the kicks arising from the long range beam-beam
intersction, which distort it into a new, “clothed” orbit.! This is, it is hoped,
n small effect, but one which may be significant if the transverse excursions
of the closed orbit at the expetimental areas, B0 and DO, are comparable to
the transverse bunch width.

The “clothed” orbit of the model was calculated, via Newton's method,
as a fixed point of the single-turn mapping. The Jacobian of the mapping,
which is required by Newton’s method, was automatically computied using
a C++ implementation of “differential” nlgebra vatiables.[5] The resulting
transverse coordinates of the “clothed” orbit at the BO interaction region is
shown in Figure 2. The ordinate has been scaled by the beamwidth, but this
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Figure 2: Clothed orbit at BO .

is not meant to imply that the effect scales accordingly; one sigma (which is
about 50 um here) is simply a useful sise with which to compare the offsets.
The abscissa menasures A,.p, the normalited strength of the separators: 0
corresponds to turning them off, and thus having no pp bunch separation;
1 corresponds to the full kicks producing the “bare” closed orbit shown in
Figure 1. Notice that at BO, the motion is essentially all vertical for both
lattices tested. The size of the displacement is about the same at both
locations and smaller than 0.1, about 5 um, over the full range of separator
strength. For A,., > 0.5 the closed orbit distortion is already smaller than

INot to be confused with a closed orbit calculated in LISF.
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& 0.02¢ = 1um. These deviations are small enough so that one need nol
compensate for them.

The cutve labelled “xpr” actually repmenls the normalized quantity
az + A2', and similarly for the one Iabelled “ypr; the limiting value for
both of these is a nominal 0.05 &, or Jess.

2.2 Beam-beam tune shift

By finding the cigenvalues of the Jacobian matriz used to calculate the
“clothed” orbit we obtain ms » bonus the ezact tunes of small ampli-
tude molion about the closed orbit. With separators off, the approxi-
mate tune shift per beam-beam interaction is given by the usual formula,
€ = 0.007 N[10'%) /giny [ *mm — mr]. This must be multiplied by the num-
ber of encounters; for our modet 21 x 21 configuration (i.e., 42 hits) with
10" particies per bunch and e, = 24, we get { = 0.13. The tunes associ-
ated with small amplitude oscillations about the closed orbit drop rapidly as
separators are turned on. In Figure 3 are plotied the eigentunes nssociated
with the nonresonant latiice with ppb = 6 x 10'°. The principal feature of
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Figure 3: Effect of increasing bunch separation on tune shifts: nonresonant
latiice.

these curves is their very rapid falloff, a characteristic observed in Figure 2 as
well; the limiting values are attained for A, > 0.4-0.5, i.e., with separators
powered to = 40-50% of their designed strength.

3 Nonlinear dynamics

Going beyond the linearized mode!, we explored the tunes of particles on
{arger amplitude orbits by the simple expedient of plotting the “power” spec-
tra obtained by evaluating FFTs of the orbits. Prior to taking the FFT, the
data were multiplied by a windowing funttion (the Welch window) in or-
der to reduce the diffraction-like effects arising from a finite sample sige.[7,
pp.441ff] Initial conditions shown were chosen by setling w) = wz = w; =10
and letting wp ranging from 0.5 to 5; ppb is fixed at & x 10', Coordinates
w = (wp, wy, wy, ws) are interpreted wor = 2, w10 = a2 + Bee', wpor =y,
snd wyor = o,y + 5,1/ Figure 4 illustrates the (limited) amphlude depen-
dence of the tune for a varicty of values of X, (labelled as sc in the figure).
The strong amplitude dependence of the tune is suppressed very quickly by
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Figure 4: Tune versus initial amplitude for fixed ppb.

powering the separators. {Connecling the first two sample points with a
straight line segment is a Jitile misleading: of course, the slope of the curve
approaches O as z — 0.}

Finally, we explored 2 collection of orbits at both moderate and large
amplitudes using the EQA (Exploratory Orbit Analysis} graphics shell
AESOP.{6] We shall describe & few of these here, but static, two-dimensional
pictures do not convey the full experience of viewing these orbits as they
develop in (projected} four dimensions.

A few representative runs at moderate amplitudes ar¢ logged in Figures 5.
This figure teacks the behavior of an orbit passing through s given point in
phase space s A,,p, the normalized separator strength, increases from 0 to
0.5; ppb was set at 10!, The calculations for these figures were carried out
nsing the nonresonant lattice. For each value of A,,, we displey four phase
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Figure 5: Effects of helical separation.
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space projections of the {four-dimensional) otbit and the spectza for horiron-
tal and vertical coordinates. The two-dimensional projections are along the
hotisontal, (wo, wy), mnd the vertical, (w1, ws), coordinates. The coordinates
for ihe three dimensional projections, which we shall refer to us 881 plots,
are the horisontal and vertical “angle” variables and an “action” variable,
horisontal metion in the left hand plots and vertical in the right. These vari-
ables ere those obtained by expressing the two-dimensional projections in
polar coordinates rather than Cartesian, actions being equivalent to radius
squared,

A3 you scan through Figure Ba-c notice the change from clean, smooth
KAM tori when A..p < 0.2 through & chaotic layer for A,4p = 0.3, and return-
ing ic regular behavior when A,,, > 0.4. Observe the increasing complexity
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of the power spectra as },., increases and the orbit approaches a chaotic con-
dition. This broadband “noise” is typical of chaotic behavior. Conversely,
as the chaotic layer passes the orbit and it settles down to smooth torus
once again, the spectrum becornes once more discrete.? One very intriguing
feature emerges when you compare the spectra from sl similar figures which
ate not shown here due to page limitations. Notice that the peak spectral
component shifts with increasing A,.p, as is reasonable, and that the chaotic
layer at A,,p = 0.3 is correlated with (a} the peak spectral component hitting
the value 0.6 and (b) & second strong, noisy spectral component coming into
existence nt 0.8. This suggests a locking onto the v, = 1y = 3/5 resonance
scparatrix as the mechanism of chaos, with a possible interference from the
Ve = ¥y = 4/5 or 2/5 scparatrix as well,

However, large amplitude otbits can expetience a different phenomenon,
one which is best described in textilic terms: what happens is as though
KAM tori were literally woven from threads which unravel and become en-
tangled. To sec this happening, we shall track the behavior of the orbit
passing through w = (3,0,0,3) as the normalised separator sirength, A,
is increased from 0.0 o 0.5. This set of calculations were carried out using
the resonant lattice. The corresponding 8§87 plots are shown in Figure §.
The first plot shows a separatrix for A,q = 0; ppb has been set 1o 10
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Figure 6: As torl unravel orbits become tangled.

those who think this is too large can rescale by decreasing €in.. The orbit,
which is in the vicinity of a 2, — 24, separatrix, is chaotic and visits both
sides of the separatrix. {(Bear in mind that what we are viewing is only one
three-dimensional slice through the full separatrix.) A rematksble transi-
tion occurs as A,y increases from 0.0 to 0.1; Figure{8b) shows the orbit at
Ayep = 0.1. The scparatrix now contains only two lobes rather than the four
that it previously had; it looks more like & 1, — 1y separatrix. It is almost as
though one of the unstable rescnant orbits defining the separatrix has under-
gone e transition to stability. {Are we observing here some four-dimensional
form of period doubling?) At A,,p = 0.14 snother remarkable jump occurs,
and the orbit fills the wedge formed by the separntrix, as seen in Figure
(6c). The “wedge” smooths cut and becomes tighter until, st A,,, 2 0.3, a3
seen in Figure (6d), it winds around » tight XAM torus, close to & stable
resonant orbit. (Note the change in viewing angle.) Although il is difficult
to tell from these figures, this torus lics remarkably precisely in the inter-
section region of Lthe separatriz of Figure(8b) or, equivalently, at the cusp of
the wedge in Figure {6c). If we now increase A, furiher, an extraordinary
thing happena: the torus gets larget and beging lo unravel. This is seen in
Figure(6e}, which shows the orbit st A,.p = 0.4, The unravelling has begun,
but enongh of shape of the torus remains thai one can make cut its former
existence aad location. By A,., = 0.5 the torus has completely disappeared
and the orbit is simply » tangled thread, as seen in Figure(6e). Here we have
& pheromenon due to the long range beam-beam intersction which does not
vanish for A,., > 0.5. These very large amplitude otbits are still feeling the
effect of the source bunches. Keep in mind, however, that we have displayed
only the orbits passing through one particular point in phase space. Not all
latge amplitude orbits behave like this. Indeed, the orbit passing through
(3,0,0,-3) still lies on an identifisble, perfectly regular torus. Thus, the
problem is (a) to identify the probability of actually encountering such or-
bits, and (b) undersiand their impact on stability. This particular tangled
orbit, for example remained bounded for over 50,000 iterations. Though
it looks ugly, this aesthetic judgement may have no relevance to issues of
stability.

2] am curious about how these orbits would “sound” if we could convert
these spectra into audible sound waves. Is it possible that the ear could
discriminaie belween chaotic and regular behavior better ihan the eye?

Seme large amplitude orbits exhibil phaselock, as seen, for example, in
Figure 7. This orbit {resonant lattice) spends moat of its history with hor-
isontal and vertical phases locked near §; — 63 = 0, or x, resulting in the
vertical walls appearing in the 887 projections. The transitions between
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Figure T: Phaselocked orbit.

these two walls take place on time scales small compared to the time spent
in the locked regions.
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