Fermi National Accelerator Laboratory

F

FERMILAB-Conf-89/058

A Site Oriented Supercomputer for Theoretical Physics:

The Fermilab Advanced Computer Program
Multi Array Processor System (ACPMAPS)*

T. Nash, R. Atac, A. Cook, J. Deppe, M. Fischler, 1. Gaines, D. Husby, T. Pham, and T. Zmuda
Advanced Computer Program

Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, llinois 60510

E. Eichten, G. Hockney, A. Kronfeld, P. Mackenzie, and H. B. Thacker

Theoretical Physics Group
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

March 6, 1989

*Presented by T. Nash at the 4th Hypercubes Concurrent Computers and Applications Conference, Monterey, California,
March 6-8, 1989.

Operated by Universities Research Association, inc., under contract with the United States Department of Energy

A S1TE ORIENTED SUPERCOMPUTER FOR THEORETICAL PHYSICS:
THE FERMILAB ADVANCED COMPUTER PROGRAM
MULTI ARRAY PROCESSOR SYSTEM (ACPMAPS)*

T.Nash, R. Atac, A. Cook, J. Deppe, M. Fischler, 1. Gaines, D. Husby, T. Pham and T. Zmuda
Advanced Computer Program

Fermi National Accelerator Laboratory
Batavia, IL 60510

E. Eichten, G. Hockney, A. Kronfeld, P. Mackenzie, and H.B. Thacker
Theoretical Physics Group

Fermi National Accelerator Laboratory
Batavia, IL 60510

Abstract

The ACPMAPS multiprocessor is a highly cost effective, local memory parallel computer with a
hypercube or compound hypercube architecture. Communication requires the attention of only the
two communicating nodes. The design is aimed at floating point intensive, grid like problems,
particularly those with extreme computing requirements. The processing nodes of the system are
single board array processors, each with a peak power of 20 Mflops, supported by 8 Mbytes of data
and 2 Mbytes of instruction memory. The system currently being assembled has a peak power of 5
Gflops. The nodes are based on the Weitek XL Chip set. The system delivers performance at
approximately $300/Mflop.

The system is programmable in C and Fortran. An underpinning of system routines (CANOPY)
provides an easy and natural way of dividing site oriented problems among the many nodes, such
that the detailed architecture of the system is transparent to the user. Users program the machine in
terms of sites and fields on sites, not in terms of nodes. When intersite communication implies
internode communication, CANOPY automatically handles it. CANOPY is now running on a
variety of machines in single thread or parallel mode, including the ACPMAPS system, Sun
workstations, Motorola 68020 and AT&T 32100 based systems, MIPS RISC processors, VAXes
running ULTRIX, and PCs. It can be readily ported to any single CPU or MIMD system which
supports C. A library of microcoded kernel mathematical routines has been written, enabling
typical lattice gauge applications to run at high efficiency on the Weitek CPU.

The modular architecture may be adjusted to the problem types anticipated. Typically, the
system is configured as a compound hypercube, with eight nodes on a crossbar and the crossbars
connected as a hypercube. Full hypercube interconnections are also possible. Unlike traditional
hypercubes, any node can communicate in a transparent manner at full speed with any other node
without involving additional nodes. The individual nodes are in switch crates whose backplanes
handle full 16 port crossbar switching at bandwidths of 20 Mbytes/second per connection.
Interfacing modules, which allow communication with other crates at the same speed, may be
plugged into the switch ports. The switches contain automatic routing information to other switch
crates. This connectivity allows distributed I/O to low cost video technology storage devices from
each crate to support check pointing of long calculations and archiving of results. A single tape
volume can hold as much as 64 gigabytes of data.

A 32 node 640 Mflop system is currently running physics applications. A 256 node machine is
being assembled and is expected to be operational by mid 1989. The 256 node computer will cost
roughly $1.5 million (at today's memory prices) and deliver over 5 Gflops (peak). Expansion to
2048 nodes is possible. The primary applications of this system at Fermilab are theoretical particle
physics calculations, using lattice gauge techniques. The system is available for commercialization,
allowing its application to many other problems. Among the configurations to be made available
will be a one crate "department supercomputer”, costing about $100,000, and performing at the
level of 1-3 CRAY X-MP's. It is anticipated that many workers with new site oriented codes will
find the ACP machine easier to program than vector supercomputers.

Fermilab is operated by Universities Research Association, Inc. under contract with the U.S. Department of Energy

Introduction

The Advanced Computer Program Multi-Array Processor
System (ACPMAPS) is a massively parallel floating point
computer designed for lattice gauge theory and other grid-
oriented problems. In the last few years, lattice gauge
theorists have seen the achievement of two important
milestones on the road to first-principles calculations of
hadronic properties with reliable estimates of the accuracy of
the calculations. First, apparently reliable Monte Carlo
calculations of simple quantities in pure gauge theory
(without quarks) have begun to appear, starting with the
temperature of the deconfining transition in pure gauge
theory. In addition to providing confidence that the program
of large scale Monte Carlo calculation in four dimensional
nonabelian gauge theory is succeeding, these calculations
have put estimates of the computing needs for full QCD
‘calculations on a firmer footing. Lattice sizes of 324 - 644,
requiring 1 - 20 gigabytes of data memory seem to be a
reasonable guess.

Second, the search for improved algorithms for the most
difficult part of QCD calculations, the inclusion of the effects
of the sea quarks in hadron calculations, has been very
successfull, On large lattices, the hybrid Monte Carlo
algorithms which are now coming into use are roughly 104
times faster than the seven year old algorithms from which
they descend, and are now "only" about 100 times slower
than the analogous algorithms for pure gauge theory. Further
improvements using nonlocal techniques such as Fourier
acceleration and multigrid methods are quite possible.

The generation of special purpose computing machines
now coming on line for lattice gauge theory are around 104
times as powerfuls as the VAXes on which the first Monte
Carlo calculations of the hadron spectrum were performed in
1981. The combined improvement in hardware and
algorithmic calculational power of 108 since 1981 approaches
but does not quite meet the demands of full QCD if the more
conservative estimates of calculational needs are correct. The
remaining factor must and almost certainly will be met by
further improvements in hardware and algorithms.

The Fermilab lattice machine was designed to provide
very large amounts of computational power at reasonable
cost, without compromising the programmability required for
further rapid development. A sixteen node machine (320
megaflops, peak speed) has been constructed and is running
physics code. It is a prototype for a 256 node machine (5
gigaflops, peak speed, 2 gigabytes of data memory) which is
presently being assembled.

Architecture

The architecture shares some features with all lattice ma-
chines which have been built since the first Columbia ma-
chine2: it is based on a massively parallel set of nodes each
containing fast floating point hardware and locally accessible
data memory. Each node typically performs calculations for
the subset of lattice sites whose fields are stored in its local
memory.

Among the most important differences between our
machine and others of its type are programmability in an
ordinary high level language, and the operation of the
individual nodes totally asynchronously both in computation

and in communication. These resulted from two fundamental
design goals for the machine: that it be programmable in a
high level language and that the architecture of the machine
constrain as little as possible the types of lattice problems
which can be done on it. »

Programmability in C and Fortran (we are currently us-
ing C) was made possible by the Weitek XL chip set. This
chip set contains a 20 megaflop (peak speed) floating point
unit, an integer processor, and an instruction sequencer. It is
programmable as a whole using compilers supplied by
Weitek. Each node contains one chip set, eight Mbytes of
data memory and two Mbytes of code memory, The memory
is 100 nsec page mode dynamic RAM.

The desire to have the architecture constrain possible
physics problems as little as possible led to the use of totally
asynchronous operation of the nodes (MIMD) and completely
transparent nonlocal communication between nodes. MIMD
architecture is very flexible: it can handle problems which
are awkward or impossible for single instruction, multiple
data (SIMD) architectures, such as heat bath and incomplete
LU decomposition algorithms and random lattice problems.
The allowed sizes and shapes of the lattices are independent of
the details of the hardware. The node structure of the machine
can be made invisible in the high level code, resulting in im-
proved programmability. MIMD has the potential for com-
munications bottlenecks which cannot occur with SIMD, but
these do not seem to be very severe in the codes we have
tested so far.

Asynchronous internode communication is made possi-
ble by a network of switch crates into which the nodes are '
plugged. They handle full sixteen port crossbar switching at
bandwidths of 20 Mbytes/second per channel. This yields a
total bandwidth of 2.56 gigabytes/second for a 256 node ma-
chine. The switches allow any node to access the memory of
any other node without knowing where the other node is lo-
cated on the network. With the current switch crate hardware,
systems of up to 2048 nodes are possible before this trans-
parent nonlocal communications feature is lost.

ACPMAPS Hardware

ACPMAPS is designed to provide a hardware platform
for development and running of lattice gauge algorithms.
Such a system must meet several criteria: It must be
powerful enough to try methods on the large lattices where
the physics becomes relevant, yet still remain accessible to a
broad community of physicists. It should be flexible, both
in the nature of interprocessor communications, and in the
availability of multiple instruction streams (MIMD). There
need to be large-scale I/O facilities for archiving intermediate
results. Most crucial is the requirement that the system
support a software structure which will facilitate the
development of algorithms.

The machine consists of a compound hypercube of
crates, each of which is a full crossbar switch containing
several processors (Figure 1). The processing nodes are
single board array processors based on the Weitek XL chip
set, each with a peak power of 20 Mflops and supported by 8
Mbytes of data memory.

By "compound hypercube” we mean an architecture
wherein many multi-processor units (in our case, crates of

" single board processors) are configured as a hypercube, while

the connectivity within each crate is a superset of hypercube
connectivity (here, a full crossbar). In situations where the
communications bandwidths in the hypercube connecting the
crates is adequate for the power of these multi-processors, this
architecture contains the ordinary hypercube topology.

The backbone of the system is a set of 16 by 16
programmable crossbar switches, implemented as the
backplanes of crates: The Bus Switch Backplanes (BSB).
Occupying slots of these switch crates are the Floating Point
Array Processor (FPAP) nodes? -- the crates are then
connected by Branchbus cables, forming a hypercube.
Branchbus is a 20 Mbytes/second intercrate cable system
previously used by the ACP for experimental high energy
physics VME based multi processors5. In addition, there are
three minor components: Branchbus Switch Interface Boards
(BSIB) connecting BSB switches, a host running Unix with
connections to the outside world, and a high-volume
distributed tape 1/O system. The system is, by design,
reconfigurable and expandable; we are currently running on a
small 2-crate development system, while a 32-crate, 256-node
production system is being assembled.

The BSB switch crate is a Eurocard format crate with a
sophisticated backplane. The BSB crate backplane consists of

BUS
SWITCH
00000

i

SWITCH
CRATE

00100

a 16-port crossbar switch. The key components of this board
are 13 Texas Instruments SN74AS8840 4-channel 16-port
crossbar chips, and a Programmable Read Only Memory
containing routing information. The programmable routing
information allows the construction of machines composed of
many BSB crates. A device in any crate can communicate
transparently with one in any other crate, simply by
requesting a channel to the appropriate device number — the
PROM determines the path the conrnection is to take. The
intercrate connections can be reconfigured with a change in
one PROM chip per crate. Thus the BSB crates allow the
topology of the system to be matched to the needs of the
applications to be run.

Each channel of communication can proceed at 20
Mbytes/second. Since eight such connections can coexist on
one crate backplane, the aggregate communications bandwidth
is 160 Mbyte/second. The time required to reconfigure a
switch is roughly half a microsecond, and reconfiguring does
not affect communications along any channel other than the
ones being opened or closed. A system may comprise up to
2048 devices.

BUS
SWITCH
00001

Figure 1: The ACPMAPS system consists of a hypercube of switch crates. Each slot in each crate may contain an FPAP processor node or a
BSIB board providing a connection to a neighboring crate or other device. The system being assembled consists of a 25 hypercube of 32

switch crates, each containing 8 FPAP nodes.

Using a crate backplane itself to implement a crossbar
switch shares the advantages usually associated with a bus
crate, such as VME. A board simply plugs into the crate via
connectors on the backplane; the processor board does not
require extra cables emerging to connect to "neighboring”
nodes. The crate can be fully or partially populated. Each
module arbitrates for the "bus" and then owns that channel
until it relinquishes it — this asynchronous internode
communication allows MIMD operation. A separate stand-
alone switch device is not necessary.

The BSB switch crate has two key advantages over
conventional bus crates. The first results from the crossbar
nature of the backplane — since many commaunications paths
may be opened at one time, the effective "bus” bandwidth is
up to eight times that available for conventional busses. The
other advantage is transparent expansibility — a system of
many interconnected switch crates appears to each individual
fiode as a single extended crossbar switch. This simplifies
the construction and programming of very large systems.

The FPAP is a single board computer based on the
Weitek XL-8032 chip set, which plugs into one slot of the
switch crate. This chip set includes an integer
processor/sequencer which runs at 10 MIPS, and a floating
point chip with multiply/accumulate architecture running at
20 Mflops peak. There are 32 integer and 32 floating point
registers. The memory system is "Harvard architecture": 8
Mbytes of data memory and a separate 2 Mbyte instruction
memory. (Thus a 256 node system can easily do physics on
a 324 lattice.) The memory is fast page mode DRAM:; unless
a 4K page boundary is missed, one 32-bit word can be
accessed every 100 nsec cycle.

(The cost of a single FPAP board [at today's processor
and memory prices] is about $5,000. The total cost for the 5
peak Gflop, 256-node system [including switch crates, tape
drives, and host] is roughly $1.5 million.)

\ BSB Backplane /

Branchbus Addr
Input
Data FIFO
Addres:
Addr
AT
8 MB
Data
Output
FIFO
Data Bus

Branchbus Data

Figure 2: The FPAP consists of the 3-chip XL-8032 CPU, 8
Mbytes of data and 2 Mbytes of code memory, and an interface
to the switch crate backplane.

This processor architecture is rather well suited to the
computations needed in lattice gauge. For example, a routine
to do a single SU(3) multiplication runs at 15 Mflops
including calling, starting, pipeline and ending overheads. C
and Fortran compilers exist for this chip set, although for
optimal performance some crucial kernel subroutines may
need to be written in assembly language. Typical applications
run at about 6-8 Mflops per node.

A special socket is being designed to allow substituting
the new Weitek X1.-3164 double-precision floating point unit
for the existing XI.-3132 FPU in an FPAP. Thus, a double
precision version of the processor will be available if
algorithms are found which need extensive 64-bit floating
point operations. The modified processor would run at the
same speed when doing 32-bit arithmetic, and about half as
fast (due to memory access limitations) on double precision.

The tape I/O subsystem consists of helical scan 8mm
tape devices (Exabyte tape drives). The 256-node system
being assembled will have 32 such drives, controllable from
any node as well as the host. The aggregate bandwidth to
tape is 8 Mbytes/sec, while the size of a 32-tape "volume" is
64 gigabytes -- sufficient to store many large configurations
and propagators.

The 256-node system being constructed is configured as a
25 hypercube of switch crates, communicating by ACP
Branchbus cables to BSIB modules in slots in the crates.
Each switch contains eight FPAP modules; the machine can
be thought of as a compound hypercube of nodes, with each
point of the hypercube being a crossbar of 8 FPAP's. This
means that 8 nodes share the 20 Mbyte/sec intercrate
communications bandwidth, so the system architecture will
include a 28 hypercube of inter-processor bandwidth of 2.5
Mbytes/sec. (An alternative viewpoint is that the system is a
25 hypercube with internode bandwidths of 20 Mbytes/sec;
here each "compound node" is a multiprocessing unit with
total peak power of 160 Mflops.)

For the lattice gauge algorithms envisioned at present
(the most severe cases being an FFT step and conjugate
gradient propagator calculations), this bandwidth is a factor of
two more than is needed for highly optimized codes. At the
cost of adding more crates, one can increase the interprocessor
bandwidth. An extreme would be 128 crates with 2
processors in each and two connections along each of the
seven dimensions; this is a true 28 hypercube with the full
20 Mbyte/sec bandwidth between nodes.

The BSB crates allow complete flexibility in terms of
intercrate connectivity. For smaller systems, one could
easily choose to connect every crate to every other one. To
minimize the number of crates, one could configure the
system as a ring, with 14 processors and two interconnect
modules in each crate. The choice of hypercube architecture
is a compromise between these extremes, and has particularly
nice scaling properties: For a large class of non-local
algorithms, including Fast Fourier Transforms, the average
computation time needed per site rises logarithmically with
the problem size; the average communication need grows the
same way in a hypercube, so the algorithm does not become
more communications intensive as the problem size varies.

All ACPMAPS modules will be made available for
commercialization, allowing a system to be configured to the
needs of the user. In order to enhance the availability of such
systems, a relatively small packaged "turnkey” ACPMAPS

system is being designed. This one-crate system will deliver
the power of 1-3 CRAY X-MP's for about $100,000 -- it is
suitable for use as a "physics department supercomputer”.
The packaged system includes one BSB crate with fifteen
FPAP nodes and two Exabyte tape drives. This will allow
small groups to acquire a powerful platform for the study of
algorithms, capable of running all but the most extensive
production programs. Code for this machine can be ported
unchanged to larger ACPMAPS sysiems.

Software and Programming

The control program, which manages global tasks such
as defining lattices and fields and starting global operations
on fields, executes on one of the nodes. This "control” node
is identical to all of the other nodes except in software.
Global (lattice-wide) objects and operations such as global
ficlds and operations on them, might be implemented as
arrays and for-loops on a one-CPU machine. These must be
handled with extensions to the language when the data and
operations are spread over many CPUs. The extensions
should reflect as much as possible the concepts of the
problems to be solved. Some of the fundamental concepts of
lattice problems are:

| Objects |"Algebras" Operations |
sites s grid: s' =s +d
directions d s' =s +p
paths p p' =p +d
unitary matrixu |SUQG): U3 =iy
quark g

fields U, Q Dirac equation: M-mQ=95

In object oriented languages such as C++ which are just
beginning to appear, these concepts could be added to the
language as new data types and operations. To us, the
structure rather than the syntax is most important and we
implement them with C's typedef and C subroutines called
from the control program. Our software package for doing
grid- orlcnted problems on paraliel machines is called
CANOPYS,

Consider, for example, the following set of statements
from a control program.

latl = periodic_grid (NDIM,latsize);

q = site_field (latl, sizeof(quark)):
gl = site_field (latl, sizeof (quark));
complete definitions();

The function periodic_grid () tells the system that our
calculation will be done on a lattice of NDIM dimensions
whose sizes are contained in the array latsize, and which
will be identified by 1at1. The functions site_field ()
tell the system that memory will be required for two fields
identified by g and q1, each with sizeof (quark) bytes
for each site of lat1l. The complete_definitions ()
function calls. routines which assign specific sites to specific
nodes, allocate memory in the nodes for the field data and site
structures, and set up structures for each site pointing to the
memory areas of adjacent sites of the lattice.

The loop over lattice sites in a function which operates
on a field g with an operator dslash and stores the result in
another field q1 is replaced by the statement

>

do task(dslash , 1latl,
PASS, g, sizeof (q),
PASS, ql, sizeof(ql),
END) ;

The system function do_task () passes to all the nodes a
pointer to the user supplied function dslash_ and an
identifier of a list of sites on which to operate, which may be
the entire lattice Lat1l or some previously defined list of
sites such as red_sites. A system subroutine on the
node, invisible to the user, calls dslash_ for the sites in
the set of sites which have been assigned to the node.
do_task may be used to pass (PASS) to the nodes
arguments required by the function (such as the field
identifiers g and ql), or to integrate (INTEGRATE) data re-
turned from the individual nodes.

The site subroutines access and replace data from global
fields with system functions such as

pg = field pointer(g, &sitel);

They determine whether the desired data is already present in
the node's local memory and open a channel to the com-
munications hardware if necessary.

CANOPY is written in C and is easily portable to any
single-CPU or MIMD multiprocessing system with support
for UNIX calls. Thus, programs can be tried out on small
lattices on a workstation, and migrate to the production ma-
chine without changing any code. To date, the software has
been ported to the ACPMAPS system, and to an ULTRIX
MicroVAX, a MIPS M500 system, a Sun workstation and an
IBM PC running Turbo C. An important consequence of
using CANOPY is that the style of coding is guided into
being structured and modular. The benefits of this range from
more readable code, through easier code modification and
debugging, to the ability to confidently optimize critical
sections of the code.

The overhead associated with CANOPY is typically less
than 15%. Generally, the improvement in code structure
associated with using CANOPY more than outweighs any
actual overhead. That is, the modular nature of code, and the
fact that computations of addresses of field elements proceed

via a package of efficient system routines, normally leadtoa -

speedup in execution. This gain often more than offsets the
time spent executing the CANOPY routines themselves.

Although this software framework was designed with
lattice gauge theory in mind, CANOPY is applicable 1o any
site-oriented scientific problem. Obvious examples include
finite element analysis, partial differential equations, and large
scale simulations such as weather computations. Other
algorithms can run under this framework as well. For
example, inversion of large, dense matrices can be
accomplished by treating each row of the matrix as a "site".

Performance

Three relevant aspects of the performance of the
ACPMAPS system have been studied. The performance of a
single FPAP node on actual physics programs was measured.
(When these codes are brought up on a supercomputer or
dedicated QCD machine, the optimzation process often
involves prodigious efforts. Considerably less effort was
required to get good performance results for the ACPMAPS
system.) Then the physics programs were run on a medium
scale multi-node system, demonstrating that the speedup is

linear and that the communications overheads are small.
Finally, a calculation was modified to artificially increase the
stress on communications bandwidth — the results here
indicate performance limitations stemming from the
compound hypercube architecture in the full-scale system will
be very small.

A sample algorithm which has been carefully optimized
on the ACPMAPS system is a pseudo-heat bath code for
generating gauge configurations. The program sweeps
through the gauge fields on the lattice (links) and, for each
link, determines how it should be updated. This basic heat-
bath Monte Carlo has been coded and optimized for almost
every lattice gauge machine — a natural measure of
performance is the number of link updates accomplished per
second.

To bring the algorithm up on ACPMAPS, the code
was first written in C. The compiled code of key routines
such as SU(3) multiplication was then replaced by hand
optimized code in a modular way as the time consuming parts
of the code were identified. A library of these hand-coded
mathematical kemel modules is maintained. This modular
approach is particularly valuable on the ACPMAPS system
because the the overhead for entering such a routine is
minimal, and because the CANOPY makes modularity very
natural to implement. Since each module can perform one
clear function, and need not be tailored to peculiarities in data
structures or parallelism for a particular application, coding
optimized modules for this library has not been a difficult
task.

The current link update time for this code is 0.60 msec
on a single node. Link update times for this algorithm have
been published for two other QCD machines’-8. (These were
programmed in assembly or assembly-like languages, and
very carefully optimized). The ACPMAPS performance is
roughly 40% faster than these, when normalized to the peak
speeds of the machines.

The gain of a few tens of per cent in relative efficiency,
while very encouraging, is not the only important point, and
will vary from algorithm to algorithm. Most important is
that a very high efficiency was obtained using high level
programming and modular optimization. This contrasts with
the prodigious effort often needed to port an algorithm to a
special-purpose machine. Bringing up and optimizing this
algorithm on the ACPMAPS system also involved
considerably less effort than putting it on a CRAY.

When many MIMD processors work on a site-oriented
problem, there can be three sources of deviations from perfect
linear speedups: (1) "Tail effects”, wherein the last processor
to complete a task delays the remaining processors; (2)
Communications overhead to obtain data associated with off-
node sites; (3) Communications bandwidth limitations. The
first of these effects is minimal when there are a large number
of sites handled by each processor; this is the normal
situation for lattice gauge (and most other) problems. Both
of the other effects grow with the surface to volume ratio of
the sites handled by each node. So, even though pipeline
startup and overhead effects may be negligible, the
ACPMAPS system shares the ubiquitous feature that
performance scales with the number of processors only if the
problem size also increases. Fortunately, that is indeed the
case for lattice gauge calculations today: Increased power is

6

desired precisely to be able io work with larger (finer grained)
lattices.

To measure the communications overhead/bandwidth
effects, we have run the optimized gauge configuration
generators on lattices of fixed sizes (small enough to fit into
one or two nodes). Results for very small and medium
Iattices agree: The processing time is proportional to the
volume of sites in a node, plus about .08 times the number
of boundary sites. This is illustrated in Figure 3 for a lattice
of dimension 10%. The nearly linear appearance of this figure
shows that even for the harsh case of a small fixed lattice
size, performance is roughly scaling with number of nodes
(the sixteen node system performs somewhat faster than a
CRAY X-MP). The efficiency, normalized by running a
smaller lattice on a single node, remains above 85% when
using many nodes. The magnitude of the communications
cost can be understood quantitatively in terms of
communications overhead alone. This means that the finite
intracrate and intercrate bandwidths cost very little for this
problem.

30000

20
g 20000 1%,
3 3
S :
£ o JCRAYXMP e .. t10%
2 o3
10000 4 o
& =

L 5

0 ' 0

0 10 20

Number of Processors

Figure 3: Performance speedup of a multi-node ACPMAPS
system, plotted against number of nodes, for a configuration
generator on a lattice of fixed size 10%. The processing power is
measured in number of link updates per second. A smaller
lattice was run on a single processor to provide a basis for the
speedup factor relative to a single node. The performance of the
CRAY is based on an elapsed time per link update of 73 usec
taken for an optimized program, running on one X-MP CPU.

Since the full scale system has an intercrate hypercube
bandwidth which is only as large as the crossbar bandwidth
between two nodes within a crate, any communications
bandwidth limitations will be dominated by intercrate
communication. To focus on this effect, we have measured
the performance of two-crate systems with a special
distribution of sites among the nodes: Instead of grouping
the nodes such that neighboring sites tend to be in the same
crate, we intentionally software-configured the lattice such
that neighboring processors were in opposite crates. This
artificially created intercrate traffic along the single
interconnection of up to 8 times the anticipated traffic in an
actual system. The results, for a 164 lattice, are shown in
Figure 4.

For relatively unsaturated intercrate bandwidth, one
would expect the cost of intercrate communication to scale

with the square of the number of boundaries between
neighboring nodes that cross the intercrate connection. (The
fraction of time the communications path is unavailable, and
the frequency of communications along that path, are each
growing with the intercrate communications load. As long
as these effects are small, the net cost is the product of them.)
This quadratic behavior is exhibited in Figure 4, indicating
that our measurements are not being distorted by saturation
effects.

For the worst case of sixteen boundaries (no neighboring
nodes within the same crate), the performance hit is 15%
(17800 link updates per second, compared to 20700 for only
two boundaries). Without the artificial increase in intercrate
traffic, the hit was 64 times smaller. That effect was
unobservabie on the performance speedup study (Figure 3).

The most important (in terms of processing needed) and
communications intensive problem we see on the horizon is
computation of the fermion propagator. This calculation
uses Conjugate Gradient or similar algorithms. These
algorithms are expected to be about twice as communications
intensive as this gauge configuration generator. In that case,
the anticipated performance hit due to intercrate
communications bandwidth is about 3%. For 256 node
system, in particular, it would not be cost effective to
decrease the number of processors per crate to increase the
per-processor intercrate bandwidth.

21000

20000 T

2
g

Processing Power

L

T
0 10 20
Intercrate Boundaries

Figure 4: Processing Power running a gauge configuration
generator, versus number of boundaries between processors
handling neighboring sites which cross the intercrate
connection. (164 lattices were run on 16 processors in each
case.) Processing Power is measured in number of link updates
per second. The data agrees well with the parabolic fit shown.

To summarize the performance issues, large lattice gauge
problems run on multiple nodes with an 85-90% efficiency
relative to the single processor speed. (The prototype system
mimics the intercrate bandwidth of larger systems by using

T

only one Branchbus between crates.) This performance hit
can be understood largely in terms of the several-
microseconds of overhead involved each time an off-node field
access is done (which is a sizable fraction of an SU(3)
multiply time). A further degradation due to intercrate
bandwidth limitations has been studied, and is estimated to
range up to 3%.

Current Status

The sixteen node prototype machine is built and being
used for code development and physics production running.
Several programs have been brought up, including algorithms
currently in use by theorists for extracting actual physics.
The list includes a Kennedy-Pendleton heat bath algorithm
with quenched fermions, a calculation using the "Hybrid
Molecular Dynamics” method with unquenched Kogut-
Susskind fermions, and Conjugate Gradient algorithms to
find propagators for Wilson fermions. With only casual
optimization efforts, these typically run at speeds within 30%
of their optimum. This is encouraging — a wide variety of
algorithms can be studied without extensive programming
efforts, and without sacrificing much machine performance.

The 256-node production system is being assembled; 16
of the nodes and two of the BSB crates destined for this
system have temporarily been incorporated into the prototype
to provide enhanced development facilities with a total of 32
nodes.

References

{11 Don Weingarten, Monte Carlo Algorithms For QCD, to
appear in the Proceedings of the 1988 Symposium on
Lattice Field Theory, Fermilab, Sept. 22-25, 1988, to be
published in Nuc. Phys. B.

2] For a review of special purpose QCD machines, sce
Norman Christ, QCD Machines, to appear in the
Proceedings of the 1988 Symposium on Lattice Field
Theory, Fermilab, Sept. 22-25, 1988, to be published in
Nuc. Phys. B.

[3]1 R. Atac et. al., Crossbar Switch Backplane and its
Applications, to be published in Proceedings of 1988
IEEE Nuclear Science Symposium.

[4]1 D. Husby et. al., A Floating Point Engine for Lattice
Gauge Calculations, to be published in Proceedings of
1988 IEEE Nuclear Science Symposium.

[5] L Gaines, et. al., The ACP Multiprocessor System At
Fermilab, Computer Physics Communications 45,323
(1987).

[6] CANOPY Version 2.0, Fermilab Theoretical Physics
Groups & Fermilab Advanced Computer Program,
December 1988. Internal document, to be released as
CANOPY User's Guide.[6] 1. Gaines, et. al., The
ACP Multiprocessor System At Fermilab, Computer
Physics Communications 45,323(1987)

[71 Enzo Marinari, in Field Theory on the Lattice, ed. A.
Billoire et al., Nuc. Phys. B (proc. Suppl.) 4,3 (1988).

[8] Norman Christ, in Field Theory on the Lattice, ed. A.
Billoire et al.,, Nuc. Phys. B (Proc. Suppl.) 4,241
(1988).

