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PHASE SPACE CONCEPTS

Leo Michelotti
Fermi National Accelerator Laboratory

If we want to know where Jupiter will be 20 as to plan
properly the Jupiter shot, then we may proceed in one mathe-
matical direction. If we are interested in whether the solar sys-
tem is dynamically stable or unstable, we will have to proceed in
another. In view of the inherent difficulties of the methematics,
the art of modelling is thal of adopling the proper sirategy.

— Philip J.Davis and Reuben Hersh
The Mathematical Experience

1 RESONANCES ON INVARIANT TORI.

Much has been wtitten about & revolution taking place in the asymptotic analysis of dy-
namical systems, usually in association with beautiful, color photographs of objects like
chaotic attractors, fractal basin boundarnes, and other such Julia-Fatoun sets. The first shots
of this revolution were fired, however, not in the 1980%s or 1870’ but towards the close
of the nineteenth century. By 1892, Henri Poincaré already had published his landmark
work Les Méthods Nouvelles de la Mécanique Céleste in which he advanced the theses that
differential equations should be viewed as geometric objects, in particular, as vector fields
on manifolds, and that questions concerning the long term stability of & dynamical system
might be attacked by studying the topological properties of these objects. His work even
led him to recognize the extraordinarily complicated behavior of orbits in the vicinity of &
separatrix, what today we would call “chaos.” Much like his predecessor Newton, Poincaré
found that the ideas and language which he needed did not yet exist and that he had to cre-
ate entirely new mathematics in order to progress. In time the seeds which he planted grew
into branches of modern topology, with all its trappings of tangent and cotangent bundles,
differential forms, exterior algebra and calculus, homology and cchomology — all of which
are frequently associated with general relativity, string theories, or gauge theories, but are
almost never mentioned in connection with one of their sources, good old classical mechan-
ics. (This is a fate shared by the ideas of Sophus Lie, which generally are not introduced
until the study of quantum angular momentum or SU(3).)

In these lectures we shall look into this geometric approach to the study of Hamilto-
nian dynamical systems, especially in connection with the kinds of problems which arise
in accelerator orbit theory. This is a vast subject, and we certainly shall not be able to
treat it as fully or as carefully as it deserves. In recent yvears a number of books have been
published on dynamics, and the reader who wants to learn more will find some of these
titles included in the bibliography. Our own relatively modest goals will be to delineate
the idea of invariant tori in phase space, to define and illustrate the importance of resonant
orbits and their separatrices as structures for organizing dynamics, and to touch upon the
meaning of chaotic orbits in nonintegrable systems. I hope, further, to lessen the impression



which some may have acquired during their formal education that classical mechanics is a
dull, closed subject with no mysteries left to explore.

1.1 Manifolds, mappings, and vector fields.

A series of lectutes with the title Phase Space Concepts should begin with a good, rigorous,
explicit definition of “phase space.” Regrettably, doing this would require & full course in
differential topology, so we shall settle for & bad, heuristic, implicit definition and shift our
focus to the objects which live on phase spaces: dynamical systems.

A dynamical system is abstractly associated with two different but related mathematical
objects: (1) a vector field and (2) a group of mappings. Both are defined on & manifold,
M, which is the “phase space” of the system. Let us deal with these three objects one at a
time.

manifold: Everyone has an intuitive understanding of “manifolds” as spaces which look
Euclidean on small scales, a formal generalization of surfaces, such as spheres, cylinders, or
tori. A localized region of a manifold is thus representable as an open subset of R”, called a
“chart.,” A collection of charts which covers the entire manifold, with some overlap between
charts so we know how to patch them together smoothly, is called, appropriately enough,
an “atlas.” Having said this, we must also include manifolds having exotic properties, such
as nonorientability — the Mobius strip or the Klein bottle — or multiple connectivity —
the torus. Althongh all are admissible in principle, no physicelly relevant system has been
constructed on Mobius strips or Klein bottles; tori, however, are another matter. If two
charts overlap, there must exist a “smooth” transformation connecting the coordinates as-
sociated with points that belong to both charts. If z € R* and z' € R® are the two
n-tuple representatives of a point p € M , then the transformation is 8 one-to-one, highly
differentiable function, T :z— z'. The key idea which these elaborate constructions is
meant to convey is this: M is an object which can be represented, or coordinatized, in a
large number of ways but which we want to think of as an entity independent of all these
representations.

vector field: A good heuristic image of a “vector field defined over a manifold” is conveyed
by picturing a surface with a tangent vector attached to each point. The principal tool re-
quired to make that image precise is the atlas of charts used to define the manifold. Since a
manifold is specified by an atlas of charts, we ¢can define a vector field over it by giving its
representation, that is, its components, on each chart and making sure that everything is
consistent and gets patched together smoothly as you jump from one chart to another. To
insure that this is a geometric object requires a set of instructions for transforming compo-
nents of vector fields when you change the coordinates representing points on the manifold.
We shall go into this in a little more detail later. The set of all possible tangent vectors
which can be attached to a point p € M is itself a vector space which is typically labelled
TMp, the “tangent space” st p; the union of all these vector spaces is the “tangent bundie”
associated with the manifold, TM = Upea TMp- ! (A particular vector field is called a
“cross-section” of this bundle by mathematicians.)

group of mappings: A mapping, ¢, is a function which takes the manifold into it-
self. ¢: M — M. Of course, we tacitly assume that the mappings under consideration
are “nicely” behaved: in particular, we avoid mappings which have discontinnities or are
otherwise not sufficiently “smooth.” We want to interpret a special set of mappings in terms
of the time-evolution of a dynamical system. This set is indexed by R?, and we interpret

1 This is oversimplifying a little: the tangent bundle also contains the underlying base manifold as a
projection. My purpose here is to motivate without slowing for details which would be necessary in a
scholarly presenuation.



the particular map, $i,e, : M — M, as a time-evolution operator which takes a system
from its state at time #; to its state at time £;. In order for this to be the case, we must
insist that the set obey a group-like property known as the Chapman-Kolmogorov equation:

95:,:, ° 45:;1, = eyt

From this we see casily that, for all ¢, ¢,, = id. Notice that reversibility is also implicit
(unless we restrict ourselves to 13 > t; ) since we have that ¢ 1,1 = 4,1, This is not
quite & group: concatenation requires at least one “time” in common, 17 in the above ex-
pression. However, if the system is periodic, so that for some 7 and all 1, 13 we have
Dtyov t,47 = Pest, » then we can construct a discrete group of mappings by taking as gener-
ator a period advance map, ® = ¢, ¢, for some £. The Chapman-Kolmogorov equation
implies that the subset {#" |n € Z} forms a group. The different groups that we get by
varying the base time, ¢, are all isomorphic to each other. If the system is autonomous or
time-independent, so that @y,4r ¢,47 = Ptpe, for oll values of the index parameters, then
we can build a continuous group of mappings by defining, ¢r = ¢14- (. The Chapman-
Kolmogorov equation then implies the group properties,

¢o=id , ¢, 00 =¢rir , and ¢rl=6_r . (1)

Comment 1: We have assumed that the index, T, is & real variable, but it is possible to
derive some deep theorems by enlarging its domain to the complex plane. In fact, Eq.(1)
requires only that 7 be a member of an (additive) Abelian group: this could be the integers,
a module, the reals, rationals, p-adics, or whatever. Eq.(1) then essentially describes a
morphism between the index group and the group of mappings.

These objects ate the mathematical building blocks used to develop a geometrical theory
of dynamical systems. We shall not employ their full power here, but they would be neces-
sary to prove rigorously the heuristically plausible assertions which will be made throughout
this paper. At any rate, it is good to know that they exist and could be called upon if nec-
essary.

1.2 Dynamics.

Dynamics is introduced when we interpret these geometric structures as containing infor-
mation about the behavior of a physical system. A dynamical system is actually associated
with more than one manifold: First, there is the configuration manifold which labels
the instantaneous “position” of the system without information &s to how it is changing.
For example, the configuration manifold of 2 harmonic oscillator is (topologically equivalent
to) R, the set of reals, while that of a pendulum would be (topologically equivalent to)
a circle, S1. The tangent bundle of the configuration manifold contains both positional
and velocity information about the system. It is itself a manifold: for the harmonic oscil-
lator, a plane, R x R = R?; for the pendulum, a cylinder, 51 x R. If instead of using
the vector spaces TMp one uses their duals, labelled TMp,, then one is working with the
cotangent bundle of the configuration manifold, which is again itself a manifold (gen-
erally equivalent to the tangent bundle). Typically, the tangent bundle is associated with
(position, velocity) information and Lagrangians, while the cotangent bundle is associated
with (position, momentum) and Hamiltonians. At the level at which we shall work in this
paper, such nice distinctions do not matter, and we shall ignore them. The important idea
that we shall try to motivate is this: differential equations of motion are the components



of a representation of a geometric object, a vector field on either the tangent bundle or

the cotangent bundle of a configuration manifold. (Put another way, a cross-section of the

tangeni bundie of either & tangent bundle or a cotangent bundle; it gets s little involved.}
Having touched upon these points, it is time o reflect on an important example.

1.2.1 Harmonic oscillators.

The archetypa! dynamical system is the harmonic oscillator, the phase space of which is
R?, with interpretation, _
ZER, = ( ; )

With momenium defined as p = m# , and including a damping term, Newton's law takes
the familiar form,

p=-Tp-mwiz,
which we write as 8 vector field over phase space.

=(3)= (Lo 5 )emn

In order to analyze the flow of orbits implied by Eq.(2) it is easiest to do an eigenanalysis
of A.

detfA-21] = M 4TA+u® =0
1

= = |=- - - 3

2> A = 2[1&\/1" wl

Eigenvectors : (;) . (.\}m )

Consider the nature of the flow for various regions in the (w,I') control space. For
I'» |2w|, we have A, = 0~ and A_ m —T . There is one and only one gero-dimensional
invariant subset of phase space: the origin itself is the only fixed point. The two eigen-
vectors of A lie along invariant, one-dimensional submanifolds. Orbits on one of these,
corresponding to A., move rapidly (since I' is Jarge) toward the origin, while those on the
other approach the origin more slowly. Any other orbit is, by linearity, a superposition
of these two motions: it will be dominated by the “fast” direction until it approaches the
vicinity of the “slow” invariant manifold. The two one-dimensional invariant submanifolds
thus form a separatrix, partitioning phase space into the two regions seen in Figure 1. The
orbits in one region overshoot the origin and must reverse themselves, while those in the
other move monotonically toward the origin.

If we now reduce the control parameter I', a bifurcation occurs when I' = [2w]|. At
this critical point A has only one eigenvalue and one eigenvector. The middle region of
monotonic flow toward the origin has vanished; all orbits, except the origin itself, overshoot.
Under these conditions A cannot be diagonalised by a similarity transformation: at best, it
is brought to its Jordan canonical form via the transformation,

ve(L2)

VoAV = (mgﬂ .-11'/2)

I we continue to decrease T below 2w, the eigenvalues and eigenvectors of A will be
complex, and orbits spiral in towards the origin.  The spirals get tighter as T' — 0 until
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Figure 2: Trajectory of eigenvalues of the damped harmonic oscillator as T’ decreases from
+o¢ to —oo. Two bifurcations occur: {a) vanishing of the separatrix at T = =|2w|, and
(b) a Hopf-like bifurcation, but without limit cycle, st T'=0.

finally at T = 0 all of phase space splits into a collection of invarient circles, the flow of
the undamped harmonic oscilla .or. In principle we could continue this process and consider
T <0 ; Figure 2 illustrates the full set of al]l possible eigenvalues. Orbits would then
flow away from the origin rather than toward it. (From Eq.(2) we see that the complete
symmetryis: T — T, t——t, p—-p) '

Notice that this qualitative analysis of the flow, in which we have learned how all
the orbits are arranged in phase space and how this organizational structure varies with
changes in the control parameters, has taken place without actually sclving the equations of
motion. The objective of this sort of analysis is 1o seek out speria) invariant submanifolds
which partition phase space and thersby organize the flow of orbits. From them we get a
qualitative and semi-quantitative understanding of the dynamics as a whole, the kind of
information besl suited for studying stability or developing statistics on an ensemble.

Of course, in this case obtaining exact, analytic solutions is easy. Since the matrix A
does not depend on t, the integration of Eq.(2) is immediate,

2(t) = &4 2(0) | (3)
and we can identify the time-evolution map with the exponential: ¢, + eTA,

For ihe undamped case, I' = 0, it is easy to confirm that
2
1
(24)' =
Fri)

elA = W A/W) = 1. coswt + (%A)~iinwt (4)

so thai we can write explicitly,



Substituting Eq.(4) into Eq.(3) and writing out the components yields the usual freshman
physics result:

2(1) = 2(0) coswt+ :._(W(D sinwt (5)
p(t) = p(0) coswt — mw 2{0) sinwt .

Comment 2: The bifurcation which takes place as the eigenvalues of A cross the imagi-
nary axis and the origin changes from being an attractor to being a repellor is a variant of
the Hopf bifurcation. In this particular case it does nothing interesting; linearity makes
the entire phase space change simultaneously. In the presence of nonlinearities, as with the
Van der Pol oscillator, it can lead to the creation of a limit cycle. For an easily readable
discussion of this, see Gilmore.[8]

Comment 3: Eq.(4) is easily generalized. By the Cayley-Hamilton theorem, any
square matrix satisfies its own characteristic equation. It follows immediately that for a
n x » square matrix, A, exptA is a (n — 1}-th degree polynomial in A. In particulaz, for
any 2 x 2 matrix, A we can write

el = F()1+ G)A
where F and G obey the following composition rules,

F(t+1') F()F(t') - |A|G(1)G(t)
Gi+1) = GO)F{)+ F)G{)+ Tr[AIG(1)G(1')

Comment 4: The reader who considers linear systems too easy for serious study might
like to consider the following statement.

“Suppose all the eigenvalues ...of the linear equation z=Az , z€ R",
A R" — R™ , are purely imaginary. Then under whet conditions are two such
equations topalogically equivalent? The answer to this question is not known,
and evidently the problem cannot be solved by presently available mathematical
methods.” 2]

Wonderful! One can establish & life’s work and & rewarding career merely by studying har-
monic oscillators, a strategy not entirely unknown to some scientists.

1.2.2 Hamiltonian dynamics.

In addition to linearity, the (undamped) harmonic oscillator possesses a second important
property: it is 8 Hamiltonian system. That is, its vector field can be derived from a real-
valued function, H, via Hamilton’s equations. In particular, the Hamiltonian for a collection
of independent harmonic oscillators and the components of the corresponding vecior field
can be written in the famihiar form,

1
H = z (pi f2ma ~+ im;,wizi) (6)

k



8H

&y = 3_?;: = Pk/mk
Py = __B_{:I_ = —mwiz
n = 6:,. = kg Th

Hamilton’s equations can be written more economically by nsing the 2N-tuple of chart
coordinates directly, as displayed below in block form.

(5)

i J.0H/0z

= (5%)

Now, let f be any observable, that is, any real-valued function defined over phase space,
f: M — R. The “time"-derivative of f as observed by a system on an orbit of H is called
a Lie-derivative and is evaluated using the usual chain rule.
8f 8f

1= 5% %

_ 8 . BH 8f
= 5V Bt a

8f
{LH]"'E

Z

The object [f, H] is, of course, the Poisson bracket, sometimes called the Lie bracket,
of f with H. By interpreling H as any observable, this definition is generalized to form a
binary operation on the space of observables whose fundamental properties are:

bilinearity: [f,g+h)= [/,g]+(f,h] and [f+g,h)=[£h]+[gh}
antisymmetry: [f,g]=-(g.f);
Jacobi identity: [f, [g.h]]+[g.[h. f]]+ [R[f.gl]=0.

Another fruitful construction is the adjoint operator algebra. With each observable
f we associate a unary operator f which acts on the space of observables as follows:

frg—1£24]

Because of the bilinear property, f is a linear operator.

Comment 5: Any binaty operator that is bilinear, antisymmetric, and obeys a Jacobi
identity belongs, by definition, to a Lie algebra. Exponentiation, as in Eq.{8) below,
leads to a Lie group. It is in this way that Lie groups and Lie algebras were brought into
the world. Because they are usually presented to students in connection with quantum the-
ories — angular momentum, SU(3), and so forth — their initial connection with dynamical
systems, and especially with Hamiltonian dynamics, tends to be forgotten. The appropriale
place to introduce Lie groups is in a course on classical mechanics.

Comment 8: It is an easy exercise io show that, because of the Jacobi identity, the
commutator algebra of the adjoint operators is 8 homomorphism of the original Lie algebra.



In this way, any Lie algebra is homomorphic to 8 commutator algebra.

Comment T: Dirac’s quantization procedure establishes a morphism between the adjoint
algebra of a classical dynamical system and the operator algebra of its quantum anelog,
i.e., between Poisson brackets and commutators.[7] What is frequently not mentjoned in
introductory quantum mechanics courses is that this procedure fails for any system more
complicated than harmonic oscillators.? Loosely speaking, this is the content of a theorem,
due to Groenwald and Van Hove, which should be much more widely known; a very read-
able discussion of it (albeit with some errors) can be found in Guillemin and Sternberg.[10]

If we now interpret the z, and p, themselves as observables rather than real numbers,
then Hamilton’s equations of motion can be written,
i=|[zH])=-H:

The solution is formally straightforward when H does not depend explicitly on 1, although
the detailed evaluation may be formidable, or even impossible:

2(t) = e~*H 2(0) . (8)

This provides us with the formal identification, ¢, « 78,

Comment B: Meditate on the following specions argument, remaining ever on the alert for
plausible sounding nonsense, and resolve its implied paradox. Since H is a linear operator,
for any two orbits z;(t) and 22(t) we have,

2,(2) + 25(2)
= () + Falt)
= H{z () +2(1) .

Therefore z, + z, is also an orbit (117?): it obeys the same Hamilton’s equations of motion.
We appear to have proved that all Hamiltonian systems are linear, a result of enormous
benefit to humanity. Why, in fact, is this not & proof?

2 (2200 + 22(1)

Example: Constant force field.  Let us see how Eq.(8) might work in practice.
Consider the Hamiltonian
H = p*/2m + mgz

describing & non-relativistic particle moving under the influence of a constant gravitational
field. Let us construct an orbit using Eq.(8) .

Hz = [H,z] = [p*/2m, 2]
-p/m
A’z = H{(-p/m)
= [mgz,—p/m]
= -g

2More predsely, it is impossible to extend it to observables that are cubic or higher order polynomials in
z and p.



A3z
- a2t) = eF2(0)

I

0
(1 —tH + -;-t’ﬁ’) 2(0)

2(0) + (p(0) /m)t - 39

Example: Harmonic oscillator. For the harmonic oscillator, we have

Az = [H,z] = [p*/2m,2]
= -p/m

B = —Hp/m = ~zmw?s?,p/m]
= -wlz

By iterating these two equations, we find

(-th)P"e = (-1)@)™e,
(~tHP™e = (St e

We can now write the full solution, starting from Eq.(8) .

— —tR - = 1 L

z(t) = e 'Fz(0) = EE(-—tH) z(0)
= gﬁ(—tﬂ)’“:(0)+§—-—(2ni (-t e0)
= (Z_:o(-l)" (i-v:i:“) z(0) + (2(—1)"%%) p(0)/mw
#{0)

z2(t) = z(0)coswi+ o sinwt (9)

Comment 8: This result is in complete agreement with and appears formally identical
to Eq.(5) . However, the interpretation is very different. In Eq.(5) , the symbols z(0) and
p(0) represent real numbers; in Eq.(9) they represent observables, real-valued functions
over M. {The difference between these two points of view is analogous to the difference
between the Schrodinger and Heisenberg pictures in quantum mechanics.} The number z(0)
contains no information about the number p(0), but the function 2(0) does know that the
function p(0} is its canonical conjugate. This explains how we can start from e"ﬁz(U) and
end with an answer which contains both z{0) and p(0).

Equations of motion are the components of a vector field associated with a perticular
chart {coordinate system). Changing charts, say T:zr 2z, alters these components,
much as rotating the basis of a vector space alters the component representations of the
vectors. A straightforward application of the chain rule of differentiation produces the new
components.

"= (82'/82)-2
(8z'/82)-3 - (8H/8z)
[(82'/82) - 3-(82'/62)7 |(8H /82)
¥'(z) - (6H/62") (10)

.
nn A9

H

10



Poisson brackets transform in a similar way.

{f,9] = 8f/6z-3-89/8z
(8£782") - [(82'/62) - 3 - (82'/62)7 ] - (9g/82")
(8r/62") - ¥'(2') - (8g/82)) (11)

These transformation equations attest to the fact that the bracket is a geometric invariant,
s scalar; this will be discnssed further in the next section.
If T is designed so that J’(z') =3 , that is, if the Jacobian matrix, M =8z'/8z ,
satisfies :
MIMT =3 , (12)

then the forms for evaluating both the equations of motion and the brackets are the same
on both charts. In such a case, T is called & canonical transformation, and M is called
a symplectic matrix. It is easy to show (do it!) that the set of all symplectic matrices is
a group, the symplectic group.

EXAMPLE: Linear mappings on the configuration space. One of the simplest
non-trivial examples consists of a linear transformation which does not mix the z and p
coordinates, This is written in block form with n x n matrices m;; and m,;.

m 0
M= (T o) (13)
T _ 0 m;;m7,
MIM* = (—m”m{] o )

Therefore, a necessary and sufficient condition that this be a canonical transformation is
that m;;m], =1 . In particular, if this is just a scaling transformation, my, = A1,
myz = ul , then we require that A=1/p.

EXAMPLE: Scaled harmonic oscillator. A scaling transformation of this type puts
the harmonic oscillator Hamiltonian, Eq.(8), into degenerate form. Take

(mu1)i; = by /M;w; and (mga)i; = &;/,/Mjw;, so that

1
H = ; (pf/mm + im.wizi)

= T 1o (r/vmmm) + (vmmee)?)

k

3 o (o) (14

]

EXAMPLE: Polar (action-angle) coordinates. An even more useful chart uses polar,
or action-angle, coordinates.

11



Figure 3: Angle coordinates on a torus.

z, = \/Z-I:sinék
P = \/2-1_;,:056; (15)
Mk sloex = 8(z4pi)/8(6als) (16)
- ( A 31/”*)
~2, Pi/2L

It is now a trivial exercise to show that the symplectic condition Eq.(12) is indeed satisfied,
so that the § and ] variabies obey Hamilton’s equations of motion. From Eq.(14) , the
Hamiltonian, expressed in these polar coordinates, is written,

H =ZN;I,|, =] (17)
k

Because the transformation is canonical, the coordinates of the vector field — also referred
to as the equations of motion — are expressed according to the usual procedure.

1=-06H/85 =0,
b=8H/0l=w - (18)

Eq's.(18) are parametric equations describing motion on an N-dimensional torus imbed-
ded in a 2N-dimensiona phase space. The “action” or “amplitude” variables, which are
consiants of the motion, serve to label the torus, and the “angle” or “phase” variables locate
position on the torus. (See Figure 3 ) This angle chart is equivalent to slicing the torus
along N independent directions and flattening it out to fit into & unit square in Euclidean
N-space. This is, of course, just the identification of & torus as topologically equivalent 1o

12



RN /ZN . That orbits must lie on tori can also be seen from the following argument. The
orhit of a single harmonic oscillator is topologically equivalent to a circle. Thus, the orbit of
N independent oscillators lies on a surface that is the cross product of N copies of a circle,
a torus.

EXAMPLE: Eigencoordinates. If we relax our implicit assumption that coordinates
are real, then we can introdunce a transformation,

1., ., 1] 1 o, —i8,
= —= = /I L] t = —(py — = /Ie™ ¥,
] ﬁ(Pa + iz}) Ve gy ﬁ(ﬁ iz}) \/—h-
in terms of which the Hamiltonian in Eq.(14)} or Eq.(17) is written,
H= Ewga;a; .
h
The Jacobian matrix of this transformation is
. i 1
M|ath block = 8(ans})/8(2ip) = V1/2 ( _:- 1 )

from which we see immediately that J' = MIMT = iJ . Eq.(10) then yields the equations
of motion.
6. = WH/BG: = iw;a; 1 &: = —:'811/84. = —iuu.a:

These are the “eigencoordinates” of the harmonic oscillator problem; they could have been
obtained by diagonalizing the matrix A which appears in Eq.(2) (after seroing I'). Upon
quantization they become the familiar annihilation and creation operators.

Comment 1: One of the most fundamental properties of Hamiltonian flow is that it
induces an automorphism of the bracket algebra.

e-tHf,g)=[e87,e7*2y) (19)

This means that the time-evolution map is canonical, and it is intimately connected with
the fact that the Liouville measure over phase space,

du=dz, AdzaA...Adexy Adpy Adps A.. . Adpx (20)

is & dynamical invariant. Because of this, finding the interesting structure in a Hamiltonian
dynamical system is much more difficult than in a dissipative system, where one can siart
practically anywhere in phase space and end up on attractors: Hamiltonian dynamical sys-
tems do not have atiractors because Liouville measure must be conserved.

Comment 3: Physicists who learned classical mechanics from the first edition of Gold-
stein[8] are most familiar with canonical transformations in connection with generating
functions rather than directly from the symplectic group. For example, the transformations
in Eq.(13) arise from a generating function,

Sz.p)=¢ M-z, (21)
while those of Eq.(15) can be obtained from the generating function,

S(2',8) = Z %zi’cot&. .
N

13



It is a straightforward but tedious exercise to confirm directly that generating functions do
indeed produce canonical transformations.

1.3 Geometry.

“Linearity” is one of the most fundamental properties one can attribute to a dynamical
system. A typical formulation goes something like this: A dynamical system is “linear”
means that if u(t) and u(f) are orbits of the system, then u(t)}+ v{t) is one also.
Eq.(2) serves as the archetypal example of this. By long familiarity we are lulled into
thinking this definition a simple, straightforward matter, but it is not. To begin with, it
depends critically on representation; otherwise, what is meant in general by “adding” two
orbits together? Consider, for example, a vector field, v(z,1) , given by

= (3):+mim(2)

t]2(1 - 22) + 3z2?) ~ 22(1 — 2%) + N°z(1 - 2%)* =0 . (22)

where & is obtained from

This appears to be a complicated equation describing & system that is neither autonomous
not linear. However, the substitutions

i—t12, 2«2

change Eq.(22) to
z2+z=0.

The linearity of this system was disguised by a poor choice of (extended phase space)
coordinates in which to represent it, that is, an irappropriate chart. Without knowledge
of the transformation to the “correct” coordinates, how would one establish this property?
Put another way, is there a coordinale-free way of characterizing linearity?

One can ask the same guestion about the Hamiltonian property. To treat this well would
require a coutse in the topology of differential manifolds, but the “flavor” of the arguments
can be appreciated without going into details.[13,1] To begin with, the way that analytic
objects are made into geometric objects is to write their transformation laws under changes
in chart coordinates and to recognize that these allow one to make statements — or write
equations — which transform covariantly. For example, the inner product construction in
an n-dimensional real vector space is defined, in the usual way,

@Y= zw=zy - (23)
i
If we confine ourselves to charts related by orthogonal transformations, then this defines 2
legitimate geometric object, an invariant of the group O(n).
VMeO(n):2'=Mz & y=My = g’-y':g-MrM-gzg-g

However, if we enlarge the allowed transformations and let M be arbitrary, M € GL(n) ,
ther Eq.(23) no longer defines a geometric scalar: it is not invariant under GL(n). To
correct it we must introduce a new object, the metric tensor, g, with transformation laws
appropriate to reestablish the invariance.

(z.y) = z°8'Y
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(y) = 2 g J
= 2-MgM-y
= z'8-¥
= (zy

This reestablishes the quadratic form (z,y) as a geometric (scalar) object, a “two-form,”
at least under GL(n). If it is symmetric and positive definite, so that g is a symmetric,
positive definite matrix, then matrix theory tells us that the eigenvalues of g are positive
reals and that g is diagonalizable. That being the case, there will be some chari on which
the form of the inner product reverts back to being the dot product of Eq.(23) . That is, for
some M € GL(n) we shall have M7gM = 1. This statement is a sort of “yepresentation
theorem™: any symmetric, positive definite two-form (i.e., an inner product) must lock like
an ordinary dot product on some allowed chart.
The key issue, then, is the rule which governs the transformation of the components of
a vector under B change of coordinates.? Pui another way, how shonld the basis veciors of
TMp change under a chart alteration? This can be answered in many ways, but the “nat-
ural” basis vectors attached to s point in a manifold will transform like the operator 8/8: .
Thus, Tizws g induces the “natural” basis  transformation
T:{é& |k=1...N}—{& '|k=1...N}, where, using Einstein’s summation conven-
tion,
&'~ 882" = (827 /82'*)6/827 — (82 182)E; (24)
Despite this rather mysterious formulation the rule is heuristically pleasing; it is, in fact,

nothing more than what we all learned as sophomores under another guise. That this is so
is seen most easily by doing an

Example: Egg carton transformation.  Consider the iransformation illustrated in
Figure 4 .
21 = zy+cosbz
z; = sinfz
From the matrix,
«_ 1 cosh
82/8' = ( 0 sn# ’
and Eq.(24) we get the correspondence,
a' =
€' = cosfé& +sinfé,

Example: Spherical coordinates. A more familiar transformation arises in the change
ftom Cartesian to spherical coordinates on any chart that does not include the origin.
Reverting to the most common notation, we have

2 = rsinfcosy
4 = rsinfsing
r = rcos¥

3 This statement is reminiscent of the *Erlangen programme” announced by Felix Kleinin 1872. According
io Klein, what distinguished one kind of geometry from ancther was the group of transformations under
which its propositions remained valid. This idea wes used to classify geometrical theorems until the advent
of Riemannian geometry, which evidenily did not fit into the scheme.
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(a) (b)

Figure 4: Natural basis vectors transform like 8/8z.

from which we get

B(z,v,2) z/r reosfeosy —rsinfsing
8—i‘;ll-"-’----- = | y/r rcosfsiny rsinfcosy
(r.6,¢) z/r  —rsinf 0

Combined with Eq.(24) , this yields the usual result.

— 1, . 4 7 -

g = ;(=:+w+zk) = ¥

& = r(cosﬂcos¢§+cosﬁsingp3-—sintc) = r§
€ = r(—sin&sinv;‘-f-sinﬂcosgpfi) = P

Had we used (r,76,ryp) as the new coordinates, €. and &, would have been dimensionless
as well.

Components of a vector transform contravariantly to the basis.

F=vid; = v"& = v (827 /82%)g;
¥ = (827 /82™)0'* , or in matrix form,
v=(82/8)-¢

Comparing this to Eq.(10) we see that Hamilton’s equations do indeed transform as the
components of & vector provided that J is identified as & tensor rather than a constant
(scalar) matrix. Similarly, the Poisson bracket, as defined in Eq.{11), is a true geometrical
scalar. We emphasize again: seen in this way, an ordinary differential equation is the
component representation of a vector field, a geometric object, associated with a particular
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chart. All the ways, and more, in which we wrote differential equations for the harmonic
oscillator come about from describing one and the same vector field from different points of
view.

Having recognired that the objects which appear in Hamiltonian dynamics are actu-
ally geometrical constructs, the programme for fully geometrizing the theory proceeds by
simultaneously (a) turning this development on its head and (b) making the notation and
language as obscure as possible. Rather than starting from Hamilton’s equations of mo-
tion, we abstractly postulate the existence of (1) an even-dimensional manifold, with its
associated tangent and cotangent bundles, (2) a “symplectic structure,” which is a closed,
anti-symmetric, non-degenerate two-form (quadratic form) acting on tangent vectors, and
(3) & flow* which is a symmetry of the symplectic structure. The symplectic structure
eventually becomes identified with Poisson brackets, and the flow is, by definition, locally
Hamilionian. A deep theorem, due to Darboux, then brings us full cirele by assuring us that
with these geometrical structures in place, there must exist some chart in which the compo-
nents of the flow’s vecior field can be obtained from a single function, the Hamiltonian, H,
according to the ususl prescription; that is, there is a set of coordinates for which Hamilton’s
equations take their usual form. This “representation theorem™ is similar, both in statement
and proof, to the one we formulated earlier on the inner product. Readers who wish to pur-
sue these ideas in detsil may enjoy reading the third chapter of Abraham and Marsden.[1]

Comment 12:  There are trivial examples of symplectic structure. Consider the com-
plex plane, C ~ R?, as a vector space over the reals. On it we define the two-form
v(a,b) = Im[ab®] . Because v is bilinear, nondegenerate, and anti-symmetric (verify!) it
qualifies as the two-form of a symplectic manifold, (C,4) , with symmetry group G(2) =
S5U(1), Tp 12+ €'z,

Comment 13: ' mazingly, it is possible for 2 dynamical system to be locally Hamiltonian
everywhere but not globally Hamiltonian, We cannot describe here what this means, much
less why it is s0; once again I refer you to Abraham and Marsden{1] for details.

1.4 The geometry of resonance.

The nature of the orbits on an invariant torus specified by Eqg's.(18) is critically important
and depends on how close the w of the torus is to a resonance, the analytical definition of
which is given by the equation

m-wt+tn= 0 (25)
where n is some integer and m = (m;, my,... my) is a multiplet of integers. In most of the
textbooks, this is written with n set to gero, m - w = 0. This latter form is relevant to either
autonomous or, equivalently, “averaged” Hamiltonians; the one that we adopt, Eq.(25),
appears in the analysis of Hamiltonians which are periodic in “time.” It appears in accel-
erator theory while studying Hamiltonians which describe transverse motion of a particle
in a periodic structure, such as a synchrotron: after the usual Floguet transformation, the
linearized dynamics becomes eguivalent to a harmonic oscillator, but the periodicity of the
environment survives in the transformed nonlinear terms. Here the independent variable is
not “time,” ¢, but an arimuthal angle, #, whose natural period is 2x. All the discussicns
in this paper are carried out with this application lurking in the background. We therefore
implicitly assume 27 periodicity. The components of w are the winding numbers of orbits
on the torus; put another way, they are the number of oscillations (i.e., the tune) undergone
by the corresponding angle coordinate while increasing t {or 8) by 2.

4The one-parameter family of mappings obeying the Chapman-Kolmogorov equation.
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b

Figure 5: Regularly sampled points on a resonant orbit lie on an N ~— 1-dimensional sub-
manifold of the N-dimensional torus: (8) an wy + 3ws resonance. (b) —w; + w3 + 4wy, a
six-dimensional phase space resonance.

In otder to visualize the implications of this condition in phase space it is better to
sample the orbit at the regulat intervals £, = 2rk than to follow it continuously as it winds
its way around the torus.

§lizamr = & lizo +2mhy
1
2_'“ (.6_ llzzwh "'é }l:D) = k@_ = Lkﬂj (26)
Here, |z] represents the fractional part of , and for any N-tuple, g,

le] (laaf, oz lan])

amod UV,

i

where UF = @7{0,1) is the N-dimensional unit cube.
If the w of an invariant torns obeys a resonance condition, as in Eq.(25), then from

Eq.(26) we get,

1

‘2"; (m -8 |t=2wk -m: § |l=0) =~ l.k.".l . -"'"—J = l.-kn.l =0.

This means that the sampled points of the orbit all lie on an N — 1-dimensional sub-torus
parametrized by an equation of the form, m -§ = constant, asillustrated in Figure 5. Ifw
satisfies two inequivalent resonance conditions, then they are contained within the intersec-
tion of iwo N — 1-dimensional sub-tori, the connected parts of which are N — 2-dimensional
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sub-iori. In general, if ¥ independent resonance conditions are satisfied, orbit samples lie
on a family of N — k-dimensional tori; if k = N , the orbit is periodic.

Comment 14: There is no substitute for sitting down with a pencil and paper and
sketching a handful of these resonant orbits in (§,/27,82/2%) space. What happens, for
example, when m,, m;, and n are not co-prime?

On the other hand, if w obeys no resonance condition, then the sampled points will
fill the N-dimensional invariant torus: the closure of this set is, in fact, the torus. If you
watched this set develop for an w that was “close to” but not exactly “on” resonance, then
you would see & speckled band form in the vicinity of the resonance line and slowly expand
until it filled the torus. For a small number of samples, the influence of the nearby resonance
would be evident, but it would eventually wash out as the number increased without bound.
That is & consequence of the following fundamental thecrem, whose proof originates with
Weyl[26):

Zeroth ergodic theoremn. If w is non-resonant, then the set of points
S={lkw| |k€Z}

is “nniformly distributed” over V.

Comment 15:  Interestingly, if no resonance condition is satisfied, then the orbits are
said to be “quasi-periodic,” a definition which seems completely backwards: assuredly, the
resonant orbits are the ones which should be given this appelation, but history and mathe-
maticians have deemed it otherwise.

To understand and interpret this theorem, we must first describe a lit'le more carefully
what is meant by a “aniform distribution” of points in phase space. This requires that we
first specify & measure over phase space, relative to which densities can be gauged. Fortu-
nately, Hamiltonian systems come equipped with a natural, dynamically invatiant measure,
the Liouville measure of Eq.(20) . Since the transformation to the action-angle coordinates
of Eq.(15) is canonical, and since canonical transformations preserve the Liouville measure®,
on a torus we must have

Ay |tore= 86 Adbs A .. Adén
which, apart from (2x)"¥ normeslization, is the usua) Lebesque measure on U¥. This is
fortunate; it means that a set of points on an invariant torus in phase space will be uniformiy
distributed relative to the Liouville measure if and only if the corresponding points on the
angle chart, UV are uniformly distributed relative to ordinary Lebesque measure. To be
definite, we shall assume a normalization: u{UN) =1, which means that we associate a
point in the unit cube, U¥, with the coordinates §/2=.

Consider finite sections of the set S,

S={lk) |n=1...1}CS ,

and let B C UV be any p-measurable subset of UY. We denote the number of elements in
a set W oas card(W). Then the statement “S is uniformly distributed” means that

for all B : l]im 1-! card(S: N B) = u(B)
—o0

E] have not proved or even demonsirated this, but you know it already.
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Counting the number of elements in & set, W, can be turned into an analytic problem by
introducing the characteristic functions of W.

me={y tEw

The exact condition defining uniform distribution is then written:
1
for all B: lim 1"} Kp(lkw]) = #(B)
Rt pert

In words, the fraction of points falling within a subset is equal to its sise, or at least
proportional to it for non-compact phase spaces.

Because of the importance of the theorem, we shall give the

Skeleton of a proof: The characteristic function of any measurable subset of UY can be
expanded in Fourier series.

Kp(z) = Z eme ™2 almost everywhere over v¥
m

We then evaluate

Since w is non-resonant, by hypothesis, for all m # 0 we have,

i—: (ezm'm-g)‘

k=1

e?mi(l+1 e _ p2rimew

o | ek

eiTimw _ 1

l

l

1 2

f |e:hn'r_n_-g___ 1|
1 1
!sinem - -w]|
0,

—_— asl — oo

Therefore, the only term which survives is co. But
co = f dVzKg(z) = u(B)
N
So we get the desired result:
i 1 : _
Jlim TEKB(W_JJ) =u(B) - QED -

We have here a purely geometric description of resonance based on the dimensionality of
ihe closure of a set of orbit samples. Resonance corresponds to dimensional collapse, if you
will: resonant orbits lie on lower dimensional tori, non-resonant orbits fill invariant N-tori.
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Comment 16: The reader who wishes to verify the details of this skeleton and flesh it
out into a legitimate proof will find that more than enough theorems exist to help him do
so. However, I suspect that a few of these require a strong application of the dreaded Axiom
of Choice. It is an interesting point: Is this ergodic theorem still valid if we accept only the
weakest form of the Axiom of Choice? Weyl and Poincaré themselves had little patience
with people who posed such questions.

Comment 1T7: There is a delightful application of this theorem to the “first digits
problem” of number theory. Let M and b be fixed integers with M not a rational power of
band b > 3. K the first digit of M* in base b is d, then

IBp20: dxbP <M <(d+1)x PP
Taking the logarithm vields the inequalities:
p<k-log, M —log,d < p+log,(1 +1/d)
whick in turn means that
Yk log, M —log,d | < log,(1+1/d)

Provided M is not a rational power of b, the fraction of numbers M* , k = 1,2,... whose base
b expansion begins with the digit & is therefore log,(I + 1/d]. Notice that these numbers
sum to 1, as they should.

6-1 b-1
d+1
S log(1+1/d) = log, (H T)
d=1 4=1
= logyb
= 1

21



If anyone thinks that he knows something, he has not
yel knoun as he ought Lo know.

— St1. Paul
1 Corinthicns 8, 2

The thing I am going to iry lo ezplain ... may be shead
of me. I may be thinking I have got there when [ hove not. [
can only ask [ezperts] lo watch very carefully, and tell me when
I go wrong; ond others to take what I say with a grain of aalt
— as something offered, becauae it may be 2 help, not becovse J
am ceriain that I am right.

— C. 8. Lewis
Mere Christianity

2 SEPARATRICES.

In the previous lecture we tried to motivate the geometric approach to the theory of dynam-
ical systems, in which ordinary differential equations describing a2 system are interpreted
as components of a vector field. Qualitative analysis of systems proceeds by identifying
invariant submanifolds of different dimensions. A good deal of eitention was paid to the
harmonic oscillator, with special emphasis on the idea that there exist dynamically invariant
N-dimensional tori, T¥, imbedded in the 2N-dimensional phase space. These tori foliate
the phase space, by which it is meant that (a) they are disjoint from one another, and (b)
their union is the entire phase space. As such, they can act as the level sets of N coordi-
nates, (action) which thereby serve to label an individual torus: N more coordinates (angle)
are then needed to locate position on a torus. Finally, we identified resonance conditions
for the winding numbers, w, of orbits. By sampling &n orbit with the period advance map,
we can recognize geometrically whether these gnalytic conditions are satisfied: If w is ofF
resonance, then the semples fill a uniformly dense subset of T¥; their closure is T/ itself.
If k resonance conditions are satisfied, then their closure is a sub-torus, T¥-* C T¥, In
the limiting case, where N resonance conditions are satisfied, the orbit is periodic.

The natural question to ask at this point is, What other Hamiltonian systems admit
such useful foliations?

2.1 Liouville-Arnold theorem.

A simple example of one is a straightforward generalization of Eqg’s.(18) ; it also deseribes
the world’s most benign nonlinear system, ihe shearing Hemiltonian. Assume that H is a
function of I only, and is independent of the & coordinates.

H=H{I)=y-1I+H,() (27)
1=-8H/88§=0
§=6H/81 = w(l)=v+8H,/81
Mathematicians cell this system & “twist map™; accelerator physicists refer to H, as the
“detuning” ot “shear” terms; such a Hamiltonian is sometimes also said to be “in normal

form.” Their only important effect is to produce amplitude dependent tunes: unlike the
harmonic oscillator, in which all tori possessed the same «, now w depends explicitly on I.
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Comment 18: The simplest physical example of a shearing Hamiltonian is provided by the
pendulum. Its period of oscillation is amplitude dependent, despite Galileo and freshman
physics. (Following through on the consequences of that — and the consequences of the
consequences, and so forth — can lead to a pleasant life’s wotk in the theory of elliptic func-
tions, Riemann surfaces, and algebraic topology.) If the apocryphal story about Galileo’s
observations on a swinging lamp is true, I suspect that the reason he believed its period was
unvarying was that his pulse rate increased as he became more excited by the discovery.

The N coordinates, I;,I;,...Ix, viewed as observables, have three important proper-
ties:

(s) They are dynamical invariants; dI,/dt =0 , for all k. Since time does not appear
explitly in the definition of I, this is equivalent to saying that [I;, H] =0, so that each
Iy “commutes” with H.

(b) They are in involution, which means that they all “commute®: Vi, j: [L,I;]1=0.

{c) They are independent. Formally, the differential forms {dfy,k=1...N} are linearly
independent everywhere. Mote intuitively, observables are independent when their leve]
surfaces are nowhere tangent: they intersect transversely.

It turns out that these three conditions are all that is required to assure the existence of a
loca] twist map. This is incorporated into the

Liouville-Arnold theorem: Let Gy,G,,...Gy be N independent, invariant observables
in involution defined over a 2N dimensional phase space, M. From dynamical invariance,
orbits must lie on level nets,

My={peM|g=G(p)}

Esch M!_ is a smooth, invariant manifold. If ML is compact and connected, then it is dif-
feomorphic to T, an N-torus. Orbits on M’_ are “conditionally periodic.® That is, it is
possible to introduce a chart of angle coordinates, §, on the torus so that, for some N-tuple
of real numbers, w Wy §= w,.

Comment 18: A Hamiltonian over a 2N dimensional phase space possessing N invariant
observables in involuticn is called “integrable.” This is the classical analog of the quantum
mechanical concept of a “complete” set of commuting observables.

Two closed curves on the torus are homotopic if there is & way of continnously deforming
one into the other without leaving the torus. Let {v;,73,...74} be a set of N mutually
non-homotopic closed curves in 7%, and define the line integrals,

=1 =
Ih‘-‘-i’; T.B d2, k=12,...,N

Then it is difficult to show® that: (a)if 2= (z,p)~ 2’ = (=, p’) is & canonical transfor-
mation, the line integrals evaluate 10 the same numbers using either set of coordinates, (b)
if we change the curve 4, to another which is homotopic to it, then the value of I, remains

SHere is where the full power of the topological methods and theorems allnded to in the first section is
very helpful
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the same,” and (c) the transformation from {z,p) to (6, 1) is itself cancnical. These
are, of course, the celebrated action coordinates; the corresponding angle coordinates are
then fixed by the bracket conditions, [§,1] = 1. Action coordinates possess the additional
property of being adiabatic invariants. If we adisbatically change the Hamiltonian, say
H, — Hj, then orbits on a torus of H, will slowly deform inio orbits on a torus of H,.
Which one? The one with the same values of the action coordinates.

This construction does not determine unigue action-angle coordinates: there is more
than one way to slice a torus so that it can be laid out flat onto the unit cube, UN, or
to select a family of homotopically inequivalent curves. We shall see an application of this
when we “straighten out” a resonance in a later subsection.

2.2 Theorem of Kolmogorov, Arnold, and Moser.

One of the most fundamental problems of classical mechanics is finding a coordinate chart
in which a given Hamiltonian is at least locally representable by a twist map, as in Eq.(27) .
The Liouville-Arnold theorem tells us that such charts exist if there is a complete, commuting
set of observables — i.e., N invariant observables in involution. But this is essentially never
the case: almost all dynamical systems are not integrable, a fact not usually given the
attention it deserves in academic curricula. Nonetheless, if the system of interest is “near-
integrable,” most orbits will still exist on invariant tori and generally act as though they
were governed by an integrable vector field. The proof of this rematrkable statement was
first accomplished by Kolmogorov, refined and publicized by Arnold, and further developed
by Moser. It is thus known as the KAM theorem.

Suppose that the (nonintegrable) Hamiltonian H is obtained from a shearing Hamilto-
nian Hg via the addition of a “small” perturbation.

H(E, ') = Ho(I") + ey (87, I7)

Here, ¢ is an order parameter which gives the relative scale between the two terms, and
§* and I* are action-angle coordinates on a chart appropriate for the tori of Ho. Under
what conditions will H possess invariant N-dimensional tori of its own in the vicinity of
€ = 07 The KAM theorem, which partially answers this question, is not easy to state, but
the gist of it is this: when Hp is itself a nonlinear dynamical system (of & certain kind),
most invariant tori of Hy whose winding numbezs are sufficiently off resonance will survive
small perturbations, they will be deformed into invariant tori of H.

Let us iry to be more precise. For this section only I am going to set n=20 in
Eq.(25) . This is tantamount to saying that we are dealing with autonomous Hamiltonians;
a generalization of the KAM theorem exists for the non-autonomous case, but we shall not
look into it here.® Let w(J*) = 8H(I*}/8I" be the N-tuple of winding numbers associated
with the invariant torus of Ho labelled by I™, and suppose that Ho is “sufficiently” nonlinear
so that

cither |[8uw/BI'|#0 or | 22/00 &

p o |#0 - (28)

The torus is said to be “off-resonance” if there exist real positive ¥ and 7 such that for all
N-tuples of integers, m,

lm-w(I*)] 2 Hmi™", (29)
N
iml = 3 Imi
k=1

71, is thus identified with a homotopic equivalence class of curves, i.c., an element of the homology group
of the torus.

$For the purely persona] reason that I am not yet comfortable with it. The notstion and statement of
the theorem which I use here have been combined from Arnold[3 and Thirring{24].
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The numbers v and 7 are not completely arbitrary: among other things, n is constrained
by the number of degrees of freedom and v depends on ¢. There are numerous such details
which we shall not go into here. The key point is the meaning of “off-resonance™ conveyed
by the inequality. The fizst assertion of the theorem is that as ¢ — 0 the phase space
volume occupied by Hg tori whose w(I*) do not obey such a condition becomes arbitrarily
small; essentinlly all Hy tori will be off-resonance for small €. The second is that those ton
for which Eq.(29) is satisfied will be preserved, in the sense that

(a) there exists an invariant torus of H and a local (§,I) chart such that
f=w(l')sw® and [=0,
(b) the connection between the two charts is a near-identity transformation:

I = l+,1l(§1.-['£:‘_‘{°)

& §+u(é,Le,w’) ,

(¢) u and z are smooth functions of their variables, possibly excluding w?, and are zero-
average, periodic functions of §, and

(d) x and v vanish as ¢ approaches zero: lim,_¢ u,2 =0

This collection of assertions comprise n statement of the theorem; the invariant tori whose
existence is thus assured are called the KAM tori of H. The proof is partially constructive
and includes a procedure for estimating the volume of phase space containing KAM torn.[3]

Comment 20: From =& heuristic standpoint, the theorem assures us that most invari-
ant tori of a twist map will not be destroyed by a perturbation provided that there exist
sufficiently large nonlinearities to detune resonances; that is the reason for the condition in
Eq.(28) . But suppose that this co dition is not satisfied, as is the case, for example, with
the harmonic oscillator. Is it possible for & perturbation to be so destabilizing that it could
tear apart all the tori even for arbitrarily small ¢7 The answer is yes: one example, originally
studied by Contopolous and others, can be found in Lichtenberg and Lieberman.[14, p.164]

Comment 21: For autonomous systems up to two degrees of freedom, the existence of
KAM tori is enough to insute stability of orbits bounded by them and level sutfaces of the
Hamiltonian; for non-autonomous systems with two degrees of freedom (the so-called 23
degree of freedom problems) or for phase spaces of larger dimensions, this is no longer the
case, This is, of course, the essence of “Arncld diffusion.”

Comment 22: In many ways the KAM theorem possesses sociological similarities to
Godel’s famous theorem in logic: (a) Both are widely known and telked about, yet many
people are rather vague on what the theorems actunally state, and very few have actually
read the proofs, much less velidated them.® (b) Each has been called, by different math-
ematicians, the most importani theorem of the twentieth century. (¢} Neither is useful
for practical calculations: almost by definition, Gédel’s theorem provides no hint on how
to recognire undecidable propositions, and the stable phasa space estimated by the KAM
theorem is typically too conservative 1o be of value.

%] apologize that the present discussion will not improve that situation and muey even exacerbate jt.
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Comment 23: The KAM theorem is tied up with the question of ergodicity in classical
stastical mechanics. Recall that the ergodic hypothesis was required in order to equate
time averages with ensemble averages: it was necessary that & system sample all the phase
space available to it within the constraint of energy conservation. If it possessed dynamical
invatinnts other than energy, however, this could not be the case. The question then is,
Are non-integrabie systems ergodic? The KAM theorem says no, not generally: even in the
absence of a complete set of invariant observables, measureable regions of phase space will
contain orbits confined to N-dimensional tori, just as though the invariants were still there.

Comment 24: Iam not certain of this, but let me state it anyway: In generalising the
KAM theorem to non-autonomous systems, the condition Eq.(29) should be replaced by,

| (m,n)- (1) 12 7|(m, )17 .

2.3 Resonance topology: higher dimensions.

The KAM theorem guaraniees that off-resonant tori survive; this does noi by itself mean
that on-resonant ones do not. Nonetheless, that is generally the case: typically, on-resonant
tori are replaced by separatrices, and we shall devote the rest of this lecture to a discussion
of these objects.

It is regreitable that the concept “resonance” is generally introduced as a disease of
perturbation thecry. The usual scenario is this: An attempt is made to construct a trans-
formation (canonical or not, it does not matter) which will put a Hamiltonian into normal
form, as in Eq.(27). This attempt eventually flounders: some terms in the perturbation
series may become arbitrarily large because of division by “small denominators,” of the
form sin[x(m-w + n)]. This problem is associated with the existence of nearby resonances,
and the connection is completed. The overall effect is to suggest that a resonance has more
to do with the way things are calculated than with real, physical phenomena—the sort of
{equally false?) feeling one sometimes gets abount renormalirstiorn in quantum field theory.
This characierization ignores what should be the central geometric features of a resonance:
the dimensional collapse of the torns, which we bave already seen in the first leciure, and
the existence of a separairiz, the utility of which is its ability to crganize phase space via
partitioning, enabling the simunltaneons classification of all orbits and their relationships. In
keeping with our geometric point of view, let me emphasize that a separatrix is a topolog-
ical object: no continuocus transformation, whether constructed perturbatively or inspired
by God, can deform phase space so as to make it disappear., Small denominators are not the
real stumbling block but only its manifestation within the context of perturbation theory.
The real problem is that we are attempting something fundamentally impossible.

Comment 25: Consider the following thought experiment, which forces one to think in
a coordinate-free way. Suppose that you are given a one-to-one symplectic mapping, F,
defined over some four-dimensional phase space and realized in an unspecified sysiem of
coordinates. (Think of F, for example, as a tracking program that returns 4-tuples of real
numbers and models the period map of a 2% degree of freedom Hamiltonian system.) You
are given the ability to calculate forward or backward iterates of F infinitely quickly, so you
can generate as many as you want without any problem; further, you have the capability
for visualising these samples in four dimensions. Given even these extraordinary tools, how
would you test the hypothesia, “This system exhibits a first order wy + 2wy sextupole
resonance”? What topological features must one search for in the “data” in order to
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confirm or deny such a statement?

Fortunately, there do exist integrable dynamical systems possessing separatrices: the
“single resonance” models. These allow us to study “regular” (as opposed to “chaotic”™)
separatrices analytically and thereby to discover their main features. In the next few sections
we shall define a methodology for doing this and illustrate it with & concrete example. The
anlytical model to be employed is the Hamiltonian,

HED =y 1+ H(I) + H,(I)cos[m-§ + 8 + ¢(1)] , (30)

which describes & single, isolated resonance, the sort of model that might be filtered out of

and cosine ferms in the Hamiltonian.'® 1 have changed the symbol for the “independent”
variable from 1 (time) to 6 (angle) to conform more exactly with the way this Hamiltonian
appears in applications to periodic accelerators.

Globa) analysis of instances of this mode] proceeds along the following lines.

2.3.1 Transformations.

The first step is to take advantage of the fact that angle coordinates appear only in
the linear combination m -§ . This suggests employing a canonical transformation of the
form Eq.(13) or Eq.(21) to a new set of coordinates, (£,I) — (n,J), which we shall
call the “resonance projected” coordinates. To simplify the presentation, we shall assume a
four-dimensional phase space, but everything that we do here can be generalized easily to
larger dimensional problems. The equations of transformation are written as follows:

I=M2Z n=M§
1 )|
I=tormaML =M (31)

where the matzix M is,
M= ( o me )
Mz —mMy
Redefining angle-action coordinates in this way amounts to choosing a new set of homo-
topically inequivalent ¢losed curves, {v,}, one which conforms more tlosely to the way
resonant orbits actually wind around their N-tori. Resonant orbits are thus straightened

out on this chert.
The representation of the Hamilionian on the new chart is a function Q(n, J),

Qnd) = myli+mxpl;
+Q4(J) + Q. (J) cos|m + n8 + 6(J)]

where ¢(J) = #{I), Qis(J) = H,-(I}), and m x ¥ = mavy — miv;. There are two impor-
iant points to be noted here:

(1} 12 is an ignorable coordinate, so J; is a constant of motion. Our method of visualizing
the fiow will be to slice phase space along the three-dimensional surfaces Jo = constant.
‘We then can consider J, either as a dynamical variable of the original Hamiltonian or as a

10In retrospect, this may not have been the best way of going ebout this, but I must draw the line on
rewriting somewhere.
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control parameter of the “projected Hemiltonian.”

(2) m and 7z are coordinates whose modular range is (|mi1| + |m2|)2x. Since @ is of pe-
riod 2x in n; the flow consists of |m;|+ [m2| identical copies of a fundamental domain,
m € [0,2x).

A second transformation (g, J) ~ (£, J') gets rid of the explicit dependence of the
Hamiltonian on #. One generating function which accomplishes this is:

J'
F(a,2) = (m+n); + mag+ [ 456005, - (52)
This produces the following equations of transformation.
I =7
& = m+n8+4(d)
Jl
g2 = m+ | dJy B26(J{, 1) (33)

The final form of the Hamiltonian is given by
K=hA+mxyJa+ K,(J)+ K.(J)cos§, (34)

where A = myvy + myrs + 0. It is expected that A is & small quantity. Indeed, for this
Bamiltonian to be at all interesting A must be small encugh so that J; A is comparable in
magnitude to X,(J) and X, {J).

The independent variable 6 no longer appears explicitly in Eq.{34}, so K is a constant of
motion. That K and J; form a pair of dynamical invariants means, by the Lioaville-Arnold
theorem, that this four-dimensional (now autonomous) system is integrable.

Comment 26: These developments can be generalized trivially to more degrees of free-
dom. A single resonance Hamiltonian, of the form in Eq.(30) , depends on a single linear
combination of phases. There are therefore N — 1 linearly independent combinations which
are ignotable and whose conjugste variables are therefore constants of the motion. After the
second transformation, which makes the Hamiltonian sutonomous, the Hamiltonian itself
becomes the Nth dynamical invariant. The system is thus integrable, all compact orbits lie
on invariant tori, and, perthaps most importantly, there are only two coordinates which are
not invariant: Jy; and §;. Therefore, regardless of the number of dimensions, the single reso-
nance problem collapses down 1o & two-dimensional (or one degree of freedom) autonomous
system.

2.3.2 Behavior at infinity.

The easiest thing to examine is the behavior of the flow at infinity. Dividing through by
X, gives us an equation for cos §;.

K,(J) _K-JhA-mxyl,

&L YT TR
Under normal circumstances K, — oo as J; — oo. Thas, unbounded motion is only possible
for finite, invariant K only along the asymptotic phases £f° which satisfy

cos € = — lim_[K,(2)/K+(J) (36)

(35)
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Whether the right hand side (rhs) of this expression lies within [—1,1] is determined easily
by examining the highest powers of \/7; which appear in the polynomials defining X, and
K,. Let these be respectively n, and n,. If n, > n, then rhs unbounded, which means
that the flow must be confined; no orbit can go to infinity. If n, > =, then rhs — 0,
and unbounded flows are possible at phases £ ~ xx/2. If n, = n, then the situation is
far more interesting: values of the phase asymptotes will depend on the parameters of the
problem, including the value of J; (and the other invariant J's, in higher dimensions).

2.3.3 Resonant orbits, regular and irregular.

Resonant orbits of the original Hamiltonian, Eq.(30), correspond to fixed points of the
projected Hamiltonian, Eq.{34) . They are obtained by setting J, and £, to zero.

Ji = —B8K/8&

= K,sin; (37)
£, = 8K/61,

= A+HK,+8 K, co58; (38)

Setting J1 = 0 gives us the p0551b1]1ty of two types of fixed points: (1) regular fixed points
(reg £ p) are those for which sin£; = 0, and (2) irregular fixed points (irreg ] p) Bre those

for which K, = 0. Let the coordinates of a fixed point be symbolized as {E[O) J(O)] In the
case of a regular fixed point, ££ ~ 0 or x so that cos f% ) = %1 and the condition £=0
simplifies to

+ £9=~0

I (39)

A+31K‘:t81K'=0 {
This equation, which is generally a polynomial in +/T;, must then be solved for the values
of J{%.

In the case of irregular resonant orbits, we must first solve the equation K,. = 0 for
allowed values of J(o) and then use Eq. (38) to get the corresponding values of £1 Unlike
the regular resonant orbits, the phase of an irregular resonant orbit is not necessarily pinned
to a particular value; this must be treated on a case-by-case basis.

Which resonant orbits are stable and which are unstable? The linearized equations of

motion in the tangent space, TMp, near a regular fixed point are writien by expansion
to first order in d¢, and dJ,.

S o= K (9 costl"dt (40)
£ = [82K,(I+ 82K (IV) cos £{* )dJ, (41)
Therefore, if K,(J{o))cos Ego) and 83K, (J{“’) + 82 K,(Jfo}) cos E{o} have the same sign then

the fixed point is unstable; if they have opposite signs, the fixed point is stable. (See

Fig. (6).)

The set of all orbits which approach an unstable resonant orbit as 6 — +oo is called
its “stable” manifold; those which approachit as § — —oo isits “unstable” manifold. The
union of the unstable resonant orbits along with their stable and unstable manifolds is the

separatrix of the system.

2.4 A model: the 1, 4+ 21, sextupole resonance.
To illustrate all of this, we shall find the separatrix for the first order (1,2) sextupole
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. 3 b g,

Figure 6: The nature of a regular fixed point depends on whether the coefficients of 4, and
dJ, have (a) the same sign or (b) opposite signs.

resonence, that is, the 1y -+ 21, resonance excited by sextupoles to first order in the
sextupole strength. Visualizing & four-dimensional object like this is a litile involved, but
not impossible. One method is to take a sequence of three-dimensional slices, much as one
might present a cube to a two-dimensional creature by slicing it from bottom to top. Of
course, we must take some care in arranging the slices; our two-dimensional friend would
form a distorted concept of a cube were it presented sliced along a diagonal. We shall obiain
a good representation of the four-dimensional dynamics by drawing the separatrix within
three-dimensional surfaces specified by the condition J; = constant.
Our single resonance model Hamiltonian is,

H=wil +vila+ 911”212 COS(61 + 265 + né + ¢) .

where the numbers g and ¢ are functionals of the sextupole distribution. The transformation
to the resonance projected coordinates yield

Ji = (h+2h)/5

Js = (2L~ I)/5

&, = H+26+nmB+ ¢

6 = 2-6& (42}

On this chart the projected Hamiltonian is represented,
K=5Aa+J2T+gll heost, , (43)

where A =1y + 215 +nand I = 204 — 5. It is expected that A is a small quantity.
Indeed, for this Hamiltonian to be at all interesting A must be small enough so that ;A
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is comparable in magnitude {o the resonant term. Invariant manifolds must run parallel to
§2, since £3 does not appear in K. The Hamiltonian flow, projected along &3, is given by the
vector fie]d

Jy .‘JI:HIZ sin§;

&

- 1
A+l ”’(51’3 +21})cos £; . (44)

Resonant orbits of K are projected into fixed points of Eq.s{44). The regular ones are those
for which sin&; = 0 ; the irregular ones are those for which either J; = Q0 or J2 = 0.
Symmetries of the projected flow will allow us to confine our attention to the parame-
ter quadrant: A > 0, g > 0. Clerily, if we simuitaneously change the sign of both these
quantities, the flow simply changes direction. Changing the sign of g slone can be compen-
sated for by the transformation £ ~— £; + x. Finally, changing the sign of A alone amounts
to performing both previous transformations in succession. In fact there are no essential
parameters in this problem: both A and g can be made to vanish by a simple scaling
transformation. Let us define x = A/g, and scale the amplitude variables by x2.

RE-RURTL A - XY (45)
Then the level sets—which determine the topology of the flow—of the function
K=g(K-JT)/a%=j5 + i:’ziz cos £y

ate identical to those of X. Further, X can act as a true Hamiltonian for the scaled variables
provided we simultaneously rescale # — 843 /g%,

For reference purposes, we shall present the answer first and then go through its devel-
opment. The separatrix is sketched in Figure 7. Each frame shows its intersection with &
single three- .imensional J leaf projected along the £; direction onto the (€1, J;1) plane. A
few points should be kept in mind while scanning these pictures. First, the £ axis corre-
sponds not to J; = 0 but to J, = —2J; (Jy = 0), when J; < 0, and to J; = %Jz (I, = 0},
when J; > 0. Second, the dvnamical range of £; is 6m: we are viewing only one-third of the
full prajection; each picture is repeated twice. Third, remember that a “fixed point” in the
diagram is the projection of a resonant orbit, which is a 1-torus, a closed curve corresponds
io a 2-torus, and an open (unbounded) curve corresponds to a two-dimensional surface,

The fixed point equation, Eg. {39}, which we use to find the resonant orbits is written:

A/gi]{”z(%lz+211)= 0 (46)

Clearly if A/g > 0 (A/g < 0) then the — (+) sign is indicated, which means that do) ~x
({{0) ~ 0). To be definite, let us assume in everything that follows that A > 0 and g > 0,
and rely on the previously mentioned symmetries to extrapolate results to other regions. In
any case we shall set x =| A/g |. The fixed point equation (46) can be written

1

2
K _ K
2 )=

L+~ 1 .

which describes an ellipse in (\/T;,+/T;) space. We want to express this in terms of the
constant of motion J,. Substituting from Eq’s.(42) we get the following.

3 — wll? - ;JZ =0 (47

31



Lv x e 7] ,!_ 2 =& | F° 5_; e
¥ @ |* i “~
\/L L\ 4 ); éL
—‘)g—ﬁ —) C —§, ¥ o
[ I K S S
J {e) 1% () |9

S| M /\UJ\

—f"*/:?.ﬁ = {_'j .‘l l{r‘f

Figure 7: Flow diagrams for the projected Hamiltonian of the (1,2) resonance




o I

|
]
|
H
--'-K' .,_fo_

Figure 8: Track of the projected resonant orbits (fixed points).

with solution 1
VIP) = HLE: V'&? + 3013) (48)

This is sketched in Fig. (8).
Applying the tangent space Eq. {41) to Eq. (44) provides us with the Jocalized flow.

Ji o= gll®v?r0) copg®ag, (49)
£ = g4I =219 1 177,) cos €{"dT, (50)
Therefore, unstable resonant orbits are those for which 6J1(°) + 17J3 > 0. This inequality
must be satisfied within the region J; > 0, and since the + branch is the only one to exist

in this region, this is enough <o esteblish that the + branch is the unstable one and the —
branch the stable one. As a double-check, we examine the region J; < 0. First note that

62(% +17J; = % [«2 + 307 £ w/w? + 3073

so, as expected, since k2 + 30.J; > 0 it automatically follows that the + branch is unstable.
Further, since /x? 1+ 30J; < 5 we have immediately that

x? + 30J; < kK2 + 30J;

which means that the — branch traces the path of a stable fixed point.

Recall that the irregular resonant orbits are found by setting K, to zeroin Eq.(37). This
provides the value of the amplitude variable at the resonant orbit, after which the phase
value is obtained from Eq.(38) upon setting £; to rero. In our model, K, = 0 means that
either I, or I, must vanish. Consider first approaching the surface I; = 0. Eq.(44) is then
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dominated by the I7*/? term:

1
1% ~ 5912 cos {1

£.1 is indefinite at £ =~ +x/2. This is the location of the irregular rescnant orbit, whose
phase, in this case, happens to be pinned. (See Figures (7a-d).) At any othet value of £,

& = sgngcosfs]-oo .

This type behavior will obviously occur whenever X, contains a term whose the highest

power of ]y is 3, and similarly for Jp.

Now consider the surface J; = 0. In this case Eq.(44) simplifies to the following.
5'1 =A+ 2gI:‘n cos §q

The rescnant orbit thus sits at ]
cosfl = —-2-511”2

and is not pinned, but varies with J;. Real solutions are possible only for I; > x?/4. Notice
also that £} — +x/2 as I; — oo. In Figure 8, the point (I; = x2/4,I; = 0) corresponds
to the intersection of the reg f p track with the I; axis. What happens is that the unstable
regular fixed point is pushed down into the surface J; = 0 where it splits into two irregular
fixed points. (See Figures 7). .

Note that £, remains finite for J = 0, whereas {; was infinite on I; = 0. Nearby orbits
approach the instability in more leisurely fashion. This is intuitively appealing: one would
expect a normal sextupole resonance to destabilize an orbit with zero vertical emittance
more slowly than one of having gero horizontal emittance.

The J; amplitudes at which the regular resonant orbits occur on a particular J; surface
are found by intersecting the fixed point track of Figure(8) with the corresponding line,
J, = constant. The merger that occurs at Jo = ~&w? , Jy = }5«? represents a Jocal
bifurcation!} which, following Thom(25], is called a “catastrophe.” As exhibited in Figures
7a-c, the topological character of the flow chenges when x? crosses this threshold: below
it, all orbits diverge; above it there is a “pocket” of stable orbits. Precisely at catastrophe,
stable and unstable resonant orbits merge to form a cusp, which annihilates both of them.
If one thinks of J; as a contro] variable for the projected Hamiltonian—so that the control
space is the set of doublets (Ja, x)—then the subset {(J2,x)|J; = ~x2/30}, which marks
the control points at which bifurcation occurs, is called the “catastrophe surface.”

Catestrophes are local bifurcations: it is possible to observe the transition by viewing
the flow locally, in the vicinity of the cusp. In contrast, globel bifurcations cannot be ob-
served locally: the separatrix as a whole undergoes a transition; locally, nothing interesting
happens. One type of global bifurcation, a saddle switch, can occur in our example when
the Hamiltonian takes on the same value at the unstable regular and irregular resonant
orbits, so that a branch of the separatrix can connect them. Assigning§; ==/2and 1 =90
in Eq.(43) gives us the value of the reduced Hamiltonian at the irregular fixed point.

Kippyp=-24J2+mx vJa

Its value at 2 regular fixed point is

Kregtp = AJI(O) +mxyJi—g I;o)Igo)

1174 is & bifurcation of the projected Hamiltonian; it is ® fold in the separatrix of the original, four-
dimensional system.
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Now, the algebra is made simpl 't by expressing everything in terms of 7; and Ja.

10 = 219 -51,

19 = [ _21 (51)
Making these substitutions gives us the following.

Kreggp= AU = 203) + m x v J; — 291802 1 5g1{"* 121,
Now nse the fixed point equation, Eq.(47), to write
5910121, = 601" — 2A1(")
Making this substitution and simplifying a little gives us the result:
Keegsp = Kirwgp+ 49l - ALY

The necessary condition for a global bifurcation, K,eg sp = Kirs s p, can thus be written as

follows.
\}'Igo) = ln
4

Substituting for I{o) from Eq.(48) gives us the value of J; where the bifurcation occurs.

__1,2
Jz = 4Uf€
The “control space” surface {(J3, &}z + Zx? = 0} is called the “Maxwell sutface” by
Gilmore.[8]

We have now finished our global analysis of the (1, 2) resonance model and are ready to
recapitulate the complete description of its flow (Refer to Figure 7): (a) For Js large and
negative all orbits are unbounded except the irregular resonant orbits, which are pinned
to to the surface I; = 0 at phases £; =~ xx/2. (b) As J; increases, a local bifurcation,
or catastrophe, occurs on the leaf J; = — Lx?. It is heralded by the appearance of & new
branch of the separatrix connected non-transversally (forming e cusp) to a new resonant
orbit, a 1-torus.  (¢) That orbit splits, and for — xx? < Jz < —3k? there is & single
class of bounded orbits. (d} A global bifurcation, a saddle-switch, occurs on the surface

Jy = —Lx? At this precise value, the surface I} = 0 is stable for phases that are 2x-
equivalent to the range 7/2 < £ < 37/2. On the surfaces "4!_0"': < Ja < 0 there are two

classes of bounded orbits. The first, say Class A, is as before and is characterized by a
bounded phase, /2 < & < 37/2. The second, Class B, has an unboundedly increasing
phase £,. {Another way of saying this: Class A orbits exist in “islands.”) The entire surface
I = 0 is now locally stable. (¢) For 0 < J; < 75x? the Class A orbits have disappeared;
Class B orbits are still bounded.  (f) When £x? < J; Class B has disappeared as well.
All orbits are once more unbounded, except the two unpinned irregular resonant orbits in
the plane Js = 0 which begin at £ ~ x 8t J; = Jx? and (g) wander to §; ~ +x/2 as
J2 — oc.

2.4.1 Adiabatic resonance width.
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Except for the irregular resonant orbits pinned on /; = 0 and I; = 0, the (1,2} res-
onance possesses no bounded orbits on the leaves for which J; < —kx? or Ln? <« Iy,
whereas between these leaves bounded orbits fill some volume of phase space. This is the
general behavior of all resonances, except the quadrupole resonances for which all orbits
are either bounded or unbounded: the tegion of bounded orbits slowly shrinks as the reso-
nance is approached. One quantitative measure of this approach to global instability is the
“resonance width.” We take this term to mean the size of the smallest strip in tune space
which is centered on the resonance line, Eq.(25), and outside of which a beam is stable.
This defipition remains ambiguous, because it depends on the sire and shape of the beam as
well as on the experimental setup—e.g., on whether the resonence is approached adiabati-
cally or the beam is suddenly injected into the resonant situation. In order to svoid beam
parameiers entirely, we shall associate an “adizsbatic resonance widih” with each individual
orbit. That is, we imsgine initializing an orbit in phase space with control parameters set
far from resonance, then approaching the resonance very slowly, and finally noting when the
orbit becomes unbounded.

For the (1,2) resonance of our example this means beginning with x & oo and letting
x — 0 on a time scale much greater than max(1/1,,1/1s). At £ = oo all orbits are harmonic
oscillator orbits, the variables I, I3, J; and J, ere conserved separately, and we can label
an orbit with any two of the four initial values, Ij*, Ii* Ji and J3".!? According to the
usual adiabatic theorems the variation of an orbit as & approaches 2ero will be regulated
by the adiabatic invariance of the action integrals. Because J, is & constant of motion for
fixed &, we can take J; = el, § J2d§; itself as the first adiabatic invariant. To the second we
attach the symbol A = § J1df;, whose value is A™ = 6z J{".

What happens to an orbit ss k slowly decreases depends critically on the sign of J§".
For J3® > 0 the diagrams of Figure Te-g are the relevant ones, and we now must think of
them as flow diagrams for the projected Hamiltonian (see Eq.(43)) rather than mapping
diagrams of the function F. As x decreases the separatrix pushes downward. Each orbit
remains on its leaf, J; = 7i", it meintains its value of A, and it crosses the separatrix, thus
becoming unbounded, when the area under the separatrix has decreased to A'™.

For Ji* < 0 the situation is much more interesting, as the separatrix contains two
branches. Figures (Ta-e) are now the relevant ones, but they must be traversed in re-
verse order. As x decreases from oo the upper branch pushes downward, as before, but
simultaneously a bubble, representing the Jower branch of the separatrix, forms and be-
gins to grow. As these two branches grow closer, approaching their merger at the saddle-
switch (k? = —40J5"), orbits either are captured by the island or pass through the up-
per branch, depending on their values for A'™. The total area under the saddle-switch is
A, = —(15 + 33x/4)7i%. 1f A" > A, the orbit passes through the upper branch of the
separattix; if A™ < A,, then it is captured by and subsequently leaks through the lower
branch. If the latter happens, 4 undergoes a discontinuous change upon passage through
the separatrix, since only one of the three islands can capture the orbit. (Remember, the
period 3 property refers to the phase space mapping, not the transformed flow.) As k con-
tinues to decrease, the orbit will retain its new value for .4 as the island lifts and shrinks.
Eventually—at some point before x? = —30Ji"—the island becomes too small to contain
the orbit.

Figure 9 contains a “master curve,” drawn in the normalized (7i*, ji*) coordinates of
Eq.(45) , which uses this scenario to assign resonance widths to individual orbits. The curve
was computed by numerically integrating the area under the upper branch of the separatrix
when —1/40 < j» < 1/10 and within the island when —1/30 < j, < —1/40. It is used in the
following way. Suppose one starts an orbit at & & oc with initial amplitude variables Ii"

12Becnuse the system is linear for = = oo we can legitimately associate J{" and Ii" with the initia
horizontal and vertical emittences divided by 2x.{19]
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Figure §: Resonance width master curve.

and I{". To find the value of x at which the orbit becomes unbounded, first calculate Jin
and Ji*, using Eq.s(42), and take their ratio. The intersection of the ray ji* /53" = J{*/J3"
with the “master curve” is now read off; call that point (j{™, j3**). The value of x at which

the orbit becomes unbounded is
&=/

For a given resonant coupling, the adiabatic resonance width of the orbit is then determined
according to 24 = 2gx.

A more dynamic pictute is obtained by removing the 1/x? normalization: the curve
of Figure 9 would be no longer static but sweep through the (J{*, I}") space, converging
on the origin as x approaches zero and making orbits unbounded as it passes their initial
conditions.

2.5 Resonance topology, revisited.

We can generalize our observations on the isolated resonance of a four-dimensional, inte-
grable, periodic system to larger dimensional phase spaces. The wonderful thing is that,
regardless of the number of dimensions, the problem always collapses to an autonomous
Hamiltonian acting on a “projected” two-dimensional phase space. What we are trying for
here is & generic, geometric description of separatrices of integrable Hamiltonian systems.
The usefulness of such a structure is that it partitions phase space into disconnected regions,
of which it is the boundary, thereby organizing the flow. It is built up in pieces from invari-
ant submanifolds of various dimensions. Here is what we shoulc expect (the term “orbit”
should be interpreted as the set of discrete samples obtained by applying the period advance
map to & periodic system):

1. At the highest level of structure, there is a way of slicing 2N-dimensional phase space
along disjoint (N +1)-dimensional adiabatically invariant sub-manifolds. Arnalytically,
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these would be labefled by the action variables, J; through Jy. These slices are the
“leaves” of a foliation. The invatiance property means that every orbit is confined to
a single leaf: J, through Jx are constants of the motion.

2. At the next leve] of structure, bounded orbits lie on invariant N-tori (N-dimensional
tori), T¥. (Liouville-Arnold theorem) Almost all of these orbits are mon-resonant
and will uniformly and densely 1} their tori under repeated application of the period
advance map.

3. Orbits whose winding numbers obey k resonance conditions will be confined to N — k
dimensional sub-tori, 7Y~ We are especially interested in the case k=1,

4. Within each leaf, each resonant 771 that is unstable — or more exactly, whose orbits
are unstable — forms a cluster set for orbits lying on gero-measure, N-dimensional
manifolds. They are the “alpha and omega limit sets” of these orbits, which generalizes
the concept of “stabie” and “unstable” manifolds attached to fixed points. We shall
risk abusing the terminology and call them by the same neme.

5. The “separatrix™ is the union of all the stable and unstable manifolds elong with the
unstable (N - 1)-tori (i.e., tori made up of unstable resonant orbits) to which they
are attached. Since the section of a separatrix within each leaf is an N dimensional
surface, and since the leaves themselves have codimension N -1, the full separatrix isa
a (2N — 1)-dimensional surface, which are enongh dimensions to enable it to partition
the 2N-dimensional phase space.

One really needs to let these images simmer for awhile before they fall into place. The
topological description of any particular resonance consists of listing the resonant tori, the
T¥-1, and describing how the branches of the separatrix connect them together, much as
we have done with the 14 + 2u; sextupole resonance.!® Separable resonances — those
whose sep ~ratrices remain “far” from each other — in more complicated, non-integrable
dynamical systemns are then associated with the existence of similar structures, at least on
the macroscopic scale.

2.8 Resonance seeding.

We are led to a conceptual picture of near-integrable Hamiltonian systems much like the one
in Arnold’s famous sketch, shown in Figure 10 . It refers either to the flow of an sutonomous
system ot 1o the period advance mapping of a periodic system (o1, pethaps, to the Poincaré
map of an arbitrary system). As we move out from the “origin,” which is actually a fixed
point of the map (or flow) we pass through & series of layers of invarient tori shearing past
each other. Even this is an over-simplification, however, because the tori corresponding
to resonant tunes (winding numbers) will, upon mote detailed inspection, be seen to be
not tori at all but very thin separatrices sheltering sub-harmonic tori within their islands.
These can be complicated objects, but the complexity does not end there. The separatrix
whichk we skeiched in the last section was of an integrable resonance, one consequence of
which was that the unstable manifold of one resonant orbit joined tangentially with the
stable manifold of another, thereby assuring that the separatrix was itself a smooth surface.
However, the genetic Hamiltonian is not integrable, and there is no reason to expect this
phenomenon to occur: the generic behavior is that the unstable manifold of one resonant
orbit intersects the stable manifold of its partner transversaily, not tangentially. Now, all
points on the intersection belong both to a stable manifold and to an unstable one — that
15, they get mapped back into these manifolds under the period advance mapping. It then

13For another example, see reference [17].
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Figure 10: V. 1. Arnold’s conceptual drawing of a8 Hamiltonian system.

follows that these surfaces must intersect not only once but an infinite number of times.
Further, the phase space volume bounded by the regions between successive intersections
must be preserved. The result is that the separatrix, rather than being the bare, smooth
surface depicted in the last sect on, is clothed with a complicated layer of “chaotic” orbits,
the exact meaning of which will be the subject of the next lecture. The sitoation is sketched
in Figure 11 for a two-dimensional phase space; please keep in mind that four-dimensions
can be vastly more complex, end we live in a six-dimensional world.

Close to the origin, however, all this complexity exisis on very tiny scales; on a macro-
scopic scale, all we would see are tori shearing past each other, much like an integrable sys-
iem. As we move away from the origin, resonances may become broader and their chaotic
separatrices thicker. Eventually, the chaotic layers from different resonances may begin to
overlap each other, resulting in macroscopic chaos. For any system with 2§ degrees of
freedom or more — say a non-autonomous Hamiltonian on a four-dimensional phase space,
or an autonomous one in six dimensions — this can result in “Arnold diffusion” around
KAM tori. In lower dimensional systems there typically will be an outer stability boundary,
a “shoreline” of chaotic orbits which mazks the edge of the connected region of phase space
occupied by bounded orbits. Even beyond this, however, there may be isolated pockets, or
“islands,” of stability. The full description is seldom simple.

We have mentioned that resonances appesr in perturbation theory as “small denomina-
tors” which arise while trying to convert the Hamiltonian into normal form perturbatively.
Now, there are two things which are construcied in perturbation theory: (a} a transforma-
tion which changes the phase space chart in which one represents the dynamics, and (b)
the represeniation of the Hamilionian on the new chart. Small denominators appear while
building the transformation. They can be sidestepped by relaxing the constraints on the
new Hamilionian representation. Rather than demanding that it be a shearing Hamilionian,
we can filier the most offending resonances out of the transformeation and absotb them into
the new Hamiltonian.[19,18,20] If there is only one of these, and typically the lowest order
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Figure 11: Transverse intersection of invariant manifolds as a mechanism for chaos.

one will be the most important, then the new Hamiltonian is still integrable; if there is more
than one, it is not.

In light of all the complexity inherent in an arbitrary system, what information can
we really hope to glean from a perturbative expansion in which one keeps only a handful
of terms? A surprising answer emerges from numerical experiments on two-dimensional
maps.[21,11] It turns out that the outer “shoreline” of stability generally appears in the
vicinity of the separatrix associated with the lowest order resonances filtered out of a per-
turbative expansion. This is, to my simple and rather naive mind, astonishing. There is no
reason to expect the two to be connected, and yet the stability boundary appears to grow
on this separatrix, much like a erystal of salt will grow on a string immersed in a saturated
solution: it is, if you will, “seeded” by the underlying low order resonance.

This is illustrated in Figure 12 for the simple case of a nonlinear kick arising from
a single, thin sextupole.!* We confine our attention to horizontal motion only. The two-
dimensional phase space mapping is expressed as follows.

2 ) o cos 2y sin 27y z

¥ —sin 2xv cos 2xv p-Az?
Here, A measures the integraied strength of the sextupole. This mapping is called the Hénon
map, named after the man generally credited with first studying its properties.1® We can set

A =1 without loss of generality by rescaling, z — 2/X and p— p/A. Thisisin keeping
with Hénon’s observation that any area preserving quadratic map can be put into a one-

14 apologice for the difference in sive between the two halves of this figure. These black against white
images were made from color slides, and the studio personnel misunderstood their instructions. It is too
late to attempt a fix.

161f this were a just world, which it is not, this mapping would be named after one of the accelerator
physicsts who already had been working with it in connection with sextupoles: perhaps the “Laslett map.”
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Figure 12: Perturbation theory suggests that the outer stability limits of 8 Hamiltonian
system are “seeded” by low order resonances. (The tic marks on the axes are separated by
0.5.)

parameter form.[12' Part (&) of Figure 12 shows an orbit of the exact map for a tune value
v = 0.29. Its most dramatic feature is the very large 2/7 resonance which produces a system
of seven islands. Seventh “order” resonances (i.e., resonances with winding number seven)
should not appear until fifth order in the perturbation expansion, while the island chain is
certainly more than a fifth order effect. In fact it is due to an énterference between the 1/3
resonance, which appears at first order in the perturbation expansion, and the 1/4 resonance,
which appears at second order. This is confirmed in part (b) which shows the perturbation
theoretic prediction when those two resonances are explicitly taken into account. The 2/7
resonance, which was not explicitly put into the Hamiltonian, nonetheless surfaces. Even
more important, the stability shoreline appears in approximately the correct location and
with approximately the correct shape. Figure 13 shows a similar correspondence at a tune
value of » = 0.32. Here the dominant resonance is the third integer, and it once again seeds
the shoreline. The rather chaotic collection of points comes from the exact mapping; the
rather strange Jooking curve from second order perturbation theory with the (first order)
third integer resonance filtered out of the transformation. The agreement is terrible for
large amplitudes — more terms are required — but the shoreline surrounding the central
stable region is again approximated extremely well, both in size and shape. Similar tests
at other values of the tune and with octupoles (cubic kicks) indicate that this “resonance
seeding” hypothesis can generally predict the shoreline of stability to within 5-15%. Of
course, these examples are just for two-dimensional mappings; resonance seeding should be
tested on four-dimensional maps as well.

We should not be overly confident in our conceptual model, as in Figure 10 , of the
behavior of a near-integrable system. 1t is, afier all, limited by our own visualization abilities,
and it may break down when the system is far from integrable, Figure 14 , for example,
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Figure 13: Resonance seeding in the Hénon map at v = 0.32

displays a three-dimensional projection of a “tangled” orbit arising in a model of the beam-
beam interaction. Shown are orbit samples taken using the period advance map. They
certainly do not lie on a torus, but neither do they have the randomly scattered appearance
we have come to expect from chaotic orbits. My belief, at the moment, is that it is indeed
a cheotic orbit but one with a very low entropy — which brings us to the next topic.
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Figure 14: Stereo views showing a three-dimensional projection of a tangled orbit belonging
to m beam-beam interaction model; the coordinates are &, 62, and I.

The easential character of Enlightenment thinking was
o allow the clear light of reason io play upon an objective
and determinate world. Scarcely a feature of thal descrip-
tion now survives snfact. ... The world ...is a good deal cu-
riouser and more shadowy then the eighiecenth and nineleenth
centuries could have conceived. That in ilself is no greal couse
for ... rejoicing. The ancient Hebrews knew well the dangers of
the waters of ckaos.

— John Polkinghorne
One World

3 CHAOS.

Integrable systems are exceptional: in the metric space of vector fields they occupy & set
of measure zero. Nonintegtable systems are everywhere; they cannot be ignored — despite
the fact that they have been ignored by Physics departments in the United States until
very recently. In particular, chaotic orbits can be created in the vicinity of an integrable
scparatrix by arbitrarily small perturbations. The subject of chaos has achieved almost cult
popularity, much like catastrophe theory in the 1970%.}® We shall not attempt to overview
the subject in this section. Qur goal is modest: we shall address the question, "What is
chaos?" Exactly what objective, quantifiable property of dynemical systems is this word
supposed to describe?

36 There is some danger in this, and I am tempted to deliver an amateur essay on the sociology of science
but shall resist.
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Answering this is not a trivial matter. The fundamental property of a classical dynamical
system, after all, is its predictability. The past determines the future. The guintessential
statement of this was expressed by Laplace who announced that given the initial positions
and velocities of all the particles in the aniverse, he could calculate the future, thus giving
rise to the phrase “Laplacian determinism.” The advent of quantum mechanics pulled
us out of this trap: Nature was suddenly seen to be nondetermistic, although this was
more a matter of interpreiation than of mathematical formalism. The theory predicted
determistic evolution of wave functions, but the interpretation of those wave functions led
to a probabilistic model of events in space-time. Laplacian determinism had died, at least
among mainstream physicists.

However, it was not necessary to supercede classical mechanics in order to kill deter-
minism. That our understanding has changed dramatically since the time of Laplace is
exemplified by the following statement, in which Chirikov speculates on the deeper conse-
quences of chaotic systems.

“It is worth noting that suck a motion has been searching for since long ago
with the purpose of foundation of the statistical mechanics. ...Could it be that
in Nature there are no such ‘genuine’ randotn processes as we fancy them? In
my opinion ...it is not excluded that no ‘more random’ processes than ...the
motion of a K-system do really exist.” 6]

Despite the labored English, his message is clear: classical mechanics has changed so drasti-
cally that Chirikov suggests that classical chaos can account even for quantum phenomena.
Whether one believes him or not — and I do not — it is important to Jook at classical
dynamics in this new light.

The discussion in this section follows along the lines of several authors, but especially
Billingsley[5], Sinai[23), and Arnold and Avezl4].

3.1 Phase space partitions.

Period advance maps and Poincaréd maps are instances of discrete dynamical systems (DDS),
which formally consist of four pieces,

DDS = (M,T,7,4) .

Here, M is the phase space, T : M — A is & mapping, v is a o-algebra of measurable
subsets of MM, and p is 8 measure defined on v. If M has finite measure, then we normalize
so that u(AM) = 1. For Hamillonian systems, it is natural to assume that g is the invariant
Liouville measure, as in Eq.(20) .

Ergodic theory deals with the properties of discrete dynamical systems when T preserves
the measure, as is the case with Hamiltonian systems.

Va€vy: T 'acy & pla)=u(T 'a)

By writing the condition in this way, we do not require T to be invertible: T=? is defined
on the power set of M, and the symbol T-!a represents the subset of points which map
into points in a under T'.

We now come to the heart of the matter: chao: and unpredictability can exist in deter-
ministic systems simply because it is impossible for us to measure quantities with infinite
accuracy, and any observations which we make must be finitely expressible. Thus, the model
appropriate for our observations of a classical system is not M but a partition of M.

Def: Partition. “a is 8 measurable partition of M” means: (1} a is a set of measurable
subsets of M, o C v, (2) these subsets are disjoint: Va,a’' € a@: eithera=d' orana’ =9,
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and (3) the union of all the sets in the partition is phase space itselfl M =1) ., e

Constructing & partition amounts to breaking phase space up into “cells,” each of which is
a measurable, recordable “macrostate” of the system.
Partitions naturally form a partially ordered set by reason of inclusion.

a>f means Vaca becf:aCh

This is read, “the partition o is & refinement of the partition 8.” Thus, a> 3 ifais
obtained by chopping the cells of A into smaller pieces. The most refined and the least
refined { or most coarse ) partitions are:

God's partition: ¢ = {{z} |z € M}
{m}

In a sense, it is unfair to include £ as a possible partition, since it is nondenumerable, but
it serves as an upper bound for all partitions. Clearly, any other partition a of A must
satisfy £ > a > U. Therefore, any two partitions possess both an upper bound and a lower
bound, and it is not surprising that they will also have a least upper bound (lub) and a
greatest lower bound (glb). The binary operations corresponding to finding the lub and glb
impose an algebraic structure on the set of partitions, transforming it into what algebraists
call a “lattice,”!” whose operations are called “meet” and “join.”

the universe: U

join: avf@ = lub{a,j)
{enblaca & be B}
glb{a, 3)

These operations are illustrated in Figure 15 .

H

i

meet: oAfS

Comment 27: Unlike the join, there seems to be no binary operator, O, acting on sets,
such that

aAB={aOblaca & bep}.

Is this truly the case?

Tracking the evolution of 2 DDS means observing the state of the system afier each
“time-step,” after each iteration of the mapping. Let z represent the initial state of the
system. After k sampling intervals the state will be T*z. Postulete an apparatus for
observing the system whose mathematical model is a partition, o. After each iteration we
make an observation and record which cell in o the system occupies. The deta from such
a sequence of measurements can be encoded into a string of symbols, ape; a3 e3...a,
which is interpreted:

z2CasEaandTzea, ccand T’z cas € a
.andT"z2€a, €0

where each a, is in the partition a. This is equivalent to

z€apcamandz €T la; € T-'aand z € T-%a; € T2
...amdzeT "a, € T "a (52)

iTWhich js very different from what physicists call a lattice.
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Figure 15: The algebra of partitions.

which, in its turn, is equivalent to
n n
2 € n T-*q, € V T
k=0 k=0

Our sequence of observations is therefore equivalent to making a single observation of the
initial atate of the system using & partition that is more highly refined than the one provided
by our apparatus, a. (Of course, we are assuming classical mechanics throughout: our
observations do not disturb the system in any way.) Provided that we design a intelligently,
the larger the number of iterations the more refined is the super-partition, VieoT *a,
and the greater the precision with which we know z.

3.2 Information and entropy.

The critical question is this: What is the expected (or average} snformation contained in
such a sequence of observations?

Before attacking this, we shall review quickly what is meant by the term “information.”
The concept was introduced in 1948 by Shannon([22], who used the idea that the information
in a message should depend not on the message alone but also on the state of the receiver.
Specifically, the information in a message, m, should be a function of the a priori probability,
Prm, of receiving that particular message, an assertion which we shall write symbolically as,

infor(m) = f(pm) .
A severe constraint is placed on the function f by requiring that the information content
of independent messages be additive. Let m; and m; be two independent messages with

a priori probabilities pr,, and pm,. Then the joint probability is pm,Pm,, and we have the
following line of reasoning.

infor(m; and m3) = infor(m,;}+ infor(m;)
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= f(pm,Pm;) = F(Pm, )+ F(Pms)
= f(p) = -—logp

The negative logarithm is used so that information is a positive quantity; if the logarithm
is expressed in base 2, then the unit of information is called a “bit.” This definition is
intoitively reasonable: less probable messages hold more information than more probable
messages, and in the limit p =1 the information content goes to rero.

The average, or expected, information in a set of possible messages, {m,,ma, ms,...},
is called the “entropy” of the set.

H({m}) £ =Y pmlogprm
m
It is intuitively obvious, and easy to verify, that for a finite number of messages,
N = card[{m}], H({m})is maximized by making each pm = 1/N.

Hmee = log N = logcard[{m}] (53)

Comment 28: It is natural to ask if there is any connection between this information
theoretic notion of entropy and the one which appears in thermodynamics. In fact, Shannon
leaned heavily on statistica! mechanics in developing his ideas, and the two concepts are
virtually identicel. Recall from statistical mechanics that the change in thermodynamic
entropy, dS, of a system undergoing an infinitesimal isothermal expansion satisfies

TdS = dQ = —(dE)+ d(E)
- -% S dEmcPEm 1 a(E)

- El-jd (;e_ﬁE’“) +d(E)
= d[kTInZ + (E)]

where T now represents temperature, not a mapping, and 8 = 1/kT. Integrate this equation
with the boundary condition that S=0at T = 0.

§ = kilnZ+gBE)]
= k[an—meln(me)]
= —kz:pmlnpm

Apart {rom Boltemann’s constant, which only normalizes the expression and can be absorbed
into the base of the logarithm, this is the average information in an observation of the
system’s state.

3.3 KS entropy.
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A partition of phase space defines a set of messages:
m=a & zE€atca

This message states that one observation was made on the system and it was observed to be
in the cell labelled “a.” To calculate its information, we must assign it an apriori probability.
The “natural” one — and one that enjoys the property of being dynamically invariant —
uses the phase space measure.
Pm = p(a)

If M has finite measure, then upon renormalization to (M) =1 py becomes a legitimate
probability; if M has infinite measure, then we must be content with pm as e relative
probability. From this, the entropy (the information expected from a single observation)
associated with the partition (or measuring device) a is

H(a) = - ¥ u(a)log u(a)

ata

What, then, is the expected information in the message stream: ao a1 az.. .an? ( see
Eq.{52) ) This composite message states that the state of the system, z,isina particular
cell of the partition \/i_o T *a. The expected information in the message is therefore the
entropy of this partition.

n n
apd; G3...8p, — 2ZE n’f"ake VT"’Q
k=0 k=0

(infor(ag a;...an)) = H{ V T *a)

Increasing the number of observations gives us more information abou the initial state —
the partitions becomes more refined, and the initial state is determined to greater precision.
The limiting rate at which information about the system increases with the number of
observations is the crucial quantity.

N SN
h(a,T) = lim ;H(XOT a)
This number depends on the initial partition, a, or equivalently, on the experimental appa-
ratus. Nothing prevents us from choosing poorly. For example, choosing a = U, results in
zero information per observation, unless the system suddenly disappears. A better choice
of apparatus will optimize h(a, T), thereby providing the maximum rate of increase of in-
{formation about the system, a quantity we shall symbolize as h(T).

h(T) = sup h{e,T)

The suptemum is taken over all possible measurable partitions. This limiting value is called
the Kolmogorov-Sinai (KS) entropy of the system.!®
We are finally ready to give an exact meaning to “chaos™:

regular motion means h(T) =0
chaotic motion means A(T) >0

18 More exactly, of the mapping T.
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If the system evolves “regularly,” then the information gain per observation approaches gero.
Its future is predictable in the sense that as time goes by we could continue to increase the
interval between observations without loss of information. This is the not the case when the
motion is chaotic. There is & lower bound on the rate of gaining information. Conversely,
there is an upperbound on the interval between observations that can be tolerated without
losing information. This has nothing to do with quantum mechanies; it would be true even
if we violated the quantum uncertainty principle. It depends only on the fact that no matter
how good the measuring apparatus is, it is still necessarily finite.

3.4 Kolmogorov’s theorem.

The definition of KS entropy is not computationally useful. We cannot search through
all possible partitions to find the supremum. Fortunstely, most sensible purtitions attain
this limiting value and Kolmogorov's theorem tells us how to recognize them. We first
must define what is meant by & “generating partition.” Loosely speaking, a partition, a,
35 “generating for T if an infinite number of observations will determine z completely.
Heuristically, this means that the size of the cells in \/;_,T-*a can be made arbitrarily
small by taking n large enough. A more precise way of putting it is this: if «+ is the o-
algebra of sets over which g is defined, then \;.,T *a -7 as n—oo. A partition
which viclates this is particularly poor in that it will have a limiting coarseness to it. The
fundamental theorem which we need is then stated &s follows.

Kolmogorov’s theorem: If (a) o is generating for T" and (b) H(a) is finite, then
h(T) = k(a,T).

Comment 28: This result seems plausible. It is remarkable, nonetheless, that all
generating partitions, some of which can be very crude indeed, attain the same limiting
hia,T). If a is generating, then the original dynamicel system is equivalent to shifts on
strings of message symbols. This is the approach of “symbolic dynamics.”

EXAMPLE: Harmonic oscillator. ‘e observe a harmonic oscillator st equally spaced
times, say 0,7,27,... and record whether its velocity is positive or negative. If time
t =0 is set to correspond to maximum negative displacement of the oscillator, then the
n'® measurement records sgnsin(nwr), where w = 2nf is the angular frequency of the
oscillator. Let us take the state variable, 2, to be the phase of the oscillator divided by 27;
its value, mod 1, lies in the interval U! =[0,1) and the mapping corresponding to one
sampling interval is
T:eg—z+fr modl .

Finelly, the partition describing our apparatus is simply

a = {ag,a1}
ag = {0: 1/2)
a; = [1/2,1) (54)

If 2 € ao the oscillator has positive velacity, and if z € a; its velocity is negative. Designing
the experiment intelligently means that we choose 7 so that fr is irrational. Then, by
the “zeroth ergodic theorem” of the first lecture, a will be a generating partition, and its
entropy should equal the KS entropy of the oscillator,
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To evaluate this, note that each observation adds only two cells to \/3_, T *a, from
which it follows that

card { \“/T"'o] =2rn+1) .

k=0
By Eq.(53), we then have the following inequalities.

H{ \7 T *a) < log{2(n+1)}

k=0
R, T) < lim iiog[2(n+ 1)]
' 0

Since necessarily A(a,T) > 0, it follows that h(a,7T) = 0. Finally, since a is generating for
T, Kolmogorov’s theorem tells us that A{T) = 0.

Comment 30: To nobody’s surprise, the harmonic oscillator undergoes regular motion.
The key reason was that the number of cells in the super-partition did not increase quickly
enough. Indeed, we can make the general observation that since H <logN, N must grow
at least exponentially fast to have A(T) # 0.

EXAMPLE: Doubling. We consider an “abstract” dynamical sysiem defined by assum-
ing the same partition as before, Eq.(54), but now we takethe maptobe T:2 — 2z mod 1.
(This is an example of an irreversible, measure preserving mapping.) Consider the first step
in the evaluation of \/;_o T *a. The partition T~ 'a consists two sets, the first of which
maps into ag under T, and the second into a,.

1 11 3
-t = 0)_ Uiz, <) ey -y 1
rta=(p.huld) L Gl
We now “join™ this with a io get

3

O'VT'-IC!-:{IO,%): [%s';')s [%?g)a {211)}

Going on to subsequent steps, at the n'" stage the unit interval is divided into subintervals
of size 1/2"%!, giving us the following result.

" 1
VT *a={-2—n-;7[m'm+ 1)|m=90,1,...27" — 1}
k=0

This is obviously a generating partition for T, and we can proceed to evaluate the KS
entropy. Since every cell in this super-partilion is the same size,

1
2n+1 !

n
Va € V T*a: pe)=
A=0

this becomes an easy caleulation.

H\ T %) = =) uls)logula)
k=0

103[2"""1 ]
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(n+1}log2

A(T) = h(a,T) = lim (n+1)log2

fi— 00

log2 (1 bit)

]

Comment 31: What an eminently reasonable answer! It has a natural interpretation
if we think of z as represented by its binary expansion. The mapping T then corresponds
to shifting the symbols left one position, and the partition a meens that one measurement
corresponds to noting whether the first digit to the right of the decimel isa 1 ora 0. A
sequence of measurements just reproduces the original binary expansion. The information
in & measurement that is skipped cannot be recaptured by subsequent observations: it is
gone forever.

EXAMPLE: Linear automorphisms of a torus. Suppose that M is a two-dimensional
torus, which we consider as topologically equivalent to U? with identification of opposite
edges.

M=U?=[0,1)x[0,1)

Consider the mapping,
T:2— Az mod M

where A is an integer, 2 x 2, unimodular matrix. Because of these conditions on A, the
mapping represents a true one-io-one mapping of the torus onto itself. Calculating the en-
tropy by means of a generating partition is more difficult than in the two previous examples;
details can be found in Sinai.!® [23) The answer is

R{(T) =log A4
where A, is the eigenvalue of A satisfying A, > 1.

3.5 Lyapunov exponents.

Although the KS entropy is a well defined mathematical concept, using generating partitions
to calculate its value is intractable in all but the simplest models. In addition, it assumes
that all orbits are of the same character, whereas in most real problems the dynamical
systemn will possess both regular and chaotic orbits. A different approach is needed.

Fortunately, one exists. Chaos is characterized by a phenomenon of divergence: two
chactic orbits that start out infinitesimally close to each other diverge exponentially rapidly.
Consider, for example, the evolution of two infinitesimally close orbits, say with initial
conditions z and z + ¢ under the doubling map. After n iterates,

T (z+¢) = 2%(z+e¢)
2"z + ¢
= Ttz +2" .

Thus, the distance between the two orbits grows exponentially.

T*(z+¢) - T (2)| = e, where T = log2

1% Although I think his proof is flawed.
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Consider also the behavior of two infinitesimally close orbits under the torus automor-
phism.

T(z+¢€) = Az+ A¢ (mod M)
|ITMz+¢)-T ()i = |A%¢|
= Allel

~ eI?|el, where I =log),

Of course, doing only two examples does not prove anything, but in each case infinitesi-
mally close orbits diverge exponentially at a rate, T, which is numerically equal to h(T), the
KS entropy of the map. This provides, then, an alternate, more computationally iractable
method for calculating A(T).

Making a giant leap forward, we now consider the divergence of infinitesimally close
orbits under iteration of a generic map, T

T(z+e) = T(z}+¢-RI(z)

THz+¢) = T(T(z)+¢ DL(2))
= T(T(z)) +¢ BL(a)
= T%z)+e¢ DT%(2)

T(z+¢)

I
3
EL
-
5
™

where the DT™ are computed recursively.

DT"(z) = DT"" () - DL(T""'(z))

If the orbits are diverging exponentially, then we can connect the rate to the norm of DT.

ITh(z+€) - T (z)]| = |elel™
e 1|2 (2)]|

2

This suggests both a definition,
? .1 n
I(z) = lim ;ln | BT ()]

and an association, h(T) ZT.

This cannot be correct, however. In the first place I'(z) depends on the initial conditions,
z, while h(T) is a global number, and in the second, the norm of DT does not carry enough
information to characterize the motion. T

The correct answer is only a little more complicated.[14] Let A; > Ay > ...y be the
N cigenvalues of DT"(z) arranged in decreasing order. The “Lyapunov exponents” of the
map T evaluated for the orbit passing through z are the numbers

Ti(e) = lim %m A(z) -

The fundamental result which then connects these quantities to the KS entropy is as follows.

wT) = | du(z) 3 Tuie)

Tad>0
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This expresses the global quantity, KS entropy, as an average of a local function, the Lya-
punov coefficients. It reflects the fact that regular and chaotic motion can exist simultane-
ously but in different regions of phase space.

3.6 Fractal dimensions.

Nonteto entropy is not the only signature of chaotic orbits; for example, they are associated
with broad band Fouriet specira and fractal dimensions as well. The latter quantity in
particular has captured people’s imagination, and we shall consider it briefly before closing.

Consider the problem of operationally determining the dimension of a set of points, such
as a surface of some kind, given a procedure which uniformly samples points in the set. One
approach, first suggested by Hausdorfl, is to cover the set — or the generated points —
with spheres of & given radius. The minimum number of spheres (or cubes, or ellipsoids, or
whatever) with radius < r needed to cover a set will grow like an inverse power of r, for
small 7.

Nir)~r¢
The exponent is the “Hausdorff dimension” of the set.
d= - lim 28¥0C) (55)
r~0 logr

The characterization of this number as & dimension is confirmed by the observation that
when the set is (an open subset of} a manifold, its value is indeed the dimension of the
manifold: the Hausdorff dimension of a curve is 1, of a surface 2, of a volume 3, and so
forth. To see this most trivially, consider packing & measurable subset of R?® with small
spheres of radius ». If the volume of the set is V,

Vs N(r) x ;-rrra .

from which,
N(z)~r"3 |

so that the Hausdorfl dimension is three. However, the procedure defining this number
makes no assumption about the point set being sampled; it need not be a manifold, and its
value need not be an integer. This can happen, for example, with samples of & chaotic orbit
confined to a compact subset of phase space, for strange attractors in dissipative systems,
or for basin boundaries of systems with more than one attractor. A set with non-integer
Hausdorff dimension is a fractal, and its dimension is then called a fractal dimension,

Example: Cantor’s set. The pairiarch of all fractals was devised by Cantor to demon-
strate the existence of a set which had gero measure and the cardinality of the continuum,
It is defined as follows. Begin with the sets,

Co = Ul= [0, 1}C R
So = {Ul} .
Notice that Cy is an intervael of the real axis, while Sy is a set whose element 15 Cp. We

now define a sequence of sets, Sy, k = 0,1,2,..., recursively by specifying the members of
Si41 in terms of those of Sy. This is described most easily with a pseudo-program:

SoE{Ul}i
for ((k=1...00 ) {
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Sk = @;
for every #,y) € Sk-1 ¢ Sk = S U{lz, %3 - ;lzy)} U {f%z + %y. v}

}

In words: S, is obtained from the intervals in S;_; by a process of chopping out their middle
thirds. Thus, in particular,
Se = {0,1)}
1,2
5 0,=), [2
1 {13)9’-3!1)}

5 = {[0,%), {g'%)’ [g";)’ [%!1)}

H

and so forth. The k*" approximant to Cantor’s set is the union of all intervals in S.

C;,EU.I

1ES,

Finally, the Cantor set itself is the intersection of all its approximants.
-]

Ae

k=0

(This is a set-theoretic way of saying C = limg_ Ck. ) It is easy to see that the set has
measure zero, p(C) =0, since it is covered by each approximant, Ci, and p{Ci) = (2/3)*.
Further, it has the cardinality of the continuum, since C comprises all those numbers in ['!
whose expansion in base three contains only the digits 0 and 2. By changing each 2 to a
1, and reinterpreting the string as a binary expansion, we can map Cantor’s set one-to-one
onto UL, Finally, its Hausdorff dimension is no. an integer. To see this, note that each S,
contains 2* intervals of radius (1/3}* and covers C. A moment’s reflection is sufficient to
convince that it is the smallest such set. Therefore, the dimension of C can be evaluated,
after taking the limit in Eq.{55),

C

log{2*]

d=-lm ———
i logi(1/3)%]

=log2/log3

Comment 32: Cantor’s set shares one more property with other fractals: it is self-similar.
Multiplication by three maps the lower third of Cantor’s set onto the full set.

C'=3CcnNU=C

zeC' if 2cU! and %zEC

Comment 33: The term “fractal” was coined bv Benoit Mandelbrot, the man largely
responsible for their reintroduction into the modern stream of collective consciousness.[15,16]
Following his lead, researchers have found fractals arsing in a wide variety of applications. In
retrospect, this is not surprising. We began these lectures by talking about manifolds as the
stage on which dvnamical svstems perform. This idée fixe that the background environment
is smooth pervades all of physics, from freshman mechanics to general relativity.

54



We inherited it from the Greeks, who were principally interested in studying such things as
circles and triangles. The stage which they employed was the Euclidean plane, and we have
basically projected their concept forward through thirty, or so, centuries. Lost somewhere
in that process was a fundamental observation: circles and triangles do not exist in Nature;
they were mental constructs very useful for solving a particular class of problems. Frac-
tals, also mental constructs, are far more appropriate to describe large classes of natural
and mathematical phenomena which cannot be handled by the Greek models. One need
only stare at a tree to see how Nature makes use of fractal structures and to appreciate
their beauty. It has been suggested that fractal figures drawn by computers are the modern
equivalent of the Greeks’ circles and triangles, a first step beyond those smooth models
which they created and we inherited; it is conceivable that fractals may eventuelly lead us
to new geometries; it is possible that among these we may find one that serves us better in
describing the way our world works. For now, however, this is little more than a popular
speculation and likely to remain so for quite some time.

Let me close these lectures by offering two exercises which lead to fractals.

(2) Fractal basin boundary. Using bitmap graphics, draw the set of starting points in
the complex plane for which Newton’s method fails to find n*" roots of unity. In particular,
find all complex z for which the iterative scheme z — (2z%+1)/3z? fails to converge to
one of the three cube roots of unity: 1 and e*2*¥/3. The roots of unity in this example are
attractors of Newton’s map. The set of all points in the complex plane which converge to
one of them is called its “basin of attraction,” The points for which Newton’s method fail
are on the boundary between adjoining basins; hence the term “fractal basin boundary.”

(b) Strange attractor. Let fi,f2, fa: U2 — U2, be three contractive mappings of the
unit squate into itself, defined as follows.

iy — (2/2,4/2)
Fai(zy) — ((z+1)/2,y/2)
fi:(zy) — (2/2,(y+1)/2)

Construct a stochastic process on I'! by randomly choosing st each step {rom f, fo, and
fa. That is, z29,21,23,... will be a random sequence of points in U2, and for all &,
Probizis; = fa(2:)] = 1/3, n=1,2,3. Beginning anywhere in U?, plot an orbit of this
process. The strange attractor which results has an obvious relation to Pascal’s triangle
mod 2. What is its Hausdorfl dimension?
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