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tiparticles for high energy physics experiments, it is important to obtain as high an
integrated luminosity as possible. Reduction of integrated luminosity can arise from
several factors, in particular from growth of the transverse beam sizes (transverse
emittances). We have studied the problem of transverse emittance growth in high
~energy storage rings caused by random dipole noise kicks to the beam. A theoretical
formula for the emittance growth rate is derived, and agreement is obtained with
experimental measurements where noise of known amplitude and power spectrum
was deliberately injected into the Fermilab Tevatron, to kick the beam randomly. In
the experiment, phase noise was introduced into the Tevatron RF system, and the
measured dependence of horizontal emittance growth on phase noise amplitude is

compared against the theoretically derived response.
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1. Introduction

When high energy storage rings are used to collide beams of particles and an-
tiparticles for high energy physics experiments, it is important to obtain as high an
integrated luminosity as possible. Reduction of integrated luminosity can arise from
several factors, in particular from growth of the transverse beam sizes (transverse
emittances). An example of this phenomenon was recently observed in the Tevatron

.[1,2] at Fermilab. During colliding beam operations in the Tevatron, it was noted that
the luminosity decayed at an unexpectedly fast rate. Investigations showed that the
horizontal and vertical beam emittances were growing linearly in size, and this growth
was the dominant cause of the poor luminosity lifetime [3]. Since it was observed that
the beam was undergoing externally driven betatron oscillations [4], a search for accel-
erator components which were capable of driving the beam transversely and causing

emittance growth was initiated.

We have therefore investigated the problem of transverse emittance growth in high
energy storage rings caused by random dipole noise kicks to the beam. A theoretical
formula for the emittance growth rate is derived, and compared against experimen-
tal measurements. In order to obtain quantitative results, noise of known amplitude
and power spectrum was deliberately injected into the Tevatron, to kick the beam
randomly. The theoretical formula itself is applicable to arbitrary noise sources, pro-
vided they satisfy certain criteria, to be specified below. Measurements of transverse
emittance growth as a function of noise amplitude were performed for a number of
Tevatron systems. Unfortunately, most of these accelerator components have un-
known transfer functions between a measurable device monitor and the effect of the
device on the beam. For example, due to capacitance to ground and capacitance
between the two conductors, the current ripple measured at a dipole magnet power
supply does not all go into magmetic field ripple. In addition, the skin depth shielding
effects of the beam pipe and the superconducting cables of the dipole also affect the



magnetic field ripple sampled by the beam. Therefore, it was impossible to quan-
titatively compare magnet noise and emittance growth. It turns out that the only

quantitatively understood system was the Tevatron RF system.

In the experiment, phase noise was introduced into the Tevatron RF system. Inde-
pendent of previous work [5] which investigated the effect of RF noise on longitudinal
beam dynamics, it was suspected that phase noise with the appropriate Fourier spec-
trum could induce horizontal emittance growth due to the existence of horizontal
dispersion at the RF cavities. The measured dependence of horizontal emittance
growth on phase noise amplitude is compared against the theoretically derived re-
sponse. The theoretical derivation is presented below, followed by a description of

the experiment.

2. Theory
2.1 Notation

First we shall describe the notation to be used below. The orbit of a particle is

described by the functions [6]
T z sin(¥ + ¢ — wgt

()= e lpe) PP (s i) 0

Here I and ¥ are the action and angle variables, respectively, wg is the linear dynami-

cal oscillation frequency (linear tune times revolution frequency) and 9 is the Floquet

phase. We make the approximation that the phase-space trajectories in {z,p} space

are circles with action-dependent tunes. The unnormalized emittance is given by

€ = (I), assuming (z) = (p) = 0. The angular brackets denote an average over the

beam at fixed t. We always define the emittance to be averaged over the beam. The

emittance growth rate is
de
=, 2

Note that to calculate r it is not necessary that (z) = 0; it is sufficient if (z) and (p)

T

are bounded, because then d(z)/dt and d(p)/dt average to zero.



2.2 Coherent betatron motion

Let us now study the excitation of coherent betatron oscillations, i.e. the motion
of the beam centroid. Suppose there is a random horizontal dipole kick at location ¢,

so that

2(t+6t)—z(t) = 0

p(t+6t)—p(t) = Nét. (3)
It is sufficient to consider a kick which changes only p and not z. We shall add in
the contribution of a kick which changes z below. We shall linearize the response of

the beam with respect to the kicks, i.e. we calculate the changes to z and p to linear

order in N only, and so the emittance growth rate will be of O(N?).

The changes to z and p at azimuth ¢, due to a kick N6t at azimuth t', are
N(t)
B(t))

P = cos — @t . A
5(%) = [®(t) — @(¢t")] 30 ot (4)

Here ® = ¥ + v — wgt. The factors of /B have been introduced because the quantity
of real interest is (z)/4/B, because (z) itself is proportional to 4/B. To obtain the

ot

5(%) = sin[®(t) — &(t')]

kick to the beam centroid (z), we must average over the beam. We shall assume that
the kick N is the same for all the particles, i.e. (Nz) = N(z), etc. This is a valid

assumption for a dipole kick. The change to the beam centroid is

5 (%) - D(t,t')\]/VT((%sin[cpo(t) — o(t')] 6t (5)

where ®, is the linear phase advance, i.e. ®; = ¥o + 1) — wgt, where ¥y is the linear
angle variable. The function D(¢,t') is a decoherence factor. It appears because the
individual particles have different tunes, and so even though the kick N is the same

for all particles, they get out of phase as time goes by.



The response to a sequence of kicks, using the linear response approximation, is

@ _ @Y 4 o NE)
75 D(t,to)( ﬁ)to+ ftoD(t,t) N [Bo(t) — Bo()]dt' . (6)

We shall use only the asymptotic solution, i.e. we shall neglect the contribution from

to in eq. (6). Mathematically, we take £, — —oo. This is a formal limit, and simply
means that we are assuming that after sufficient time the contribution of the initial
state of the beam centroid decoheres and becomes negligible in comparison to the

effect of the kicks experienced by the beam after injection.
2.3 Decoherence factor

The decoherence factor for a beam with an action-dependent tuneshift,i.e. d¥/dt =
wp + wpl, has been calculated in ref. [7]. The result is (with 7 =t —¢t')
2
D(t,t') = D¢ — ') = 1—+—(im)—2-exp [—% iJ(r—T(/:l/)T)?] , (7)
where #o and ¢, are constants. Note that this expression is even under time-reversal,
i.e. the beam decoheres even if t < ¢/, as expected for decoherence. From ref. [7], the
exponential factor may be ignored (¢; — oc) unless the beam centroid displacement

is much greater than the beam size, and so

1 .
T/l ©

D(t,t') ~
Another model, which is motivated by radiation damping in synchrotron radiation

theory, is to put [8]
D(t,t") = e oalt-t) t >t
, (9)
=0 t<t.

This has the disadvantage of not being even under time-reversal. A more reasonable

approximation in this context would be

1
2 cosh[ag(t — )] (10)

D(t,t') =



Since we do not know the detailed decoherence mechanism in general, the choice of
model is somewhat arbitrary. The expression eq. (9) is the simplest when evaluating
eq. (6), because we shall decompose N into Fourier harmonics below, and an expo-
nential decoherence factor yields the simplest analytical solution. In particular, we
shall only be interested in ¢t > ¢/, and so we shall use eq. (9). It must be understood
that this is a phenomenological step.

There is an important caveat to the above statements. In all of the models of
decoherence presented above, the decoherence factor approaches zero as t — t; — oco.
Therefore we take the limit t, — —o0 in eq. 6 instead of keeping ¢, finite, because

that end of the range of integration makes a negligible contribution to the total.

We note in passing that there are other phenomena which lead to decoherence,
such as tune modulation due to synchrotron oscillations and chromaticity, where the
beam recoheres after every synchrotron period. The expression for the decoherence

factor of that mechanism is
D(t,t') = D(t — t') = exp (2026202 sin? [v,wres(t — t')/2)) (11)

where v, is the synchrotron tune, w,, is the revolution angular frequency, £ is the
chromaticity, and o, is the r.m.s. bunch length, assuming a Gaussian beam. We see
that D(¢,t') = 1 whenever ¢t — t’ equals a multiple of 27 /(v,wse,). In the absence of
other mechanisms, if we were to examine the beam once every synchrotron period,
the beam centroid betatron amplitude and emittance would be invariant. Therefore

this mechanism does not contribute to long term emittance growth.



2.4 Solution of beam centroid motion

2.4.1 Fourier harmonics

It is useful at this point to decompose N into a Fourier spectrum, defined by

dw —~ fwt
N(t) = / o N(w)e
i(¥-wgt) :
e_\/__ﬁ__ = Y Liekeret (12)
k

The latter function is periodic around the ring, and so one gets a sum, not integral,
of harmonics. We assume that N(w) is a noise function, which has a random phase
distributed uniformly between 0 and 27. It means that N(t) consists of wave trains
that shift phase randomly from time to time. It will be more convenient below to

deal with the combined transform
Nei(l/)_wﬁt) dw ~ iwt

M(w) E N(w — kwrey ) L (13)

Note that M also has a random phase. In practice, one must interpret the Fourier

transform as a sum over (angular) “frequency bins” of size Aw, i.e.
/F(w)dw = Aw Y F(kAw) (14)
k

where Aw is determined by the experimental apparatus used to measure, say, the

power spectrum of the noise.

We substitute the above expression into eq. (6),

/t dt’ e 2¢(t-t )1 {ei['ll(t)_q,(tr)] N(t')ei['/’(t)~¢(t')-wﬁ(t_t')] }
~00 ﬂ(t,)

1

(=)
vB

= /t dt’ e—ad(t—t')Im {eiqu(t—t')ei[dy(t)—wBt gw M* (w) —-lut'}
—00 .

Im{/-dﬁ M't(w)ei[‘lﬁ(t)—wgt—wt] /t e—ad(t—t')eiw(t—t’)eiwﬁ(t—t') dt'}
2 —00



= Im{ e¥(t)-wst] dw M (w)e " ) (15)
27 ag — i(w + wp)

Let us try to visualize the beam centroid motion pictorially. Note that the integrand
has a random phase. Hence if we average over the noise, (z) will average to zero.
The physical picture is that of successive wave trains of coherent betatron motion,

separated by random fluctuations in phase.
2.4.2 Time averages

Since (z) averages to zero, it is more useful to calculate (z)?/3, averaged over time.
Note that this is not the beam emittance, but the r.m.s. beam centroid amplitude

squared and divided by 3. Formally, the time average of any function F is given by

Faop = lim [— /0 "R dt’] . (16)

t—oo
The limit £ — oo is again a formal limit. It simply means a long time, t = 27 /Auw,
where Aw is the “bin size” of (angular) frequencies in the Fourier transform. Beyond
this time the Fourier harmonics are not well-defined. The approximations involved

in the next few equations are also discussed in the section on approximations below.

Thus we actually evaluate

@F] . Bw e @),
[_ﬂ—]m “%h Y

3 /hw / / dwdw'’ M*(w) M ()il =)
- )? [eq ~ i(w + wp)][aa + i(w' + wp)]

.(17)

We have neglected terms in M (w)M (w') etc. which average to zero. We now need to
interchange the orders of integration, which involves further assumptions about the
uniformity of the convergence of the integrals involved. Doing so, we obtain
[(_z_ﬁ} - //dwdw’ M () M (o)

B - (27)? [aa — i(w + wp)l[ag Fi{(w' + wg)]

27/Aw .
X / Al (18)
0 .




The integral over t' averages to zero unless w = w'. More precisely, if we recall that the
integration over frequencies consists of sums over bins of size Aw, then the integrals
over w' and t’ yield

du’ ' /Aw (o' —w)t! gur Aw n T
- F(w) /0 e &t > 52 Y () g buw

w!

12

-;—F(w’ —u). (19)
If we were to take Aw — 0 in the above integrals, then we would get true é-functions
dw' n [~ i(w —w)t! g1 __ duw' ! '
> F(w)/o e dt' = /—ZFF(w)mS(w —w)
= %F(w' =w), (20)

but we have a global factor of Aw in egs. (17) and (18), and so we must keep Aw # 0.

Using the above results in eq. (18),

AR T o

The integrand is a Lorentzian with a maximum at w = —ws and width a4. It no
longer has a random phase. Thus the conclusion is that the harmonics of the noise
which contribute significantly to the coherent betatron motion are those in a range
+ay around the betatron tune ws. Since ay < 1 in practice, and M(w) is slowly
varying in the interval |w + wg| < ag, we can set M(w) >~ M(—wg) and pull it out of

the Lorentzian integral, whose value is 7#/a4. Then

(z)? ~ 1 Y3 2
] = G M (22)

This result agrees with Siemann’s finding [4] that z, ., /74, where 7; = o' is the
decoherence time. The negative frequency in M(—wjp) is required because we have
used complex numbers to describe the betatron motion. The quantity |M(—ws)|?Aw
is the power (times various lattice functions) in the noise source in the angular fre-

quency bin at w = —wg. Using eq. (13), this means that the original noise source N



must have a nonzero harmonic at some kw,., — wg, i.e., the lower betatron sideband

from some multiple of the revolution frequency.

2.4.3 Zero binwidth

Note that if we were able to-measure frequencies to infinite precision (Aw = 0),
we would be led to conclude that [(2)?/B3]swy = 0. This is a correct conclusion for this
model, and has the following interpretation. To measure a Fourier harmonic with a
bin size Aw — 0, it would truly take an infinite number of turns, and on this time
scale even the most slowly varying harmonics in (z)?/8 would average to zero. In
practice, we cannot observe the beam over such a long time, and so any harmonic
that does not average to zero rapidly over the interval of experimental measurement

27/ Aw survives the average over ¢ in eq. (17).

2.4.4 Kicks to =

It is straightforward to modify the above result to include the effect of a noise
source which kicks both z and p. Suppose that éz = N6t and ép = N,bt, and one
defines

N, ei{¥—wst) do ~ .

2 = [ Z e
\/,_3. 2%

Ninhﬁ_wﬁt) dw ~ .

L — M,e*? 23
VB [ 5 e (23)

then one can show that the final result is

B T 16Tay

Effectively, we just add the two sources of noise power.

] > fomac () + - (24)

10



3. Emittance growth

Next, let us calculate the rate of emittance growth. For this we need to

z? + p*. Now
2% + p*levse = [+ (p+ N6} ~ [2* +p*)s + 2pN6t

and

t t')

P - / \/i_ cos[@o(t) — Bo(t')] dt’ .
Combining these results with the fact that §(z? + p*) = 2661,
pN6t _ Nét [+ N(t)

B VB J-= /[at)

Averaging over the beam,

de _dI) _ Nt oo N@E) o o
o= \/B/_wD(t,t)m [@o(t) — ®o(t')] dt' .

oI =

cos[®(t) — ®(t')] dt’ .

study

(25)

(26)

(27)

(28)

We want the time average of the growth rate. The function € itself grows indefinitely,

and does not have a finite time average.

The approximations used here are the same as those used above in analyzing the

behavior of [(z)?/B]avg- Further, as noted in the previous section, since the

beam

centroid motion is bounded, we can get the emittance growth rate directly from the

above equation, without worrying about d(z)/dt etc. The time-averaged growth rate

is
[de] Aw [2/bw
r= ~
g

de Aw N(@t) n N

dt| . 2r Jo /ﬂ(t) /_w Dt t) /ﬂ(t')
’ z(w w')t

Sl [ mamen [ )

M:_zh—_/z M )lzRe{ d—z(Lerﬁ)}

Aw
47 J 2rm

12

ag
It (w+wg)?

1

L\ )I2

11

() cosf@o(t) — Bo(t')]



=~ Aw
~ | M(-wg)|*— . 29
T () 22 (29)
Measuring frequencies in Hz, and adding the effect of a noise source which kicks z
also, in the same way as for [(2)?/B]ayg, the above result becomes

r= 7 (FRGA) + FI(A))AF . (30)

-

Here f; is the betatron frequency in Hz, which separate both the upper and lower
betatron sidebands from the revolution harmonics. One can visualize this using the
following argument: eq. (30) is a manifestation of energy balance. The emittance
growth is caused by an increase of the amplitudes (energy) of the betatron oscillations
of the particles, and this increase comes from the power in the noise, which is pro-
portional to |M(f,)|?Af. Hence, the above result is independent of the mechanism

and magnitude of the decoherence affecting the trajectory of the beam centroid.

We see that the integrand above is also a Lorentzian with a maximum at w = —wg
and a width a4, and so the emittance growth is driven by harmonics of the noise
in a range +oag4 centered on the betatron frequency plus multiples of the revolution

frequency.
3.1 Approximations

In this section we recapitulate and discuss the approximations made in the above
calculations. To begin with, we are only interested in the behavior of the beam
long after injection, so that the initial state of the beam does not matter. We are
assuming that a time interval exists where the contribution of the “transient” (initial
value of (z) in eq. (6)) is negligible. Now the “damping” of the beam centroid is
really a decoherence of individual particle orbits, not true damping of (z). We need
to take various averages over time to obtain the average values for the beam centroid
amplitude (eqs. (17) - (22)) and emittance growth rate (eq. (30)). These averages

are supposed to extend over a sufficiently long time interval so that the oscillatory

12



components in the observed values of (z)2/8 and r cancel out. The timescale is
27 /Aw. The value of Aw must therefore be much less than oy in order for the
Lorentzian integrals in eqs. (21) and (30) to be meaningful, i.e. in order to justify
the approximations made to the integrands in the integrations over w’ and w. The
interchange of the orders of integration between eqs. (17) and (18) relies on the

uniqueness of Fourier transforms, i.e. on the relations

[ -] . o
—twt _ wwt —
/_ et = 2mb(w), /_ e —d“’zw 5(t) . (31)

Since we only integrate from £t =0 to ¢t = 1/Af = 2n/Aw, we actually have

1/Af 2n/Aw T
—iwt — —iwt ~
]0 e~ gt = fo et > b (] < Awf2)

~0 otherwise.

(32)

Thus the interchange of the orders of integration involves errors of O(Aw/7) because

the é-functions are not “pointlike.”

Hence the global picture is: we first wait a time much longer than 27 /ag4, so
that the initial beam conditions “damp out,” then define Fourier transforms over a
time interval 27/Aw which must exceed 27/ay. The use of oo or —oo0 as a limit
of integration simply means that the contribution from that end of the range of
integration is being neglected. It does not imply tracking of a particle, or the beam,

for an infinite number of turns.

4. Measurements

4.1 Phase modulation

Each accelerator revolution the beam sampled a random phase shift introduced
into the RF voltage waveform. Mathematically, this voltage is equal to the real part
of

V(t) — Voei[wot+¢o+¢n(t)] ] (33)

The phase waveform was a random noise signal generated by a Hewlett-Packard 3561A

13



Dynamic Signal Analyzer in the frequency band surrounding the lowest betatron
sideband frequency (near 20 kHz). The RF voltage was measured with a RF cavity
gap monitor. Figure 1 is a photograph of the frequency domain effect of this phase
noise modulation measured by such a gap monitor and a Hewlett-Packard 8568B
Spectrum Analyzer. At each modulation angular frequency (wy) the effect on the RF

voltage can be written as
V(t) — %ei[wot-i—‘ﬁo]eiqsncos(wnt) . (34)

The Jacobi-Anger expansion states that
eiz cos(wnt) _ Z ime(z)eimwnt , (35)
m=—c0
so therefore the amplitude of the RF waveform and the first two sidebands are given
by

V() = Voe™ [Jo(gn)e™™! +idy(ga)eotem) +idy(gn)e o] . (36)

The ratio of the sideband amplitudes to the RF carrier amplitude is the ratio of the
Bessel functions J1(¢n) and Jo(¢r). Since the ¢, injected into the Tevatron RF system

was on the order of 1072, the small angle approximations of the Bessel functions
z

can be used. Therefore, the sum of the first sideband amplitudes divided by the central
RF amplitude is equal to the phase modulation amplitude ¢,. Using superposition
arguments, the above single frequency derivation can be generalized to a band of
frequencies. Figure 1 is a photograph of the Tevatron RF gap spectrum when phase

noise is added.

A closer view of the noise band is shown in figure 2. Centered at 20 kHz with a
width of 3 kHz, the noise spectrum is uniform in the region of the betatron frequency.
~ As shown in figure 3, the other noise sidebands in figure 1 are due to the output

characteristics of the random noise generator.

14



Based upon photographs such as the one in figure 1, the measured phase noise band
amplitudes, as a ratio of the fundamental RF voltage amplitude, were measured three

times. The results are listed in table 1.
4.2 Emittance Growth

The horizontal emittance of the beam is measured using devices called flying wires
[9,10]. A 1 mil diameter carbon wire, oriented vertically, passes through the beam
horizontally at a velocity of approximately 3 m/sec. As the wire traverses the proton
beam, protons collide with wire atoms producing particle showers detected by scintil-
lator/phototube monitors. The flying wire system is set up such that the phototube
output voltage is proportional to the local proton density at the wire. By digitizing
the wire position and phototube voltage on a turn by turn basis, one can map out the
beam’s horizontal density distribution. Figure 4 is an example of the data from such a
beam. Typically, only the r.m.s. width of the beam is recorded. The horizontal emit-
tance is calculated using r.m.s. beam widths at two flying wire monitors. These wires
are placed at points in the Tevatron where the dispersion is very different, so that
the contributions of horizontal emittance and momentum spread to the total beam
size can be separated. By flying the wires periodically over the span of an hour or
more, and doing a linear least square fit of emittance vs. time, the emittance growth
rate of the beam is determined. Figure 5 is an example of horizontal emittance as a

function of time, with the result of such a fit superimposed.
Using the results of such fits, the horizontal emittance growth rates were measured

three times, corresponding to the three phase noise amplitudes tabulated above (figure

6). The growth data are listed in table 2.

15



5. Analysis

In order to compare the above experimental data to theoretical predictions, the
relationship between betatron position changes and RF phase modulation must be
specified. Since the energy change u of a synchronous proton traversing an RF voltage
Vb with a phase error ¢, is

u = eVpsin ¢y, , (38)

and since ¢, is much less than unity, u = eVy¢,.- If the horizontal position of this

synchronous particle is described by

z = /218 cos(wgt) , (39)
then the change in amplitude due to the energy change u is calculated in ref. [11] to

be
1 u?
8l = V7]
where E, is the beam energy and H(s) depends on the beta and dispersion (7)

H(s), = (40)

functions and their slopes

=t oo} (41)
The above expression depends, however, on the assumption that the effects of distinct
kicks are uncorrelated, whereas in our case we assume that the particles undergo
undisturbed betatron oscillations except for the RF kicks, hence there are correlations
between the effects of successive kicks — this is why only the noise harmonic at the

betatron frequency contributes to emittance growth. We therefore find that, following

the notation used in the previous sections,

eVo
Nt = p— ¢,
1 TIE0¢

N6t = (an+ Bn')%f bn (42)

where 6t = 1/f in this context. Thus B
dw fwt eVo Ui i —wgat)
./ 27 Me™ = [\/BE @n

Eq RF
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Il
T

[%eiw—wm)] #(w)

RF
e = £ () 5] wer

— eV 2 "2 - ,
mer = 7 (5) [ s, (13)
- RF
where ¢(w) is Fourier transform of ¢,(t), and so
d - _
e (LTINS
2H VE) 2 _ .
= LR () awwrar, (44)

Now the experimental noise harmonic (Z,a(w), as recorded by the spectrum analyzer,
is actually the integral of q;(w) over the frequency bins A f at the frequencies w and
—w, 1.e.
[ua(@)? = [IB(@)* + (=) F](AF) = 28(w)*(AS) (43)
because ¢(—w) = ¢*(w) for a real function of time ¢,(t). Hence @,, has the same

dimension as ¢,(t). Thus the time-averaged emittance growth rate is
f°H (eV0>2 - )
=1 = (22 . 6

The Tevatron conditions at the time of this experiment are lised in table 3. Substi-

tuting these values into eq. (46) yields the theoretical prediction

r=(4.3%0.9) x 1077 |¢,o(fi)|* (m-rad/sec) . (47)
Experimentally, one obtains the result (figure 6 and table 2)

r=(3.3+0.7) x 1077 |o(f)]> (m-rad/sec) . (48)

The agreement is within the errors quoted.
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8. Conclusions

The theory surrounding stimulated transverse emittance growth of proton beams
has been presented. Given a random dipole kick each turn, quantitative predictions
for the r.m.s. beam centroid betatron oscillation amplitude and average emittance
growth rate are made. Becausé the particles undergo deterministic betatron oscil-
lations between kicks, the effects of successive kicks are correlated, hence only the
noise harmonics at the betatron frequency plus multiples of the revolution frequency
contribute to the emittance growth. The final result can be understood at a heuristic

level in terms of an energy balance argument.

An experiment was performed at the Fermilab Tevatron, where the effect of RF
phase noise on transverse emittance growth was measured. The RF system was
chosen'because it was quantitatively understood, thus enabling an absolute calibration
between the emittance growth rate and the injected phase noise amplitude. It also
had the advantage that the kicks to the beam were localized at one point in the ring,
and were of sufficient magnitude to dominate over other sources of dipole kicks, thus
simplifying the analysis. Applying the above theory to this experiment, it was found

that the predicted and measured emittance growth rates were in agreement.
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Table 1: Ratio of phase noise band amplitudes to fundamental RF voltage amplitude.

Relative R.M.S. Phase Noise
Measurement Amplitude (db) in 100 Hz (mrad)
—62+1 1.1+0.1
2 —68+t1 0.56 £ 0.06
3 < -90 < 0.04

20



Table 2: Emittance growth rate measurements corresponding to phase noise measurements in table
1.

Growth Rate

Measurement (10~'? m-rad/sec)
1 : 0.54 + 0.04
2 0.16 £+ 0.03
3 0.12 + 0.01
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Table 3: Tevatron parameters used in experiment.

Parameter Value Unit

I 47.713 kHz

Af 100 Hz

E, 900 GeV

eVo 1.16 MeV /turn
Hgrp 0.090 £ 0.020 m
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