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Abstract. We nume}ically evaluate the axion emission rate from nucleon-nucleon, ax-
ion bremsstrahlung for arbitrary nucleon degeneracy(s). Our numerical rates agree with
analytical results previously derived in the degenerate and non-degenerate limits. While
the conditions in the newly-born, hot neutron star associated with SN 1987A are semi-
degenerate, the non-degenerate, analytical rate is found to be a very good approximation
(accurate to better than a factor of 2), with the degenerate, analytical rate overestimating

axion emission by a factor of ~ 20 — 100.
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Introduction

To date Peccei-Quinn symmetry provides the most attractive solution to the strong CP
problem (for discussion of the strong CP problem and Peccei-Quinn symmetry see Refs. -
1). The axion is the pseudo-Nambu-Goldstone boson associated with the spontaneous
breaskdown of Peccei-Quinn symmetry. Its mass and couplings are related to the Peccei-

Quinn symmetry breaking scale f,:
mg = 0.62 eV[10" GeV/(f,/N)],

where N is the color anomaly of the Peccei-Quinn symmetry. [Here we have followed
the normalization conventions of Refs. 2; for a complete discussion of the axion and its
couplings see Refs. 2, 3.]

Astrophysics and cosmology have placed very stringent limits to the allowed mass of
this hypothetical, light pseudoscalar boson (for a review see Refs. 4). Requiring that the
cosmological population of coherently-produced axions does not contribute too much mass
density today leads to the bound®:

ma R 3.6 x 107° eVy~"!%(Aq0p /200 MeV) =0

where Aqep is the QCD scale parameter, and v 2 1 accounts for any entropy produced
in the Universe after axion production: v = (entropy per comoving volume after /entropy
per comoving volume before).

Light axions (if they exist) should be emitted from stars of all varieties (main sequence,
red giants, white dwarfs, neutron stars), and should thereby affect stellar evolution. The
most stringent stellar emission bound is the recently derived bound based upon axion
emission from the newly-born, hot neutron star associated with SN 1987A.578 For the
conditions that pertain in the core of the hot neutron star Just after its formation:® 7 ~
3080 MeV, p ~ (6~10)x 10* g cm ™3, the dominant emission process is nucleon-nucleon,
axion bremsstrahlung (NNAB): N4+ N 5 N+ N 44 (N = neutron or proton).

The matrix element for this process, as well as the emission rate in the degenerate limit,
have been calculated by Iwamoto.1? Using the matrix element computed by Iwamoto, the
author of Ref. 6 has calculated the emission rate in the non-degenerate limit. Those two

rates for the process n+n —+n+n+a (n = neutron) are:
€a(D) = 5.3 x 10** erg em™ 57" f4g2 (X,p14) /3Ty (1a)

¢a(ND) = 1.1 x 10*" erg em™ s™1 f4g2 (X,.p1s)2 TS, (1b)

where f ~ 1 is the pion-nucleon coupling, gan, ~ m/(f,/N) is the axion-neutron coupling,

m =~ 0.94 GeV is the nucleon mass, X, is the mass fraction of neutrons, pi4 = p/101 g
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em™3, and Tiyev = T/1 MeV. [For a detailed discussion of the axion-nucleon coupling gan
for various axion models, see Refs. 2,3,6,7. For the moment we will focus on the process
n +n — n +n + a; later we will extend our discussions to all the NNAB processes.] The
degenerate (D) and non-degenerate (ND) axion emission rates forn +n — n+n+a (or
p+p—p+p+a)are shownin Fig. 1 for X,p14 > 4,25 2 function of temperature.

The neutron Fermi momentum pr = 0.237 GeV(an14)1/3, so that p%/2mT o
30(Xpnp14)?/% [Tgev ~ 75/Tmev (for Xnp1s ~ 4). That is, one would expect the ND
rate to be valid for T >> 75 MeV and the D rate to be valid for T << 75 MeV; the
temperatures that pertain just after collapse are ~ 30 — 80 MeV, corresponding to neither
strongly ND or D conditions. The two rates £,(D) and é,(ND) are equal for T ~ 20
MeV: in the D limit (T >> 75 MeV) the ND rate overestimates axion emission - as one
would expect since blocking factors are ignored, and in the ND limit (T << 75 MeV) the
D rate overestimates axion emission - as one would also expect since the D rate is more
temperature dependent (see Fig. 1).

Which rate is appropriate for SN 1987A7 Since the two analytic rates cross each other
for T ~ 20 MeV (where p%/2mT ~ 3.5) one might naively expect that the ND rate is the
better approximation (as we will show, that is in fact the case). The authors of Refs. 7, 8
use the D rate to compute axion emission from SN 1987A, while the author of Ref. 6 uses
the ND rate: for T ~ 75 MeV they differ by a factor of £,(D)/£,(ND) ~ 20. Since any
limit to the axion mass is « £;°/ % this corresponds to a discrepancy of a factor of ~ 5—a
significant difference. For the same form of the axion-nucleon coupling, the authors of Ref.
7 derive the bound, m, < 0.9 x 1074, and the author of Ref. 6, m, < 0.75 x 1073 - a
factor of ~ 8 difference, much of which apparently traces to the different axion emission
rate used. Since the axion mass bound based upon SN 1987A is the most stringent upper
bound to the axion mass, we feel it is important to resolve the discrepancy due solely fo
the axion emission rates.}? This is the motivation for the present work.

In this brief paper we numerically integrate the axion emission rate from the processes
N4+ N —+ N+ N +a (N = neutron or proton) for arbitrary degeneracy(s). Our numerical
results are shown in Figs. 1-3 and are compiled in Tables I, II. The numerical results
smoothly connect the ND and D limits, and indicate that for the conditions that pertain
in the newly-born, hot neutron star associated with SN 1987A the ND axion emission
rate is the better approximation (accurate to better than a factor of 2), with the D rate

overestimating axion emission by a factor of ~ 20 — 100. This is our main result.

Axion Emission, One Chemical Potential

To begin we will focus on the process ny+nz — n3+ng+a (or equivalently, p+p — p+p+a,
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orn+p—n+p+a with X, = X;) as there is but one chemical potential; in the next
section we extend our discussion to n+p — n+p+a and two unequal chemical potentials.

~The axion emission rate is given by a 15-dimensional phase space integral:
E.a = /dH1 de dH3 dH4 dl—.[a (27T)4|M|254(p1 + P2 —P3s —Pa— pa)

X Eufif2(1 - f3)(1 — f4) (2)
where dll; = d*p;/(27)*2E;, the labels i = 1 — 4 denote the incoming (1, 2) and outgoing

(3, 4) nucleons (at present, neutrons), the label a denotes the axion, the matrix element
squared |M|? is summed over initial and final spins and includes the usual symmetry factor
of 1/4 = 1/2 x 1/2 for identical particles in the initial and final states, and the neutron
phase space distribution functions f; = [exp(E;/T — i/T) + 1], [For the axion masses of
interest, rn, ~ 107% eV, axions simply ‘free stream’ out, and there is no need to take into
account reabsorption®, or include the 1 + f, factor for stimulated emission.] In keeping
with the assumptions of previous authors (and for simplicity), we will assume the nucleons

are NR, i.e., T/m << 1, and take the matrix element squared to be constant:13

1
IMJF = 2 x 256fg],m? /m} (3)

]

where m, ~ 135 MeV is the pion mass and the factor of 1/4 is the symmetry factor for
identical particles in the initial and final states. [The matrix element squared is discussed
in more detail in Ref. 10 and our Appendiz.] In the NR limit, E; = m + p?/2m, and
we define the NR chemical potential j = p — m. Further, we define the dimensionless
quantities
y = 4/T,
U = p?/ZmT.
With these definitions the phase space occupancy factors f; are: fi =1/(e™ ¥ +1).

The number density (per cm?) of neutrons (or protons) is then

- > d%p _ IENTEY ® yl/2dy
w2 [kt = (e [T A

e v +1
=4.1x 107 GeV3T3/? (y)
- € MevIlY

where g(y) = [ w?/2du/(e*~¥ + 1). Throughout we use units where % = ¢ = kg = 1, so
that: 1 GeV?® = 1.3 x 10*! em™?, and GeV® = 3.2 x 1052 erg cm—? s~1. We also note that
Xnp1a 2 9.0 x 10—3g(y)T§,ﬁv. The function g(y) has the following familiar limiting forms:

() = *® uldu  [(x1/2/2~0.886)? y << —1
gy - euuy+1_ %ys/z y>>1
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For intermediate values g(y) is well approximated by its Taylor expansion (to better than
1% for —1 Sy < 5):

g(y) = 0.678 + 0.536y + 0.1685y> + 0.0175y> — 3.24 x 1073y*

The neutron Fermi momentum is: pr = (37%n,,)Y/?; in the limit of y >> 1, p%/2mT = y;
while in the limit of y << —1, (pk/2mT) = 1.2 exp(2y/3).

It is convenient to define the center-of-mass (CM) and relative momenta: §4 = (p1 +
p2)/2 and g = (py — P2)/2, and the momenta of n3 and ng in the CM frame: p3. = p3 — Py
and psc = P4 — p+. In the NR limit (T'/m << 1), the outgoing neutrons (n3 and n4) carry
essentially all of the momentum and the axion momentum can be neglected. Momentum
conservation then implies: pyc = —p3c, while energy conservation: Eq = p? /m — pi./m.
With these definitions and the aid of the delta function 10 of the 15 integrals can be
immediately performed, yielding:

M 2T6.5 0.5 o0 co 1 o 1
é, = | |23.57r:n’ A df:.r,_,_f0 du.. /_1 dfylfo duj, [_1 dv.
(u+u_u3c)1/2('u,_ - uac)2f1(u1,y)f2(uzay)(1 ~ f3(us, )1 — falus,y)) (4)

where uy 2 = uptu_£2(usu-)?y1, us g = vsetui £2(uscus )2y, 11 = Frp- /|41 15-1,
Ye = P+ - Psc/|P+|P3c|, and the constant matrix element squared has been taken out of the

integral. From this expression for £, it is immediately clear that the axion emission rate
is proportional to T%% times a function of y = 2/7T only. The limiting D and ND rates
discussed in the Introduction, cf., Eqs. (1a, b), are of this form - which is reassuring!

At this point it is straightforward to compute the axion emission rate in the ND limit
(y << —1) by neglecting the 1 — f3, 1 — f; ‘blocking’ factors and setting f; = e¥~%¢. The
integrand becomes independent of 4. and v;, and the 7., 1 integrals can be done trivially.

The other integrations can also be done, giving:

. B 1 2, 0.5m6.5 2
Ea(ND) = mlMl m- T e y, (5&)
= 2.68 X 10~ 4e2¥m2 3755 —442 ¢4, (5b)
=1.1 x 107 erg cm 1,f‘I_g'a,,( nP14) TMeV (53)

where Eq. (5b) follows from (5a) by substituting M2 = 64¢2, f4m?/mi, and Eq. (5c)
from (5b) by substituting e¥ ~ 125(X. np14)T§Ie{-2 (valid for y << —1). This agrees with
the result previously derived in Ref. 6.11+14

The D limit (y >> 1) has been derived by Iwamoto,10 he obtains:

31-v2 ,,

s m gt 2, (62)

£.(D) =




— 3.69 4 10—-3y1/2m2.5T5.5m7—r493nf4, (Gb)

= 5.3 x 10* erg em™® 5712 (X.014) 3Ty (6¢)

By first performing the v, and v, integrations (see below), and then expanding the rapidly
varying parts of the integrand in a series of step functions, delta functions, and their
derivatives, with some effort we have verified Iwamoto’s result for the degenerate limit. In
addition, we have determined that the next term in the expansion is of order Oy~ '/,
The ND and D limit axion emission rates are shown in both Fig. 1 (as a function of T)
and in Fig. 2 (as a function of y = /7).

Returning to the general case (arbitrary y), both the v; and . integrations can be
performed, and with the further substitutions: v = uy./u_ and g1 = e %*, &, can be

expressed as a 3-dimensional integral:

. M |2m 0565 1 1 1 179 _ N
fo=] |25_5W7 / dq+/ dq-/ dv w2 (1 - v)2quq_[e72 — g2 g2~
0 0 0

2r0.1/2 | 1/2\2
X[l — exp(2y — 2vu_ — 2uy)]? ln[COSh (uy” +ul)?/2 -~ y/2]:|

cosh?[(u}/? —ul/?)2/2 — y/2]

2 1/2 1/2v2
cosh?[((vu-)/2 + ul )/Z—yle} (7a)

In
* [coshz[(('vu_)l/z - ui/2)2/2 —y/2]

= [MPm® T I(y). (7b)

This 3-dimensional integral must be evaluated numerically. We have used two different
numerical techniques to evaluate this integral: Monte Carlo integration and direct integra-
tion. For the Monte Carlo technique, the integrand was evaluated at 10® randomly-chosen
points in the domain of integration: ¢, ¢2, v € [0,1], and the integral was taken to be
the average value of the integrand times the volume of the domain of integration (= 1).
To estimate the error, we grouped the 10® points into 10 subsamples of 10® points each,
and computed the individual means of the integrand, and then took the variance of the 10
means. The estimated errors for the Monte Carlo method were typically < 10%. Because
of the severe effects of degeneracy for y 2 5, the integrand becomes strongly peaked, and
the Monte Carlo technique becomes unreliable. And for this reason we also used a direct
gaussian technique to nurmerically integrate Eq. (7). By a judicious series of transforma-
tions the integrand can be made very smooth, making direct numerical integration both
accurate and fast. The estimated accuracy for all our direct integrations is better than 1%.

Our numerical results are shown in Figs. 1 and 2 and compiled in Table I. The following
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expression is a closed form fit to I(y) which for all values of y is accurate to better than
10%,

Ini(y) = |1.79 x 10%e™¥ 4+ 2.39 x 10%e™2¥ 4+ 1.73 x 10%(1 + |y|)~*/?

-1

+6.92 X 10%(1 + [y])=3/2 4+ 1.73 x 10%(1 = |y[)~5/2

Qur chosen range of y spans y = —10 — 50. From Fig. 2 and Table it is clear that the
numerical results smoothly join on to the asymptotic limits (D, ND). The approach to the
ND limit is much more rapid than the approach to the D limit, which is easy to understand.
In the ND limit the expansion parameter is €Y, while in the D limit the expansion is in
powers of y~1. From Fig. 1 it is also clear that the ND, analytic rate provides a very good
approximation to the actual rate for p% /2mT < 3, or T 2 30MeV for Xnp14 = 4.

Two Chemical Potentials

To this point we have assumed that the chemical potentials for all 4 nucleons are equal.
For the processes ny +n2 — n3 +n4 +aand p; +p2 — ps +pa +a this is of course true.
However, if one wishes to consider the process ny + p» — n3 + ps + a this assumption
1s only valid if X, = X,. It is straightforward to relax the assumption of equal chemical
potentials by defining separate neutron (y; = fin/T) and proton (yo» = 2,/T) chemical
potentials. In this case the analogue of Eq.(7) is

) M|2m 05785 1 1 1 _ B _ _
i = 125_51r., / dq+/ dQ—f dvul?ud (1 —v)2qiq_[e7¥ie™¥? — g2 2] x
0 1] 4]

[1 + exp[(ul/® +u}/?)? — 41 ])[1 + explys — (u2/? +u1/2)2]] ]

1+ <axp[(1-'.1_/2 — u_1|_/2)2 ~21]][1 + exply: — (u1_/2 - “ifz)z]]

(1—exp(y1+y2—2vu——2uy )] 1n [

x 1n[ [1 + exp[((vu_)'/2 +wi/*)? — ya][1 + explys — ((vu-)* +u}/*)?) ] (8)
1/2 1/2
[ +exp[((vu-)'/? —u /") — g ]][1 + explys — ((vu-)1/2 —u}")?))
' = [MPmOST8S I (g1, 45). (8b)

In the limit that y = y; = y; this expression reduces to Eq.(7), and I(y,y) = I(y). Also
note that €, is again proportional to T%- times a function of y; and y2 alone. As before,
the ND limit (y;, y2 < —1) is straightforward to obtain,

: _ 1 2 0565 g1t
¢a(ND) = fg o5 I MIPm? o T8 Sents (9a)
=4.4 x 10*erg em™* 571 f4 g2 X, X, p2 T3 1 (9b)
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where Eq. (9b) follows by substituting |[M|? = 256m?g2y f*/m5 (no symmetry factor),
and g, is the effective axion nucleon coupling for n+p — n+p-+ a (see Appendiz). With
some effort, by expanding the integrand as before one obtains the following expression in
the D limit (y1, y2 > 1)

: 31-v2 - _ i
Ea( ) - 9457 m2 5T6 sm 492 f4y1/2(1 - Ay/zy) (10(1)

= 2.1 x 10*%rg em™*s ™ g7 f4 P14 Tipev (

Xg/a —|—X2/3
18 Ty (T30 21 - Ay/25)  (108)

where § = (‘y1 + yz)/2 and Ay = [y1 — y2|/2.
Finally, in the limit that y; < —1 and y; > 1 (one degenerate and one non-degenerate

species) with a similar amount of effort we find that

£a(D, N D) = S ym™ T m gl fhen
o o
x/ dw/wzf 22dz1n(1 + w)ln(1 + we™*) (11a)
0 0
= 5.43 x 10™3m2 5T 5 m 142 flen (115)
= 1.8 x 10*%ergem™3s7 g2 F4 X1 014 T3 v (11c¢)

We have numerically evaluated I(y;,y2) for y1, y2 € [—10,10] using the same direct
integration technique as before. Our results, all accurate to better than 1% , are compiled in
Table II. These results agree with the analytic expressions derived above in the appropriate
limits. The grid of 231 values in Table II can be used to interpolate for all intermediate
values. For a point §, Ay in between grid points 4 = (%, Aw:), B = (T, Ayii), C =
(Fiir Ayi), D = (Fii, Ayiz), the double, logarithmic linear interpolation

li

s — 9 Ay — Ay, ) _ (Ay,-,- ) :|
5. —= I I(F, Ay) + | ————— JIn I (§i, Ay
(y.';—y,-) [(Ayﬁ"Aw (5 vi) Avyii — Ay (7 Yii)

provides a value for I(#, Ay) which is accurate to better than 5%.

In addition, the following is & closed form fit to I(y;,y2) which is accurate to better
than 25% for all values of ¥y, y2 (and typically, better than 10%),

Ia(y1,v2) = [2 39 x 105( TV1TVZ L (.25eV 4 0.25e7Y2) 4+ 1.73 x 104( + |ﬂ[)_1/2

—1

+6.92 x 104(1 + )73/ + 1.73 » 10%(1 + |g|)~%/?
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To illustrate our results we have computed é, for p14 = 8 as a function of temperature
for two sets of abundances: (i) X, = 0.9, Xp = 0.1; and (ii) X, = 0.7, X, = 0.3. The
case X, = X, = 0.5 has already been done, since in this instance y; = v, (see Fig. 1).
The results for these two cases are shown in Fig. 3, along with the analytic rates for
the degenerate and non-degenerate limits (for simplicity, the (1 — Ay/2%) factor has not
been included for the degenerate limit). Again, it is clear that for the conditions that
pertain in the post-collapse core the non-degenerate rate is a very good approximation,
overestimating £, by at most a factor of 2, while the degenerate rate can overestimate €a

by as much as a factor of 100.

Discussion and Concluding Remarks

We have numerically calculated the axion emission rate from nucleon-nucleon, axion
bremsstrahlung for arbitrary neutron and proton degeneracy using both Monte Carlo and
direct numerical integration techniques. Our numerical results agree with the analytical
results previously obtained in the D (y >> 1) and ND (y << —1) limits,5?% and with
the analytic expressions we have derived in the various limiting regimes with two chemical
potentials.

Somewhat surprisingly, the transition from the D regime to the ND regime occurs for
p%/2mT ~ 3.5 (rather than ~ 1). For p%/2mT X 3, the non-degenerate rate provides a
reasonable approximation to the actual axion emission rate. In the non-degenerate regime
convergence to the ND rate is rapid. The degenerate regime is rather more complicated.
The leading order term in the degenerate regime expansion varies as the square root of
the average chemical potential, and if the two chemical potentials are quite different (as
in the case for X,, = 0.9 and X, = 0.1) this can be quite a poor approximation. The
convergence to the D limit quite slow because the expansion is in powers of y~1, and for
two chemical potentials because of the additional exacerbating effect of unequal chemical
potentials. The slow approach to the degenerate limit is clearly illustrated in Figs. 1-3.

Our motivation for this work was to accurately calculate axion emission from the
newly-born, hot neutron star associated with SN 1987A, where the conditions are that of
intermediate degeneracy. From Figs. 1, 3 it is clear that in the pertainent regime (p14 ~ 8,
T ~ 70 MeV), the ND rate is a good approximation (overestimating the true emission rate
by at most a factor of 2), and that the D rate is a poor approximation (overestimating
the true emission rate by a factor of ~ 20 — 100). Since any axion mass limits which are
derived scale as the axion emission rate to the —1/2 power, mass limits derived using the
D axion emission rate should be scaled upward by a factor of ~ 5 — 10. Applying such a

factor to the limit derived in Ref. 7 (where the D rate was used}, brings this limit into
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better accord with the limit derived in Ref. 6 (where the ND rate was used). Given the
overall uncertainties in deriving these axion mass limits (see Refs. 6-8 for discussion of

the uncertainties), there now seems to be reasonable agreement that the axion mass limit
based upon SN 19874 is: m, S 1072 eV.

(]
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Appendix

Here we briefly discuss the matrix element squared |M|?; for a more complete discussion
we refer the reader to Ref. 10. In the I-pion exchange approximation there are 4 direct
and 4 exchange diagrams, corresponding to the axion being emitted by any one of the
4 nucleons (see Fig. 4). In the limit that 3mT > m2, |M]? is constant; Iwamoto?® has
computed the first correction to this approximation in the degenerate limit. In the relevant
temperature-density regime, this correction is of order 0.5 — 1.

Isospin invariance relates the 4 pion-nucleon-nucleon vertex couplings needed to com-
pute [M|%: nph : 7np: wndi ¢ wpp = 1:1:4/2/2:4/2/2. Following Iwamoto!® and denoting
the coupling 7n7 by f, and the axion nucleon couplings by gu, and Jap (for the neutron
and proton respectively), it follows that |M|? = 64m?m;1f%g2 (n+n — n+ n + a);
64m*mz*f4gl, (p+p — p+p+a); and 5-128m>m*f4[(g2, +92,)/2] (n+p — n+p+a).
The matrix element squared for the pn process is larger for two reasons: (i) because there
are no identical particles in the initial or final states there is no factor of 1; (ii) the charged
pion coupling to nucleons is /2 times that of the neutral pion, which enhances the ex-
change diagram by a factor of 2. {Put in the language of isotopic spin, the nn or pp initial
state is pure I = 1, while the pn initial state is equal parts I = 1 and I = 0, and so there
are two isospin channels for the pn process and M = M(I = 0)/v/2 + M(I = 1)//2.
Because there are two isospin channels for the pn process one might expect that irrespec-
tive of the 1-pion exchange approximation used here that the pn process would have a
larger value for M?. Supporting this notion is the fact that the cross section for pn elas-
tic scattering is larger than that for nn or pp elastic scattering.] We also mention that
the effective axion-nucleon coupling for the pn process defined just below Eq. (9) is just:
gan = 2-5(9%, + 93,)/2.

Bringing this all together it follows that in the 1-pion exchange approximation the
total axion emission rate from all NNAB processes is

2
Gan

. +4g2
o = 4T ) £ 2 T ) + T 00) + 1005 T )1, 3)] (a0

where the first term accounts for n +n — n +n + a, the second for p+p — p + P+ a,
and the third for n +p — n + p+ a. I(y1,72) is as defined in Eq. (8); also note, that as
defined, I(y,y) = I(y), where I(y) is defined in Eq. (7). For reference, 64m? T8-S5m4 f4 =
1.66 x 10* ergem™3s~1 f4 T:5,, .

Given that f ~ 1, the validity of the 1-pion exchange approximation is open to question:
the inclusion of 2-pion, 3-pion, ... exchange, other meson exchange diagrams, collective

nuclear effects, etc. We will not address these issues here.
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11.

12.

13.

14.

Mayle, et al. (see Ref. 7) have also computed £4(ND). However their rate has
the wrong temperature dependence: £,(ND Mayle et al.) =~ 3.5 x 10%® erg cm ™3
s—1f4g2 (X, p14)? Ty, corresponding to €, < T°F(y), <f. Eq. (4) and below. We
have taken the liberty of correcting the ND emission rate computed in Ref. 6 for a
factor of 2 algebra error.

The limits derived in Ref. 8 cannot be easily compared to those of Refs. 6, 7, as the
authors of Ref. 8 do not explicitly specify the relationship between the axion-nucleon
couplings and the axion mass. However, if infers that relationship, their bound 1is
comparable to that of Ref. 6. _

The assumption that |M|? is constant is strictly only valid in the limit: 3mT >> m2,
or T >> 6.5 MeV, which is satisfied in the regime of interest (' ~ 70 MeV). For
further details see Ref. 10.

In obtaining Eq. (5¢), the expression for axion emission in the ND limit in terms of p,
X,,, and T, we have used the relationship e¥ ~ 125.an14T;41/V2 , which is valid only in
the ND limit (y <« —1). One might have been tempted to use the exact expression for
y, obtained by solving: g(y) = 111X,,p14T;4::/V2, where g(y) = [~ ul/?du/(e*"Y + 1).
In addition to the obvious fact that é,(ND) then could not be written in closed form
(except for y < —1), the resulting expression when extrapolated to y 2 0 gives a larger
value for é,(N D) which overestimates the true emission rate by a larger factor than Eq.
(5¢) and does not even decrease monotonically with decreasing temperature (increasing
y). The simple limiting form chosen in Eq. (5c) extrapolates to the semi-degenerate

regime much better, and of course has the same form in the very non-degenerate regime.
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Table I - Axion emission rate &, (forn+n — n-+n + a): analytical results and numerical
results. All numerical results are accurate to better than 1%. Rates are given in units of
T%5m?-5g2 f4/m?. The integral I(y), defined in Eq. (7), is equal to the numerical results
given here divided by 64.

y=p/T Numerical Non-degenerate Degenerate
-10.0 5.53 x 1013 5.52 x 10~13
-4.0 8.85 x 10~#8 8.99 x 10~8
-3.5 2.38 x 1077 2.44 x 107
-3.0 6.36 x 10~7 6.64 x 107
-2.5 1.68 x 106 1.81 x 10~8
-2.0 4.36 x 108 4.91 x 106
-1.5 1.10 x 10~5 1.33 x 103
-1.0 2.68 x 1075 3.63 x 1075
-0.5 6.17 x 105 9.86 x 10~3
0 1.32 x 104 2.68 x 104 0
0.5 2.61 x 10¢ 7.28 x 104 2.61 x 103
1.0 4.72 x 1074 1.98 x 103 3.69 x 103
1.5 7.79 x 10~ 5.38 x 1073 4.52 x 103
2.0 1.18 x 103 1.46 x 102 5.22 x 1073
2.5 1.67 x 10~3 3.98 x 102 5.83 x 103
3.0 2.22 x 103 1.08 x 10! 6.39 x 10~3
3.5 2.82 x 103 6.90 x 103
4.0 3.43 x 1673 7.38 x 1073
5.0 4.64 x 1073 8.25 x 103
6.0 5.77 x 103 9.04 x 103
8.0 7.75 x 10~3 1.04 x 10~2
10.0 9.37 x 10-3 1.17 x 102
50.0 2.52 x 10~2 2.61 x 1072
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Figure Captions

Figure 1 - The axion emission rate from neutron-neutron, axion bremsstrahlung, for
Xnp14 = 4. Shown are the analytical expressions valid in the D and ND limits, ¢f. Eqgs.
(1a, b), and our numerical results which are accurate to better than 1% (indicated by the
triangles). The temperature which pertains in the core shortly after collpase is ~ 70 MeV.

Also shown is y = /T as a function of T'.

Figure 2 - The axion emission rate from neutron-neutron, axion bremsstrahlung as & func-
tion of y = 4/T. Shown are the analytical expressions valid in the D and ND limits, cf.
Egs. (5b, 6b}, and the results of our numerical integrations which are accurate to better
than 1% (indicated by the triangles).

Figure 3 - The axion emission rates from neutron-proton, axion bremsstrahlung, for p =
8 x 10**gem ™2, and the compositions: X, = 0.9,X, = 0.1 and X,, = 0.7, X, = 0.3. [Note,
Fig. 1 applies to the intermediate case X, = X, = 0.5.] Shown are the analytic expressions
valid in the degenerate and nondegenerate limits, as well as our numerical results which
are accurate to 1% (indicated by the triangles). [For simplicity, the (1 — Ay/27) factor has

not been included in the degenerate rate.]

Figure 4 - The direct and exchange diagrams for nucleon, nucleon axion bremsstrahlung.
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