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Abstract

The renormalization properties of the operator G* = G**(z)G%, (z)
are investigated in both pure QCD and in QCD with massive fermions.
The computation of the operator’s anomalous dimension is simple in
background field gauge. The result can be expressed, to all orders
in perturbation theory, in terms of the anomalous dimensions of the

couplings and fields of the theory.
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The gauge invariant parity conserving product of gluon field strengths,
G? = G**(z)G4, (z), repeatedly appears in the QCD description of particle
interactions. Here, G2, (z) = 8,Q% — 8,Q% + gfucQ@5Q%, and QF is the gluon
field with color index a and Lorentz index p, and g is the QCD coupling con-
stant. For example, the vacuum matrix element of G? appears in the short
distance expansion of the photon propagator, which is related in turn to the
cross section for e*e~ annihilation into hadrons. It is the pure glue color singlet
operator of lowest dimension so it is the first nontrivial operator in the short
distance expansion of the product of gauge singlet operators (quark bilinears are

usually suppressed by their masses).

The G? operator has other manifestations as well. QCD sum rules relate
processes involving light particles to the vacuum expectation values of the gluon
and quark condensates. Even when absolute determination of the nonperturba-
tive matrix element is precluded, expressing matrix elements in terms of these

operators can relate different processes.

Furthermore, G* contributes to the trace anomaly, the fact that the trace
of the energy momentum tensor has a mass independent term. Voloshin and
Zakharov [1] have employed this fact in the calculation of hadronic transitions
between quarkonium states. Also[2,3], the effective Hamiltonian describing the
decay of a light neutral Higgs ¢ into hadrons involves the coupling #G?. There-
fore the Higgs decay rate into hadrons involves the G? matrix element between

hadronic states. Again these matrix elements can be calculated in the manner
of Voloshin and Zakharov.

In the context of low energy effective field theories in order to evaluate an
operator’s contribution to a low energy process, two pieces of information are
needed. One must determine both the operator’s dependence on the renormal-
ization scale u, and the matrix element of the operator at a particular scale.
In general, the evaluation of the matrix element is a nonperturbative problem
which can only be solved when there is a conserved charge (see ref. [3] for an
application of such reasoning to the operator G?) or with sufficiently accurate
numerical lattice calculations. We will only address the question of the renor-

malization group scaling of G2.



Previous authors have also considered this problem. Kluberg-Stern and
Zuber [4] derived the anomalous dimension matrix for gluons and ghosts, in
pure QCD in covariant gauge and in axial gauge, in terms of the beta function
and the anomalous dimensions of gluon and ghost fields. Moreover, they used
BRS invariance to show that the calculation is simplified in background field
gauge, where the anomalous dimension matrix takes a block triangular form

since gauge variant operators do not mix into gauge invariant ones.

Tarrach [5] employs the fact that calculations are simplified in background
field gauge to explicitly verify the result of Kluberg-Stern and Zuber to two
loops. He did a further explicit 2 loop calculation with the inclusion of massive
quarks. To second order in the loop expansion the operator §G’2 — 2Ymmapyp is
renormalization group invariant, where G is the QCD beta function and ~,, is

the anomalous mass dimension for the quark mass.

In this letter we will verify Tarrach’s result to all orders. Furthermore, we
improve on the argument of ref. [4] by employing the explicit gauge invariance
of the background field Green’s functions in background field gauge. We will
see this greatly simplifies the computation of the anomalous dimension matrix,
since the effective action is expressible as a gauge invariant function of the gauge
fields only, which is a stronger constraint on the structure of the counterterm

lagrangian than BRST invariance.

We first review the relevant features of background field (BF) gauge [6].
The BF gauge fixing term is

1
Lo = 5-(0,Q" — 08" + gf*BLQL) (1)

= [D%(Q- B)P 2)

where @ is the quantum gauge field, B is the background field which defines
the gauge condition, D® stands for the B-field covariant derivative and o is the

gauge fixing parameter.

From eq. (2) it is clear that Ly is invariant under the combined transfor-

mations

B, — B} =0"Y(B,+8,)0 (3)



Q — QU=97(Qu+ 3,0 (4)

If the ghosts are transformed homogeneously, the full lagrangian is invariant un-
der the combined transformation. Now let W(J) be the generator of connected
Green’s functions in the theory which includes a source term for the quantum
field; i.e. £(J) = L(J = 0)+J-Q. Then T5(Q) = (Wp(J)—-[ d*zJ-Q)|g=swyss is
the generator of one particle irreducible (1PI) Green’s functions. The subscript
BinT and W reminds us of the implicit dependence of these quantities on the
background field. Now W(J) — [ d*zJ - B = I'(Q) + [ d*zJ - (Q — B) is invariant
under J — 0-1JQ, § — Q% and B — B®. Therefore Iy, (B) = I'(Q)|g=p is
invariant under the transformation B — B?. T';,,(B) is “gauge invariant”; that
is, it is invariant with respect to gauge transformations on the field B. This
invariance implies nontrivial relations between the coefficients in the expansion

of I';ny in powers of B.

We now proceed to the general argument. We use dimensional regulariza-
tion and follow the renormalization conventions of Gross [7]. The generating
functional for renormalized Green’s functions, I'® can be expanded either in
terms of bare fields and couplings or in terms of renormalized fields and cou-
plings:

I‘R(Q—,g) = ro(Qo,go), (5)
where Q° = Z'/2Q, g° = Z,9, and Z and Z, are defined so that the left hand
side of eq. (5) is finite. (Notice that there is a factor of Z™? when we expand
the I's in terms of the n-point functions). To renormalize a Green’s function
with the insertion of the operator O an additional factor Zp is defined by the
condition that

T5(@,9) = 25'To(Q%9°) (6)
is finite. When operator mixing is incorporated, this is to be interpreted as a
matrix equation. We will calculate the operator renormalization factor relating

it to the anomalous dimension of the gluon field .

The gauge field lagrangian in BFG is

1
C=£o+£gf+£ghont:+J'Q_ ZJG’sz (7)



where £, = —1G?, Lys is given in eq. (2), Lghosts is the corresponding ghost
term, J is the source of the gauge field and Jg: is the source for the operator
—3G2. To define T, we Legendre transform only with respect to the source J.
This is adequate since we only allow Green’s functions with at most a single
operator insertion, so that I' and I'ga will serve as the generators of all 1PI
Green’s functions. Let W(J,Jg2;9,a) be the generator of connected Green’s
functions and I'(Q, Jgs; g, @) be the generator of 1PI functions. Notice that the
theory in eq. (7) is invariant if we simultaneously infinitesimally transform the

fields, sources and couplings as follows:

Q — QU+19 ®)
B — B(1+3 (9)
g = g1-39) (10)
a — all+e) (11)
J - J(l—%e) (12)
Jaz — Ja(l—€)—c¢ (13)

The ghost fields are not transformed. Notice the inhomogeneous transformation
of Jg was required to cancel the order ¢ G? term which would otherwise be

generated. Thus we have

1 1
Wir39s((1 = 5€), (1~ €)Jgz — € (1 =~ Se)g, (1 + €)a) = Wh(J, Jaai g, ). (14)

Therefore,

I‘(1+§c)B((1 + ‘;—G)Q, (1-€e)Jam —¢ (1- %G)Q, (1+€)a)= FB(QNIG’;.%Q)' (15)

We expand the above expression to order € to conclude

1o \ 18 9
5 /44 6Q( 7t 3/ B(“’)aB( Y~ 2985 T %%a
_/d4z[JGz(z) + 1]6.]@:(2) I'p(Q,Jes;9,0) =0. (16)



Now, Facl;‘z,—)hc,,:o = —1Tp e (z). Taking Jg= = 0 we obtain
i #eTsc@ 00,0 = [3 [ ¢eezy
—Z/d g (2)(Q,0;9,0) = |5 [ d wQ(z‘)m(m)

1/, 5 1
+§/de(z)EB(:c) 27

Applying the above equation to L'in.(B; g, ) = I's(@,0;9,a)|g=5, We obtain

aa +aai]PB(Q’0 gaa) (17)

1 1 _
- Z/d‘wI‘.-m,az(m)(B;g,a) = "'Z/d41’rE,G’(z)(Qv0;gya)|Q=B

L/ _6 19 i] (B
= [—2—/d EB(E)SB(:B) zgag +aaa I‘:nv(Byg1a)- (18)

One may expand I, in powers of Bj(z). The coefficient of the term of
1 r(") 81.:Gn

NV Y epin?
function. An alternative expansion of Tino consists of writing T, = [d*zLip,

order (B)" in such an expansion is i.e. the n-point 1PI Green’s
where L;,, is a gauge invariant lagrangian density. £;,, may contain non-local
terms. In this expansion the divergences of the theory may be readily identified.
The only divergent counterterm of dimension less than or equal to four must be

a gauge invariant parity conserving operator, i.e. G2. That is,

T5(B%,9°) = [ d'20(°)G(e) + -+ (19)

for some divergent constant C(g°). In pure QCD, by choosing Z and Z, in eq. (5)
so as to make this term finite, then ’t Hooft’s proof of renormalizability 8] insures
that the whole of T;,, is also made finite. With the additional renormalization
factor Zg', defined in eq. (6), ['iny,0 is finite.

By applying eq. (18) to eq. (19) we can readily obtain Zg2. The renormal-

ized generating functional TR, is
T2,(B,9) = T5ny(2VB, Z,9) = [ d'20(92,)2G" + - (20)

Gauge invariance of I';,,, requires Z'/2Z, = 1 and we have used this in expressing
the answer in terms of G? only. Since the left hand side is finite, so must be
the product of C and Z. We choose the renormalization convention where
CZ = —1. Notice that C is of the form —3 + % Therefore Z also takes the



form 1+ 5 ZE(,,L), where the Z(*¥) are such that CZ is finite. Now, from egs. (6)
and (18) we deduce

_m~/d4m]:‘tm.'G2 Bigi ) =

] 1,0 a
-1{ = 4 o a0 o_~ d4 C oGoz {2
= (2/d 2B ) 55y ~ 29 oy T 8a°)/ =0(g7)G" +--{21)

where the right hand side is evaluated at B® = Z'/2B and g° = Z,g. Again,

concentrating on the gauge field self-energy we have, after some algebra,

T4 ./ d4zrmv G? (2)(3, g, a) =

Zz (1 - (%g° 33 aM)lnC’ ) /d‘mC(g )G (z) + - (22)

=7} (—(;g%—a a—-i—)an )1‘{3",(3 9) (23)

395 )1n Z~1) is finite. We choose our renor-

malization condition so that this product is unity. The result is

1 8IlnZ O0InZ
99 dg % fae

This is finite if Z3)(1 — (%gg’; —a°52

Ze =1+ (24)

We define 3(g,¢) = p,g—l;, v(g) = 2;1.'9'19“2 In 4 — € dimensions?, g° = u¥/2Z,g,
and we define 8(g,¢) = —1eg + 8(g)[7,9]. Therefore, since Z/?Z, = 1 in BF

gauge, B(g) = gy. Note also that v(g) = 38(g, 6)8 = —1g gg) Similarly,
(1)
g = —-%g%l. Here Z(1) is the residue of the € pole in Z and Z(Gl,) is the

residue of the € pole in Zg:. Therefore, from eq. (24), we can derive

z3=1+2 1 0(3) (25)
and 5
_ 20
e =9g (26)

This is the promised result, expressing vyg2 fully in terms of ¥(g) = 3/g. Notice
that the a°-derivative term in eq. (24) does not contribute to vg2. This is

1The usual factor of x£~¢/2 in the relation between g° and g played no role in the previous
discussion and was therefore omitted.



because, in background field gauge, v(g) = B/g is independent of the gauge
parameter a. For this reason, in what follows we will drop the a-dependence,
which amounts to making the choice of gauge o — 0 (‘Landau Gauge’)?.

Using this result it is trivial to verify that 7(g(p))G?(x) is ¢ independent,
where by G?(u) we mean the matrix element of the operator G? evaluated at a
renormalization point g, and () is the running coupling constant, a solution
to pi = B(g(n)).

We now calculate the anomalous dimension matrix in a theory with massive
fermions. This is a straightforward extension of the above reasoning. With the
inclusion of massive fermions the above argument is modified in three ways.
Firstly, the operator O; = —-%G’ is no longer multiplicatively renormalized. It
mixes with the operators @, = —myp and O3 = P(i P — m)y, where D, is
the covariant derivative acting on fermion fields. Therefore Zg: is replaced by

a matrix Z;;:
T8.(¢, B;g,m) = Z;;'To,(2, "%, 2"/*B; Z,g, Zmm). (27)

Secondly, by appropriately scaling the fields and parameters, we can derive
expressions which relate I'g, to ', as in eq. (16):

/d4zI'o,(z) = m;n—zr (28)

and

/ d*zTo,(z) = f diz ( ) + @) 570 )) (29)

Third, the expansion of I';,, includes two new dimension 4 operators, whose
coeflicients, as with eq. (19), can be related to Zy and Zp,:
Tino(%°, B%; ¢°, m°) = / d'z (CG% + Dm§p° + Bg°(i P — m)$°) +
(30)
Here C, D and E are divergent functions of the bare couplings. The remaining

analysis parallels that presented above. We obtain

1 8lnZ 1 aan aan!
1~ 39%, —29% 5" —39
Z7! = 0 1 0 (31)
0 0 1

2The anomalous dimension of the fermion field vy does depend on a. If its effects need to
be considered one must properly restore the o dependence in the equations that follow.



Extracting the anomalous dimension matrix is now simple. First, from eq. (27)

we have the definition of the anomalous dimension matrix 7;;:

dl8
P —7i L5, (32)
That is, .
875
Vil = —p aﬂ’ , (33)

and recalling that l”gﬁ = B(g,¢) = —%eg + B(9),

(1)
1 87§

s = —— 34
71 Zg ag ’ ( )

where Z,(_.,1 ) is the residue of the ¢ pole of the operator renormalization matrix
Z"J'. Simila.rly,
1 8z

_ 1 35
v 19 3 (35)

% = ~19 5, (37)

Therefore 87 1 6vm 01
95 29
y=| 0 0 0 (38)
0 0 0

It is now easy to verify that the linear combination

=

DN =

(G(1))G* (1) + Y ()R — 274 (G(1))P (2 P — mlp))yp  (39)

is independent of the renormalization point x, when inserted at zero momentum3.

Here m(p), the running mass, is a solution to ug'%'%'-)- = m(p)¥m(g(1)), and g(u)

3The method we have used cannot differentiate between the operators ¥(i P — m)y and

ﬁ(—if — m)y. Because these vanish on-shell, the p-independence of the matrix elements of
8 holds for arbitrary momentum.



is the running coupling constant defined earlier. The reader will recognize the

operator § as the trace anomaly [10], defined by
Bust = 04 = 6 + mypp. (40)

Here s* and 0, are the new improved dilatation current and energy momentum
tensor. The u-independence of § can now be understood. Since space transla-
tions are a good symmetry of the quantum theory, the generators P, = [ d*zf,

must satisfy canonical commutation relations and hence remain unrenormalized.
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