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Abstract

Fusion rules in non-unitary Kac~-Moody and minimal conformal theories
are obtained from their modular properties. New modular invariant partition
functions in the non-unitary Kac~Moody theories are classified. From the dis-
crete symmetries of the system, we obtain new sub-modular invariant partition

functions in the Kac-Moody and non—unitary conformal theories.
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I. Introduction

Near the critical temperature, the statistical systems in two dimensions exhibit
the scaling behaviours. At the critical point, they are described by the conformal
field theories[1]. Actually the conformal theories predict off-critical properties. The
critical exponents[2] of the heat capacity (C o ¢~*), magnetization (M o t#), sus-
ceptibility (x o t~7), correlators ( (o(R)o(0)) o t7), coherence length (¢ o< ¢t~) and
magnetization (M o h°) (t and h are the reduced temperature and magnetic field)

are described by the spin and energy operator’s conformal dimensions k., and A, as

_1-2h, g _he _1-2h,
=T Th “1-h T AR
1 h
=4hc’ = —— = z 1
7 A 3 L A (1)

The numerical values of the critical exponents («,3,v,7,¥, ) in the Ising and three-
state Potts models are known as (0,1,%,1,1) and (},3,3, 5,2, 5;) respectively,
and agree with the conformal dimensions (k,, k) = (55,3) and (&, 2) in Ising and

three-state Potts models respectively. More generally correspondences between two-

dimensional statistical systems and the unitary conformal theories are widely studied.

Relationships between the non—unitary conformal theories and statistical sytems
have been less well studied. However there is at least one example in the statistical
mechanics for which a minimal(i.e. with a finite number of primary fields) non—
unitary theory shows up. It is the so called Lee-Yang singularity[3]. The properties
of a system can be computed from the distribution of the zeroes of the grand partition
function where these zeroes are brought by the complex magnetic field(conjugate to

the spin operator). The density of zeroes exhibits the divergence near the critical
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complex magnetic field, and this led to identify[4] it with the ¢ = —2 hy = —

(S

non—unitary theory.

From the mathematical point of view, the minimal (both unitary and non-unitary)
representations of Ref. [1] of the Virasoro algebra are the modular covariant repre-

sentations; the Aﬁ” unitary and non—unitary modular covariant representations are

also described in Ref. [5].

Motivated by these aspects, we investigate properties of the non—unitary repre-
sentations of Kac-Moody Agl) and minimal conformal theories in this letter. In a
minimal representation, one can actually take subsets of operators whose choices are
specified by the modular invariant properties of the partition functions. The dynamics
of these theories are encoded into the operator product expansions. Using Verlinde’s

approach(6], we compute the fusion rules from the modular properties.

New non-unitary modular invariant partition functions of Agl) are found and are
presented in a A~D-E classification similar to the one obtained in Ref. 7] for unitary

Agl) representations.

Some of these theories enjoy additional symmetries which are also reflected in the
fusion rules. We illustrate this with the well-known three—state Potts model. In pres-
ence of such symmetries, the fields at the opposite sides of the parallelogram can be
different up to the action of these discrete symmetries(twisted boundary conditions).
The partition function of the resulting theories are now invariant under a subgroup of

the modular group, and we construct such submodular invariant partition functions.
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II. Fusion rules

A. Kac—Moody system

The integrable representations of SU(2) affine Kac-Moody algebra in level
m € N are denoted as ¢, with n = 0,1,---,m. Here n is twice of SU(2) spin.

Their fusion rules are known|8,6]:

min(n+n’,2m—n-n')
¢n ® ¢n’ = Z ¢n" (2)

n!=|n—n'|, nt+n/—n"=0mod2

More generally one can consider rational level m = £ with relatively prime ¢t €

Z and u € N satisfying 2u +¢ — 2 > 0. The modular invariant or admissible

representations[5] are labeled by two positive integers k and n such that
Pen; 0<k<u-—1 (3)
0<n<L2u+t—2
The unitary integrable representation case is recovered by puttingu =1, t € N.

The chracters for the admissible representation (3) are given by

0b+.a('ra i) - 05—#(1-’ i)

X ke (102) = e T ha(r, 2) ()
with
Ooa(ry2) = 3. g?mira(i’+iz) (5)
i€Z+E
and
a = v’(m +2), by = u{£(n + 1) — k(m + 2)} (6)

Due to the following properties of the theta functions

gb,a("'a Z) = 0_5,4(1", --z) = 0b+20,a(7'3 z) = 0-b+2¢,a(7'7 _Z) (7)
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the characters for 1 < k < u — 1 satisfy the relation

ka(T’Z) = —Xu-—k : 2u+t—2—n(7'a _Z) (8)
The character is dominated in the large Im7 limit by

eZm"r(—-;‘;+h) (9)

where
3m h={(n+1)—k(m+2)}2—1

T m+2’ 4(m + 2)

(10)
The h value becomes negative for k(m + 2) — 2 < n < k(m + 2). The character (4)
may contain negative coefficients in the power exponsion of ™7, Foru = 1,h in
eq.(10) is reduced to the Casimir eigenvalue of the spin 3 representation normalized

with respect to 1/(m + 2) as

(11)
The general modular transformation is

2 1 —imby b iwby bl

S(k,n)(k’,n')= ; -2—1:{6 e — € o } (12)

and satisfies SS t= 1. The fusion rules

6:i®@bi= AF o
k

are computed from eq.(12) with

Aijk = Z _Si";j"skr, (13)
or

P

where index i denotes a representation (k : n) and 7 = 0 is the index of the identity
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representation. Note that A is symmetricin i and j, and one obtains:
min{n{n', 2(2u+t-2)-n—n'} ,
d’k:n by ¢k’:n’ = Z (—)[(k+k )/u]¢k+k' mod u:n’ (14)
n''=|n—n'|, ntn'—n''= 0mod2
where [(k + k')/u] denotes integer division without remainder(e.g. [4/3] = 1). When
[(k+k')/u] = 1, the n' in the right hand side has to be replaced by n' — (2u+t—2)—n'.
Eq. (14) is of course reduced to eq. (2) for the integrable representation u = 1 and
t € N. Let us illustrate eq. (14) in the case m = 7 with (¢,u) = (1,2). The fusion

rules then read:

b1a 13 = —don
d1:0 oz = +P13 (15)
The associativity
; Af AT = Ek: Ad AT (16)

of the fusion rules in eq.(14) has been confirmed even in presence of negative fusion

rules.

A computation of modular invariant partitidn functions for rational level m = t/u
leads to a A-D-E classification generalizing the one obtained in Ref. (7] for unitary
A(ll) representations. Note that the unitary cases are re—obtained from eq. (17) by
restricting ¢ to be positive integer and u to be one, the sum over k=0,..,u—1 then

disappearing.
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u—12u+tt-2

A2u+t—1 : Z Z IkaIz (17)
k=0 n=0
u—=-1 2p-2
D2p+2 : 4P =2u+t—-22>4: Z Z {IXk:n + Xk:'ip-—ﬂlz + 2|Xk:2p|2}

k=0 n even=0

u—-1 4p—2

D2p+1 : 4p —2=2u+t-22 6 : Z Z le:n|2 + |Xk:2p—1|2

k=0 neven=0

2p-3
+ Z (Xk:nx;::ap——n + c.c)}
nodd=1

u--1
EG . 2u+t— 2=10 Z{IXI::O + Xk:6|2 + |Xk:3 + Xk:7l2 + le:4 + Xk:lOIz}

k=0

u-1
E;: 2u+t—2=16 Z{IXk:o + Xkl + | Xkt + Xea2]?

k=0

+|Xk:6 + Xk:lO'2 + ‘inslz + [(Xk:2 + Xk=14)Xl::8 + C.C.]}

u—-1
Es: 2u+t—2=28 D {Ixw0 + X0 + Xkiss + Xnizs
k=0

+]Xk6 + Xkiaz + Xee16 + Xra2l® }

It is worthwhile to remark that to a given algebra of A-D-E type are now asociated a

infinite(discrete) set of models. For example, to the D4 algebra, correspond theories

such that

(t,u) = (—4,5),(—8,7),(—16,11),(—20,13), ...

We note that two different allowed models do not involve the same number of primary

fields, k index in the partition function taking the values £ = 0,1,...,u — 1. We have
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not yet checked whether eq. (17) gives the complete list of modular invariant partition

functions relative to the admissible representations in Agl).

B. Minimal conformal system

Let us remind that a minimal conformal theory{l] is characterized by a pair

(p,p') of two relatively prime positive integers. The central charge then reads:

,_b—p)
py’

Cc =

(18)
and the primary fields are labelled as:

(r,8)=(p —rp—3) with 1<r<p -1 (19)

The case |p — p'| = 1 corresponds to the unitary series[9].
The fusion rule for a general pair (p,p’) can be deduced from the modular transfor-
mation properties of characters, and reads
min{r+r'~1, 2p'~1-r—r'} min{s+s'—1, 2p-1—s—s'}
ba®ri= T > b (20)
- "=|o—s!|+1

with the constraint » + » — #" = s + s’ — 8" = 1 mod2. The relation between eq.
(20) and the eq. (6.7) in Ref. [1] is the following: one applies eq. (6.7) of Ref. [1] for
(r,9)®(',8'), (r,8)® (¢ —7',p— "), (o' =1, p—58)® (7', &'), (p —7, p—8) R (P' — 7', p—&')

and take common terms in the product after making use of the identity (19).
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III. Symmetries

Minimal theories cannot have a continuous symmetry since a h=1,h =1field,
which would be associated to a conserved current, never shows up, but they do admit

discrete symmetries.

The well known examples of such symmetries are the Z, symmetry in the Ising
model and the Zs or more precisely S3 symmetry in the three—state Potts models[10].

Actually these models belong to the class of the parafermionic theories[11].

Note that such a discrete symmetry can help to break the degeneracy in a theory
where more than one primary field ¢;;(2,2) with the same conformal weights h;, h;

are present[12].

As an example consider the (D4, A4) model (i.e. the three-state Potts model)

with partition function

Z = |xo+ xa|? + Ixa/s + X7/5|z + 2|X1/15|2 + 2|7€2/3|2 (21)

where the subscripts denote the conformal weights of the corresponding primary field.
We will denote the primary fields associated to the linear combination of characters
(xo + x3) »(x2/5 + xz/5) by #1 and ¢, and by ¢;* and é,~ those associated to X1/1s
and x3z/3-

The modular transformation matrix relative to the six vectors (¢1, ot , d3, b2, ¢35 and



The S matrix satisfies

where C is

[543

L

T
SlIl5

ten 2T
sin 5

27

sin

27

sin

sin X

n X
SlIl5

_9_
. -21 . 21
sin 2 sin 2
—wein®™  —wlean X
wsin § w?sin I
—w?ein®  —wsin
w?sin I wsin I
b ® . .
—sin % —sin T
o.:sin—"’sl w"’sin%’r
w"’singsI wsinz?"'
sst=1,
[
1 00
0 01
010
C =
0 00O
6 0O
LO 0 O

sin

2

5

in X
SlIl.5

—sin &

—sin X

5

e 2T
sin 5

sin

0

0

0

1

2%

1
0
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3 g
sin §
wsin &

5
w? sin &=

5

sin &*

n X
(lJSlI].5

h X
(d.)SlI].5

w? sin 2?"

sin T

w sin &&

(22)
sin 2%

h X
WSII].5

Pt X
WSIIIS

(23)

The Z; group leaves invariant ¢; and ¢,, and provides a phase-(eigenvalue) w = exp

(i2w/3) to #3 and ¢}, and w? to ¢35 and ¢;. Such an action can be seen as an



-10- FERMILAB-Pub-88/104-T

automorphism on the fusion rules[13]. of the model.

Indeed one obtains the following fusion rules from eq. (22):

$1-¢1 = P é1 - P2 = ¢2 G2 P2 = b1+ P2
¢1'¢§:=¢§h ¢2'¢§=¢3i+¢4i
¢1'¢it = d’f <;152'¢it =¢§ (24)

¢ b3 =1+ 2 T by =d3dL = ¢2 ¢f - b7 =

¢ ¢ =3 + @5 ¢F 65 = ¢3 ¢ - o4 = ¢35

b3 b3 = ¢ + 67 63651 =3 ¢7 - b1 = %

Fusion rule Al, in ¢ - ¢5 = ¢ is computed from eq. (13) as A3; = (58)23=Caz =1,
and this partially ‘explains’ why SS = C in eq. (23). The fusion rules in eq.(20)

exhibit the following S3 symmetries ;

b o\ (&) [ &
Zy: | ¢f | | wet |and| of | = | wel (25)
¢ wigy |\ ) \wer
b1 6 (#) [
Z: | ¢ | =] o5 |amd| gt || 40 (26)
¢35 ¢35 \ % ) \ ¢

Note that eqs.(25) and (26) corresponds to cyclic group of order 3 and 2 respectively.
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Products of transformations (25) and (26) also leave the fusion rule (24) invariant.

IV. Submodular invariant partition functions

If a system is invariant under a group G, one may impose G-twisted boundary
conditions on its conformal fields [10,14,8]. In the case where G = Z; (resp. Z3) the
associated partition functions are then invariant under a subgroup of the modular

group[14], namely T'o(2) (resp. T'o(3)) generated by
T :7— 742 in To(2) (27)
T+3 in Ty(3)
and S’ which is constructed from the S and T of full modular group as

_’_1
T4+1 T+1

(28)

T—oT7T+1—> —

The submodular I'4(2) invariant partition functions for the minimal (unitary or
non-unitary) conformal theories associated to the (A4,_1,A4,-1) series are:
p-1 p-1 p'-1 p-1
Y Y XeuXrpme =D D XraX *pior s (29)
r=l =1 r=1 s=1
When the p and p’ are restricted to |p — p’| =1(unitary series), eq.(29) include eq.(9)
in the first paper in Ref.[14]. The spin of the operators(=difference in conformal

dimensions of the chiral and anti—chiral sectors) is a multiple of 3.

The submodular I'4(3) invariant partition functions have been obtained for (p,p') =
(p,6) conformal theories in the series (Dy, A,—1), and read:

[p/2]
Y {(xa i+ x1 p-i)X5 + e+ [xail’} (30)

i=1
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where [p/2] denotes the integer division without remainder. As mentioned before, the
p should be co-prime with respect to 6. Operators in such theories have spin which
is a multiple of % The p = 5 and 7 cases agree with the unitary ['o(3) invariant
partition function given in Ref. [14,11] and p = 5 case is related to the three—state

Potts model with Zs symmetry considered in eq.(25).

The simplest non—unitary I'¢(3) invariant partition function corresponds to the

theory (p,p’) = (11,6) with central charge ¢ = 3 and reads:
(x11 + x1,10)Xar" + (X1,2 + X1,8)X32 +

+ (x15 + X1,8)Xa s + cc+ {Ixanl + - + Ixasl*} (31)

We end up this section with the I'((3) invariant partition function associated to

the level m = 4 representations of Agl) affine Kac-Moody algebras:

(x0 + Xxa)X3 + Xa(Xo + Xx4) * + XaXa" (32)

V. Conclusion

Some properties of the Kac-Moody Agl) as well as minimal Virasoro theories
have been generalized to the non-unitary case. Fusion rules have been constructed for
the non-unitary representations of affine Kac—Moody theories and their modular in-
variant partition functions are constructed. Submodular invariant partition functions
with twisted boundary conditions have been worked out for the non-unitary confor-
mal and Kac-Moody theories. The above results can be considered as a first step in
a general study of the minimal non-unitary theories. In particular, one may wonder

whether our classification of non-unitary Agl) modular invariant partition functions
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is complete. Furthermore one should compute the fusion coefficients in the operator
product expansions which are typically ratios of gamma functions(1,15], while the

fusion coefficients in eq. (13) is normalized to the integer.

From the given list of the sub-modular invariant partition functions, which de-
serves to be completed, it looks likely that the symmetry group of a minimal conformal
theory is isomorphic to the invariance group of the A-D-E Dynkin diagram associ-
ated to the model. Pasquier’s approach(16] of the A~D-E classification(7] suggests
this conjecture. Note that, if Z; and S3 are the symmetry group of the Ising model
and three-state Potts model respectively, the four-state Potts model involves the Dgl)
Kac-Moody algebra[17], the symmetry of the Dynkin diagram of which is S;. One
may wonder whether the five-state Potts model could be related to the hyperbolic al-
gebra[18) DH whose Dynkin diagram, obtained from the diagram of D{" by additions

of a sixth dot connected to the central dot by one line, admits a S5 symmetry.

Acknowledgements

It is a pleasure to thank J. B. Zuber for helpful conversations and B. Julia for
sending us Ref. (5] which plays a crucial role in this work. We are grateful to W. A.
Bardeen and the Fermilab Theory Group for their kind hospitality. One of us(I.G.K.)

is indebted to KOSEF for a research grant.

References

[1]A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Nucl. Phys. B241 (1984)
333.



—-14- FERMILAB-Pub-88/104-T

[2] For a review see for example L. P. Kadanoff in ‘Phase Transitions and Criti-
cal Phenomena’, vol. 5A, eds. C. Domb and M. S. Green, (Academic Press,

London, 1976).

3] C.N. Yang and T. D. Lee, Phys. Rev. 87(1952) 404; T. D. Lee and C.N. Yang,

Phys. Rev. 87(1952) 410.
[4)J.L. Cardy, Phys. Rev. Lett. 54 (1985) 1354.

(5] V. Kac and Wakimoto, ‘Modular invariant representations of infinite dimensional

Lie algebras and superalgebras’, MIT preprint(1988).
[6] E.Verlinde, Nucl. Phys. B300 (1988) 360.

[7] A. Cappeli, C. Itzykson and J. B. Zuber, Nucl. Phys. B280[FS18] (1987) 445
and Comm. Math. Phys. 113 (1987) 1.

[8] D. Gepner and E. Witten, Nucl. Phys. B278(1986) 493.

[9] D. Friedan, Z. Qiu and S. Shenker, Phys. Rev. Lett.52 (1984) 1575, and Comm.

Math. Phys. 107 (1986) 535.
[10] J. Cardy, Nucl. Phys. B275[FS17] (1986) 200.

[11]A.B. Zamolodchikov and V.A. Fateev, Sov. Phys. JETP 82(1985) 215.
D. Gepner and Z. Qiu, Nucl. Phys. B 285 [FS19] (1987) 423.

[12] R. Brustein, S. Yankielowicz, and J.B. Zuber, Preprint SPhT/88-086, TAUP-
1647-88.

[13] R. Dijkgraaf and E. Verlinde, Preprint THU-88 /25, to appear in the Proceedings

of the Annecy meeting on Conformal Field Theories, (North-Holland, Amster-



-15- FERMILAB-Pub-88/104-T

dam, 1988).

(14] J.B. Zuber, Phys. Lett. 176B (1986) 127, and Proceedings of Espoo Confer-

ence,(World Scientific, Singapore, 1986).

[15] VLS. Dotsenko and V.A. Fateev, Nucl. Phys. B240[FS12] (1984) 312; I.G. Koh
and B. C. Park, Preprint KAIST-88/10 (1988).

[16]V. Pasquier, J. Phys. A.: Math. Gen. 20 (1987) L1229; Nucl. Phys. B285[F513](1987)162.

[17)S.K. Yang, Nucl.Phys. B285[FS 19] (1987) 183 and 639.

[18]V.G. Kac, ‘Infinite-dimensional Lie algebras’ (Birkhauser, Boston, 1983).

C. Saglioglu, CERN preprint CERN-TH 4854/87.



