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Amplitude growth due to random, correlated kicks 

LEO MICHELOTTI and FRED MILLS 
Fermilab’, P.O.Box 500, Batavia, IL 60510 

1 Introduction. 

“irtaricdy. r,ochastic prOCFsI(q such as gas .CrdlLli”g 07 ddmstic cod- 
ing, have been treated by LhC Fokkcr-Planck equation.[l] In tIca approach, 
yI”e.,,y conridcrcd for one dimenrion only, ,hc equation can be consid.red as 
a continuity equation roar a variable which would bc a comtmt oftha motinn 
in thr nbrence of the exhastic process. for example, the action variable, 
, z <,zr for brtatron oscillations, where c is the area of the Courant-Snyder 
ellipse, 01 energy in the case dunbunchcd beams, or the action vmiablc for 
phase orcillationr in case the beam is bunched. A flux, 0, including difhivc 
term, can be defined, urualiy Lo second order. 

* = M,P(I) + MdF‘lBI + .‘, 

M, and M, are the cxpectalion values ofor and (AI)’ due to the individual 
atoch~tic kicks ““Cl mme period of time, T, long enough that the wuiancc 
of ax*. quantitica is avsiciently rmall. Then the Fokkc~-Planck equatian is 
just 

BF,BI + se,sr = 0 

In many C~SCS, those whcrc the beam distribution bar al..ady achieved ila 
6w.l shape, usually Gaussian, it i, au,?4cicn, LO find the rake ol incrcare of 
(r) by taking simple average, ow, the Fokker-Planck equation. 

A, the time this work was begun, there (va, good knowledge ofthc mcond 
moment (01 general skxhastic P~DCCII~S due tostochaatic coolingtheory,but 
the form of the first moment was known only for ert,cmcly wideband (abort 
correlation timer) PIOCC(ISCI, such 8s gar scattering+] The purposea of thin 
note arc to deriu. an cxpresaian relating th. expected ,ingle particle .m&di- 
tudr growth to the noiw a~to~~rrel.tion lnncrion and to obtain, thereby, the 
brm or M, bl “altow band pmcenaer (long COllellltion time). 

2 Localized kicks as additive noise. 

\Ve shall describe the dynamicr in teims ofcrlcndcd &are lipace coordinnlcs 
a, p. and 8~ 

~=(:)~(~~I,,,)=~(:~~++66~) (II 
~terr. a(@), o(8). and $(B) me the umsl Courant-Snyder lattice lunclionr 
which ar+,e,r the Floquct rohtion. $0 Hill’s equokm, and we d&m J(0) = 
$(R) - v.9 where Y is the tune. (Note that $ is a periodic function of 0.) I 
and 6 me canonically conjugate variable. (i” the same lymploclic km” as 2. 
and p), A single ,u,n through a perLxt machine is rcprcrented by B linear 
mawing, 

x(0 + 21) = Rx(B) , 

where R is the rotation mattix 

R = ( _y;;:: :z’,; ) 

Thr “emiltance” a.ro&dcd wi,h a particle at I is r time. ,hc Couranl- 
Snyder invariant. 

< = II.) + (a= + Pz’)‘I/P 

We hove put “cmitlsnce” in quotation marks because mw csnnol properly 
speak or the emittanee da single ps~licle. More cor*edIy, thi* ia the phase 
space a,ca enclosed by Cowan,-Snyder tori. 

Consider Rid II .inglc particle circulating in a pcrrcrt storage ring and 
rcceiuing small, random. iocsliscd kicks at one location in the ring. Such II 
dynamical syskm is dcrrribed by the stochaalk process. 

.Op...lrd b, Ih ““i”C”ili” llc.rsrch A..o.i.lion. Inc. “l&r co”tl.0 ria 0.. U.S. 
orpdmm, 0, Emr~, 

PI 

wbc.c L, is the ststc of the particle after k ,u,ns. nnd (N, 1 k = 0, I,?,. ,) 
is a ra, of random varisblc. (“n&e”). In one turn, the “emittance” of Lhe 
particles will change according to 

; [x*-I = ark-, +2(0 N,,.t)Rx.., + N:.>] 

r,-, + ~[co.(lru)pr-,-NM -ain(Z~v).,-,N,-I] (31 

+p-, , (41 

where I’ve used RTR = 1. This can be written in a diRcrcnl fom thal “aea 
only pohr vtiablcr by subrrituting from Eq.(l). 

L=lr-,-N,-,~*in(2r”+~+a..,)+$N:., 

we now want to average Q.(4) over dl possible n&e hisloriem. Aa an 
initid calculation, Ict us suppose that Nh is a sero maan process uncorrclsted 
with the rtste. 

(P~-,N,.,)=(E,-,NI-LI=O (51 
Then. the expected “cmitlancc” growa IU Mows. 

(4 = k-L, + ;(N:.,) (61 

If Nk is mm mean, stationary noise Maociakd with random fluctuations in 
II dip& Scld, 681, then 

BI 6.s 
Nk=PmF (71 

Substituting lhia into E+(B) yields, 

(4 = k.-l)+*a (fi)‘((g)‘) I 

where I’ve used Lhe stationary hypothesis to eliminate the rubacript k on 
6.5 The growth rate olerpectcd “cmittancc” is 

I = d(r)ldi = f x (hi - (a-,I, 

= XfB (%)‘( (;)‘) 

where f is the fmquency of rot&on through the a~cderslor. Putting in 
mmr units, 

r[W~ x 1 “It” - mr,hr] z f[soklrc] x L3[mhl x 

(&w,)* x (($0-q 

That in, for II xwlution frcgucncy d&O LHI, and 8-r = ,000 ( E 2 17%” ), a 
Tenrtron dipole posilioned where p = 100 mc1c.1 with L” rmr fluctuation in 
68/B of IO-’ will incrcasc the expected invariant “cmittancc” by r mm-ml 
per hour. 

We now rclar the scro correlation assumption of E+(5). Let us ussum 
that we start from mnc fixed date, ro, ahich then cvol~ea according to 
Eq.(2) where NI is a sero mem, stationary, stochastic proce88 with auto- 
correlation (NhN,,,) f 0. Since N is ~t~lianary, (NbNm) depends only on 
the difkcn~c k - m, and WC shall dcfinc the singly indexed ~utocarrclation 
function, 

*A-,,, = *n-l. s (N,Nm) 

Now, aincc the noise is assumed to have mm meen, WC hsvc 

l’k : (Nm) = (N,)xo = 0 
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Horc”cr, in gc”eral the noise and Ihe .1ate are not “ncarrelatcd. Using 
Eq,(2) repeatedly, we get 

(N*r*) = R:Nlxk.l) + ( ; ) vwf.I) 

= R’(Nhxk-,)+R( ;)wL?)+( $w.r) 

= g p ( ; )] (NINI.,.“) 

WC note in pw~ing that R is just a rotation ma*rix, 80 that 

R” = ( yy” f:‘,:n,: ) 

Now WC can go back to Eq.(4) and ICwit. Eq.(6) P.8 rdlow.. 

(0) = (WI) + F(O IlR(Nk.lX&.1) + pJL,) (8) 

Using ““1 p’c”ious ledl, UJF rcwite the new, second term. 

Z”d tF,m = FZ [(O L)R” ( ; )] (N,.IhL.,J 

= ~~~~,,,,,,.,,,,.,,,.,.“, 

= ; z co5(2nn”)*, 

Plugging this back into k(8), 

(<,) = (c,.,) + g ~c+*“)%, + ;*o 
m-, 

The difkrcnce, (CA) - (G,.)), now depcnda on k. Howcw we <a” take 
Ihe limit, 

A<, s ~@J(.k) - k-d1 
D 

= fl “., 
I*, + $ &col(2sn”)% 

= ; 2 cor(*m”)~. (9) 
n- D 

The limiting erpec,cd EmitlanCe growth rate would the” be I = f x AC,. 
A5 an .xample, comidcc a ~inusoiddly wying kick, 

N, = Asin(kur + v) , 

where A and w P.,e mn.t.nt parameterr, T = l/f i. th. ~eYoI”licm period 
through ttw ring. and 9 is B random vaGJdc diltribvted on [ 4%) according 
to B probability meMUte &L(v). (This trample is *lightly ille@ti”ate, but 
kt us continue.) The ensemble of noise signals is indexed by p, snd each 
member of the en.emblc “BliCS ainu.oida”y. cJfdp(y) we demand only that 
it have no firat 01 second harmonics: 

Jd&)& = Jdp(v)e2+ = 0 

Then it is obvious that (Nb) = 0, s mquired, while 

9*-, = (N,N,) = A’/d,+)sin(Lvr +v)ain(“ur+ q) 

= a’Jd~(~)~{cosl(k-m)ur]-co.[fk+m)wr+21pl~ 

= ;a.cca.,(k - “)YTj 

then revert (0 rcgula, functions hrply peaked et the zero or their “W 
mcnts. The importanr pOint here ir that the tcsult is se10 for non-vanirhing 
arguments of the &,,a hnclio”. 

uwc associate, as in E+(T), the noise with a Audnating dipok field. then 
the the limiting rate of cmittance growth is expressed, 

‘=ff~‘P(~)‘(~)~~,~[la(z~“+~~)+a(zr”-w~)I (10) 

3 Distributed kicks. 

NOW canrider 8 series of kick9 didlibuted akmvt the ring. We shsll wite tttia 
in Lerma of a kick lunclion N(#), 

n(m)= g- N*6k-CL (11) 
.=-m 

who*c argument il 0 = 4,“. (Thir change O,Y.ri.blCI from 0 to # ia made 
only IO, CO,,YC~~C~C~, TIN end rcault would be th. S(LIIIC il we stayed with 
8, bu, ,hc intcrndiatc steps would bc “IDlC c”mberaome. Of COYI~C, for a 
twa &glee or Irecdorn ca,dstion WE would have to “SC 8 and the matrix 
lormulatio”.) The angle. 6. are complclcly arbitrary; they need not be 
equally *paced .round ,hc ring. iv($) f ,I ormally WIilk” al an infinite *urn, 
but it will be finite if 811 but II finite number ol Nb’r vanish. In such L CMC, 
N(d) will have bounded .“ppc.*t. 

In this section we *hali expreaa the rtnle IIS e complex variable. To this 
end, WC define 

.$o./&, = i+./da (12) 

When the partick i. kicked, the state changes instantaneously according to 

Ax(+,)l.~.. = ( ; ) NI > 

in direct analogy to &q.(Z). WC write Otis in ,llrnl cd Iv($). 

Wd4ln.i.. = ( ; ) N(4) 

and finally e.8 a dynamic for z, 

$I..;,. = NW) 

We add Lhi. to the unperturbed motion of Eq.(12) La get the f”ull dynamical 
.y*tem. 

($-iu)WJlj,=N/\/ij (13) 

The Grccn’r function for the linear opcratm on Lhc left is 

C(O - 4’) = o($ - $)e”‘+-@’ , (14) 
where e is the usual Hesvbidc step l”“diO”. (Note that WC do not want 
a periodic Green’s hnction. The boundary condition is that C(d - 4’) = 0 
for .$ < b’.) The .OI”LiO” to Eq(13) is then vritten. 

4dB = ~.I~+ 1.1 dQ’G(d - 6’PW’)/&m 

= M+l_b_ dqs.“‘*-*‘~N(~‘)/~ 

No,e that limg-.m z = z*, Thk i, s”ggc.li”c ofs”s”t”m xatt.ring thcoly. 
Let “I dcflnc thr in and out ststea or this problem, 

Z&/&G = *“&“-“‘lJ8 

Zd.%lJa; = r”“‘~““‘i~ , 

where 8’ BDWCS ““lY to ce.rry the units nnd to pmvidc an sppmpriate .c.Ic. 
Then we have the aIsOEi.tio”, 
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(15) 
or COUIIE, this has meaning only if N(4) has bounded ruworl. 

The Single-patMe “FmillR”Ce’~ is 

c=;zx = ;I4 

= ~ 1 2oe.w J& + J’ d+‘.-“*‘N(fV&?i ’ 
TI,~ hitin rem,, depends on the Fourier tranrfmm, rdstive to 4, ofN/v’P 
a, tll. tune “due. Y, supparr that N/JD = ac+9) for the duration 
Q t ,o, d,.. , and vanishrs rveryrhcre else. Then, h lnrge h”.. we ham 
the arymplDtic exprrrnon, 

*A’ CMI = ,d’., 
nis is rca~onnbk consider what happens to a harmonic oscillator which 
is kicked in phase wery time it parser ,he Origin: itr mDment”m increa(le. 
~~~~~~~~~ ad therefore its mrgy incrcaaer qudratically, with the number of 
kicks. 

piow id us once again make N a random function and cvalustc the maem- 
blc B”c,agF eve, all porrible “Ok histories. If we again lusume a rero-Incan 
p,ocesr, V$ : (N(4)) = 0, then, 

(c)m, = <<m+rJJ dm’dC m exp[ iv(Y - #‘)I x (N(Q’)N(O”)) 

= -+&jf&&q co4 dd’ - .+“)I x P’kW’(4”)) 

h pnrhh. x(N(+~)N(,~)) vani~hd elrEpt when d’s.4 4” xpresent the 
Same location in ihe ring. 

(N(d’)N(4”)) = g &(4’)6(4’ - 4” - 2~“) 
“z-.x 

then lhir becomes. 

(&“, = <in +* 2 ros[2nnul/_“, &K,(Q) 
n=-m 

~inn,,~, XN operater only at one ,mini in the ring, ray $0, snd ifthe pmcess 
is stRtione.,y, then we identify 

X,($q = 0. c a(4 - 4, - 2xkl 

snd ,ec.ptwe the rcrdl ol Section 2: 

tb”-+& ( & “gm4mv)*.) 

The extra inAnite rum appcam because we are hem not ealculatin~ the rate 
or rmittancc g,owth hul the final emiltancc, which muat br infinite for L 
atstionary P’OCCSl. 

Mating a switch from ensemble averagea to time avcragea, we note that 
the q”.ntity *, is, with pmbability 1 M T ..3 co the time *uto.orreiation 
function comrponding to the alochastic function N(i) and is, according to 
the W’irner-Khintrchin Lhcorcm, the Fourier ,.andorm oflhc powec ~~ect~“m 
OlN. 

e(r) = limit_,; J.‘dl N(L)N(t + r) = Jdwe’wv(w) 
we now proceed to calc”,a,c MI. P.5 in Eq.(9). 

Ml = AI/T = PI0 c cos nP*(nl/o) 
n=o 

;@/o yg Jb (e+-) + c.,.) PC,) 

;ar. ~z~P&vlo * Ph) 
P,i 

OJ,’ 1 P,(“h * UIO) 
V.“i.. kv-ri.* 

N(L) = 01 cos(Rt + 4(i)) , 

where 8, is constant, R is a Frequency below Lhc lowerl Schattky line, end 4 
is a ~em.m~an, random Iunction of time (a) which is mdl. 4 < 1, and (b) 
has .~toc.,rte,.,ion function C,(r). It is easily verified that 

@(,) = #[I + C@(‘)]Cosn~ 

,I we now ,ake the Fourier ,ran&rm ol this to 8~1 the power r~cclrum, in 
addition to delta lundion terms, as in Eq.(lO), we obtain a term 

ib/ drC+(T)[e-‘@+“)’ + c.c.] 01 I’& i n) 

Then the heating tskcr p,nce at sideband kquencics ,o(ni v) * ” in the 
powcr spectrum of 4. we would cxpce, the bandwidth of the $ n&e to be 
less that n, so for low frequencies n WC would not crpcct to gel hcaling from 
this type of phase noise. A similar conclusion pertains to random changes 
in the amplitude 81. 

4 Concluding comments. 

The formalisms used in the two preceding sections are inkrcbangeabie. We 
could just aa easily have writtm 

I, = ei’-“z,., + N&L, 

lo, Eq.(2) 0, USEd a mstrix Green’s function 

G(d - 4’) = w - 0’) CXPI 44 - 0 I 

J = (“, :,) 
in place of ~q.(ll). WC have recorded derivations in both formaiirma far 
p”rporca ofihstration. 

Th. Lwo rcsullr, nonetheless, loo!, ve,y diRerent. In the firal section we 
clearly have sn cmittancc that is growing indefinitely with time, while in 
ihe lecond thr emiuance attain, a lid “.I”.. (Se. Eq@), for.crampl?.) 
rrhe dimrence is that in section 2 yie assumed a .td=mry proceir, which 
therefore continues indefinitely, while the evaluation of Fourier harmonics 
in Section 3 required a tacit assumption of s mix Iunctions which dsmped 
out with time. Thus, the infinite series in Eq.(ll) is redly fink all but a 
finite number N,‘a vsnirh. Nonetheless, while the noise function is non-~10, 
the emittance grows quadraticdly with time, whereas in the clue ofcqudly 
spaced, random kicks the asymptotic growth rate of the erpected emillance 
from an .n.cmble oJnoiw hi,lorie, is a eon~tant. 

It turm ant that s close variant of Q.(9) was derived hut not published 
by Gerry Dugan ~cverd years ago; them ,c.u,,I probably edrr in the desk 
drawers or C, number of other people IY well. We have treated only single 
particle motion here. A treatment of true emittsnce growth requires con&- 
ering motion o, Lhc eentroid ofa bunch and the mixing dparticlc. within 
the bunch. Meminga, Mane, and Edward, have demonstrstcd the equiv- 
&me of w.rious spproaches to calculating the &coherence of a bram.[3) 
Mane has genedid our fmmalim by adding a dunping term IU sn ap 
proximate way ol modding Lhr molion of the ccntroid with detuning and 
thcrcby haa developed predictions which compare favorably with emittance 
8rowth mea.urcments in ,hc Tcntron.[Z] 
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Then, the first momen,, like the sceond, only attains a non-IEIO due if 
I,,C power S~FCLIUITI is non.EEIO al Lhe Schotlky liner. If P, eontsins many 
,evolu~ion ireq,,cncies in i&s bendwidth, M, iz W,o j P,dJ; lhal is, the told 
power is all Ihe., matteir~ 

Let us apph. this LO a Iow frequency process, 


