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Abstract 

An analytical derivation of the horizontal xnear due to sextupoles and 
octupolea is presented. A generalized expression for the horizontal 
smear due to all multipoles is derived. A two degree of freedom calcu- 
lation yields the smear due to sextupoles and octupoles. Experimen- 
tal observations of the smear induced by special sextupoler have been 
made at the Fermilab Tevatron and our calculations agree very well 
with the data over a wide range of conditianr. The smear due to ran- 
dom and systematic multipole errors in the dipoles, before and after 
the insertion of lumped correctors, ia calculated for the SSC lattice. 
Finally the smear due to random and systematic multipole errors in 
the Tevatron dipole. is computed. 

Introduction 

For an ideally linear motion, a particle trajectory in the phase 
apace at a certain location along the ring maps out a perfect ellipse 
which is an invariant. In the presence of nonlilinewities, however, the 
trajectory fluctuates about the ellipse from turn to turn. The mm 
fractional value of this fluctuation is called the aingle particle smear. 

In a collider ring the region wound the axis of the magnets where 
the particle motion ia aticiently linear defines the linear aperture of 
the accelerstor. Based on past accelerator experience [l], the linear 
aperture for the SSC has been defined [Z] quantitatively aa the re- 
gion within which the smear is lees than 5.4% and the on-momentum 
tuneshift with amplitude is less than ,005. These criteria were sub- 
jected to experimental verification during the beam dynamics experi- 
ment E778 [9] performed in the Fermilab Tevatron. Furthermore single 
and multiparticle tracking calculations were used to predict the smear 
for various sccelerator conditions. These predictions were compared 
to the experimental results. The agreement is very good. However. 
it is useful to derive an analytic expression for the smear. First. such 
a cahk.tion can be compared to experimental and trsckiig results. 
Agreement among the three methods would enhance one’s confidence 
in the understanding of the particle motion in the linear aperture re- 
gion. Second, one could use this formula for the computation of the 
smear in a machine, without resorting to extensive trackiig. 

This paper presents analytical formula for the smear computation 
due to both field errors and correction multipole insertions. First order 
perturbation theory has been used to calculate the distortion of the 
beam shapes in the two transverse planer due to the nonlinearities, 
thus giving rise to the expressions for the smear. In the particular 
care ofoctupoles and sextupoles the smear is expressed conveniently in 
terms of Collins’ distortion functions [4], the contribution from the two 
multipoles being separable. Aa we shall see, this is not the case if one 
includes higher multipolea. A number of applications of these formdie 
are presented at the end. Analytic derivation has been performed by 
Forest [S] in the complicated Lie algebra notation. Ow form&c are 
simple. 

Smear Due to Normal Sextupoles 

First we perform the one degree of freedom analysis. Consider the 
situation of only sextupolea in the ring. For first order perturbation, 

‘Opcr~trd by the Unirer*itics Research A ..oci.tion und., ron,r?.ct ritll ,hc 
u. s. D.ptmenl ol Energy. 

the distortion of the horizontal particle amplitude & st phase advance 
& is given by [3,6] 

&4(k) = d.m*(&) sin*. - &(!h.) COS~.l 
t iAdtb.)sin3+% - Bd11.)c06Wrl> . (1) 

where pr is the instantaneous hetatron phase such that 2 = &cm pr, 
$. ia the phase advance and BI, Ba, are the Collins’ distortion func- 
tions: 

Bl(&.) = & T $J cos(& - ui. - *&I, 

BdW.) = & c F ros3(& - 4. - w.), (2) 
= * 

and the A’s are the derivatives of the B’s with respect to their argu- 
ment. Also Sf’ ia the strength of the t-th rextupole defined in Eq. (7) 
below. The rummstions above are over each sextupole located at the 
5nodified’phaJe advance &, which is equal to the usual Floquet phase 

&r if !lu ? rl., and to v&k + Z*v, if tir.k < 4.. 
The single particle smear at & is defined as 

2 l/1 
S*($.) = qp , 

( ) 
PI 

where ( ) denotes the average over many turns, or, equivalently over ‘he 
instantaneous hetatron phase 9.. From Eq. (1). we Set immediately 

S:(k) = ;& {A:(&,) t B:W.l t A:W.) + B:(k)} (4) 

If we conaider the distortion functiona as vectors Ry’ = (l3l.A~) and 

Rp’ = (B3, A,) then the smear can he expressed as 

S:($.) = ;d: {IR?12 + IR~‘I’}qm (5) 

From the definition of the distortion functions, Eq. (Z), we get 

f 1 lR?‘($ 

x:,. spe ‘*L 

)I = I 
.s/si!*u.l ’ lR$%.)l = i:~,~~~:q”l (6) 

m 

Further insight can be obtained from the following property of ‘he 
distortion functiona: the distortion functions at another point $ t A$ 
downstream are given by the vectors Ry) and Ry) rotated through 
angles A$ and ,A$ respectively if there is no sextupole between the 
two points. In paasing through a thin sextupole of length L + 0 and 
strength 

s(~m.[(q2(gj ) (7) 

with horizontal hetatron function p. and partirle’a magnetic rigidity 
(BP), the BP’s are continuous while the A,‘s jump by an amount S(‘)/4. 
Thus the mnear will bee constant between two sextupoles but will have 
a jump when a sextupole is crossed. This ia demonstrated in Fig. (1) 
which is obtained by plotting the smear as given by Eq. (5) 8s a function 
of the phase advance around the machine. Sixteen sextupolea clustered 
in two groups of eight located at phase advances of approximately 



-2- 
Smear Due to Normal Octupoles 

The one degree offreedom calculation is performed first. The distor- 
tion of the horizontal amplitude 4 due to normal octupoles is given 
to tint order in the octupole strength, by 

6& = ~[(A1~in4~.-B,cos4~,)+2(Alsin2~.-B1cos2~,)] (16) 

where ‘p= is the instantaneous betatron phase, and Al, B1, At, BI are 
the Collins’ distortion functions. The B’s are defined by 

Figure 1: Smear YCISUI phase adrancc, around the machine, ui pre- 
dieted from perturbation calculation. 

4.5 x 2r and 14.5 x 2~ cause these jumps in the smear. In the special 
situation of having only one sextupole in the ring, the smear becomes 
a constant of motion. 

Next we treat tbc two degree of freedom c118.z In two degrees of 
freedom the distortions of the horizontal and vertical amplitudes 4. 
4 at phase advance &, to fist order in the sextuple strength, are 
given by 131 

64 = &[(Atsinip,-BI cos~.)+(Again3~.-B~coI~~,)] 

-~[Z(~*in~.-Bcos~,)t(A,sin~+-B,cos~+) 

- (Adainp- - B~COSV-)], (8) 

64=-244[(A,.in~+-B,cos~+)+(Adsin~~-B~dcos~.)]. 
(9) 

The distortion functions B,, Bd, and B, are given by 

B..d(h) = * sj”*“* L=$ $) C”I (& - .+b* - w*), 

B(ll.) = & = T T CD6 (& - !b* - “V.), (10) 

and the A’s are given by the derivatives of the B’s. Here $3 = Z&i& 

and u+ = 2u, * 0.. The aextupole strength s(‘) is defined by 

(11) 

In two degrees of freedom one can d&me three different kinds of 
6l”eU: 

spp _ (py )“‘, (12) Sxu = ( (,,,,,)))l’z, 

B1(W*) = & 
s(J) 

c % cos4(tiL - 11. - w), 
= k 

B&W=) = & 
A-p 

c 7 LOB 2(.& - $* - *v.). 

The octupole strength S_(‘) i:dIfmed by 

~~%p[(g)~]. 

Hence the horizontal smear given by Eq. (3) ia 

S: = ; a: {(A: + B:) + 4(A: + B:)} 

or 

where, 

S:, = ; d: {I,),, + 4fR9’} 

,R~), _ Ip.“y (R(J,, = /LSFq 
161 ain4*v.l ’ 161 ain2*v,~ 

(17) 

(W 

(19) 

PO) 

(2’) 

In two degrees of freedom the distortions of the horizontal snd ver- 
tical amplitudes, 4 and 4 respectively, are given by 

64 =d:[(A19in4~.-B,coa4~.)+2(A1.in2~.-B,coll~~.)] 
-34&[2(A~ sin2pz-BS cor2co.) 
+(A~rinZ~+-B~cos2~+)+(A~sin2lp~-B1cos2~-)], (22) 

64 = -3xA[Z(Ae sinZp,-Bs coaZp,) 
+(A3sin2p+-Bscos2Vt) - (A,sin2~~-B,co~2~-)] 
+~[Z(Assin2~“-B~acosZ~,)+(A,ain4~~-B,cos4~,)].(23) 

The distortion functions Bs, Rk, &, Be, BI, and B. are given by 

B,(4&) = & 
$;’ 

2r,“4r”” F 7 cos4w; - tbu - 9)’ 

B&W,) = L 
3,” 

211,n2nv, T a~~e;k - ra, - w)~ (24) 

Here Y* = v. f vv snd $+ = $. + &. The octupole strengths Sc3) and 

s’“) me defined by 

where the subscript P stands for X and I’. Using Eqs (8) and (9) 
one CM express the three smears in terms of the Collins’ distortion 
functions as follows Then the three different smear~ given by (12) are 

Six = ;d:(A;+B; + A;+B;)+ ; $,(A:+B:)+(A:+Bj) 
: 

S:, = ;d:[(A: + 8:) + 4(A; + B:)] + 5434(A: + B:) 

t 4(2 + 8’)] 24(A,x t B,B), 
t (A: t B:) + (A: t B:)] - lz&d$%A, + 8~8.1, 

(13) 

S& = Zd;(A: + Bf + A: + Bj) (14) 
S:, = +[4(A: t B.‘) + (A: + BJ’) t (A: + B:)] 

S:, = 4(A: t 8; - A; - Bj). (15) 
t + d$4(A: t B.‘) t (A: t B:)] - 12ti4lA.A. t BeBal 

For the explicit expressions of the w”ear in terms of the sextuple 
and 

strengths and phases, we Ref. (71. S:, = ;d:d$(A: + B:) - (A: + B:)] 

(25) 

(26) 

(37) 

(28) 



Horizontal Smear Due to All Multipoles -3- 

In this section, we shall present a formula for the horizontal smear 
with the contributions from all higher multipoles without resorting to 
the we of distortion functions. The complete derivation can be found 
in Ref. [‘il. 

The irrotational magnetic flu density can be written in general 8s 

B, + iB, = So F(b, + ih)(r + iy)” , (29) 
n=, 

where b, and a,, me the normal and skew multipole coefficients, re- 
spectively, of order Z(n + 1). For example, 

In the above, the vertical bending magnetic flux density Bo ad well as 
the field Smdients of the focusing F and D quads have been excluded. 
Thus, Eq. (29) contains the contributions of all field errors as weU 
ar other imerted correction multipoles only. Since we are concerned 
with the isolated horizontal phase space only, Eq. (29) simplifies to 
8, = Bo E:,“=, b,z” 

Then the smear S due to all higher multipoles, is given by 

- d1”-‘Sfm-l)fp4 z 
e :wi 

sin 2pxv 

m ,d’“-‘S!Z”)I~m)ei(2p+l)~~ * f3*) 

p=o * m=p 

Here d is the normalized amplitude, A = (21&)‘/“. Taking the thin 
lens approximation we define the strength of the t-th multipale, Sk, of 
length L - 0 as 

s!” = fz [$$ (~)(‘+11’190L]k (32) 

where I = 2m- l/2* for the 4m/4m+2-th multipole. The coefficients 

f$--‘) and f:‘“’ are defined by 

p-1) = P 2m 
( ) 

, p”) = Zp+l 
2*Yn m-p ( 1 

2m+’ (33) 
2’=+‘(2m+1) m-p 

for the 4m-th and (4m + 2).th multipole respectively. 

Applications 

The fist application is on E718. Experiment E778 studied the non- 
linear dynamics of tramverse particle oscillationr. Nordinearities were 
introduced in the Tevatron by 16 special sextupoles. The smear was 
measured far different sextupole excitationr (0 to 50 amperes), differ- 
ent tunes (19.38 to 19.42), and 3 kick amplitudes (5, 8 and 10 kV). 
Tracking calculations were done to simulate the experimental condo- 
tions and the mnear was extracted from these calculationa. We used 
Eq. (5) to compute the mnear for the E778 Tevatron lattice for various 
conditionr. The agreement between observation and prediction from 
perturbation theory is very good, as Fig, (2a) demonstrates. Also 
Fig. (Zb) displays the comparison between perturbative calculations 
and tracking predictions. The agreement is also very good. 

As a second application we shall calculate the smear in the Tevatron 
due to random and systematic errors in the dipoles. The Tevatron 
dipoles contain higher order multipole harmonics. The mean value of 
each multipole component ia called the systematic error while the rms 
value emstitutes the random error. We used Eq. (31) to calculate ‘he 
smear and ‘he errors are taken from Ref. [lo]. For B. = 4.4 Tesla, 
at So = 100 m with dipole length L = 6.12 m, at an amplitude of 
d = 5 mm and tune of Y = 19.23, the smear in the Tevatron due to 
random errors is S = 1.04%. This result is in very good agreement with 
the measurements of the smear in the ‘bare Tevatron’ (ncmlinearities 

p, - .42 
‘n.o r” 11~0 t me data 
:;,,~O a 
1; r:,-- 

no ~ 
/ 

0 10 m m 
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0.0 
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Figure 2: Smear VI scxtupole excitation. Comparison between perter- 
bative calculations (solid line) and (a) experimental data (E778), (b) 
tracking calculations. The 3 curves correspond to 2.25,3X and 4.5 mm 
in amplitude. 

,x, 
.Y” _ _.I” 

br, ba, b, random and systematic presmt. 
No correction. , 1.07 * 2.50 

>tCIC”t. I 
t 

P.“Av” h. h. b, , .__..--... -‘/ -~/ 

w7  ̂ r-.--l ..“.” . . . . Lion /. 0.39 * 0.00 

Systematic bz, b.. b, r .-=... “..S.“‘. 

Correct random and svstema‘ic 
Random and systematic b,, ba, 

b: 
br present. 

Correc, random br. br, b,. 0.43 * 0.22 
Rm,dom b,, ba, b, prcacnl. 

Correc, random br. 
Random b,. br. b, present. 

Correct .yatematic br, bs, b,. 0.0009 * 0.00 

Table 1: S urnmary of the results of the analytic computation of the 
smear in the SSC, with end without correction elements. 

turned off) performed as part of E718. For the same conditions, the 
smear in the Tevatron due to ~yrtematic errors, as calculated from 
Eq. (31), is S = 0.90%. 

Finally we calculated the smear in the SSC due to random and sys- 
tematic bl, bJ and bl given in Ref. (71. We assumed an ‘arcs only’ SSC 
lattice with 320 cells and 12 dipoles per cell. The tune was 81.285 
and the amplitude was 5 mm. Then we inserted correctors ercording 
to Neuffer’s three lumped correction scheme (91 and recalculated the 
smear. The results are summarized in Table 1. The value of the smear 
fluctuates by large mount depending on ‘he sed used. As a tolerance 
in design, one should allow the amear to vary by as much 86 say two 
deviations from the mean within the good field region. 
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