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Abstract

The effective potential of second rank antisymmetric tensor or Goldstone
boson field arising from wormhole physics constrains the wormhole scale
due to the cosmological energy density problem. This upper bound is
barely compatible with the lower bound required for the solution of the
cosmological constant. In addition, the effect of wormholes on the strong

CP problem is discussed.
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The long-standing cosmological constant problem® may find its solution? in worm-

5 in the Euclidian formalism of quantum gravity®. In this paper, we

hole physics®~
point out the possibility that wormholes contribute to the potential energy of Gold-
stone boson or second rank antisymmetric tensor field, which in turn constrains the
scale of wormhole physics.

In pure gravity, there is no nontrivial solution in the Euclidian time with the flat

7. Recently, however, it has been argued that there

space-time boundary condition
appear wormhole solutions when Goldstone bosons or second rank antisymmetric
tensor fields (both are called as axions from now on) are coupled to gravity*®. (For
Goldstone bosons, there is a difference ® between tunneling and naive Euclidian time
physics. Here we are interested in the tunneling physics.) A wormhole carrying a
global charge n is an instanton solution changing the total charge of our Universe by
AQ = n as the imaginary time 7 goes from —oo to +00. As axions are massless,
a wormhole does not carry any energy or momentum. Its size and action are pro-
portional to n/ \/;E and nM,/v, respectively, where v is the vacuum expectation
value for symmetry breaking. (The axion field a is the Goldstone boson field v8 with
the spontaneous symmetry breaking scale v or the field strength H,,, of second rank
antisymmetric tensor via the duality relation H,, = €u,,00%a/v in the flat space-
time.) The charge n is quantized for Goldstone bosons because the wave function
should be single-valued under the 27 rotation of 8 for a simply connected background
space. The same is true for the antisymmetric tensor field when there is a further
topological interaction with non-abelian gauge fields. As we will be interested in the
case v € M,, the contribution from wormholes with |n| > 2 will be exponentially

small compared to that of unit charge. From now on we will neglect wormholes with

In| > 2.
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Suppose that a wormhole appearing at the scale v is related to the axion field.
( We call v the wormhole scale even though that the wormhole size [, satisfies
12, = 1/v/377vM,.) Then, the wormhole contribution to the cosmological constant
is of order K exp(—Sg)a where Sg is the Euclidian action coming from a wormhole
configuration, and K is of order v2’M? and « (say a real number) is the parameter
determined by the wave function of the universe®. If there is a cosmological constant?
Ao from other sources, the wormhole contribution will make the total cosmological
constant vanish by choosing @ = —Aq exp Sg/K, which has been shown by Coleman?
because the wave function of the Universe peaks at that value. However, the inter-
esting wormhole solutions arise when the second rank antisymmetric tensor or the

Goldstone boson are coupled to gravity.

Let us proceed to discuss wormholes arising from the coupling of axions with
gravity. The effect of wormholes in this case also is obtained by the summing over all
possible combinations of wormhole configurations in the dilute gas approximation®
with conservation of the total charge including baby universes?. It is then intuitively
obvious that wormhole physics violates the global symmetry corresponding to the
axion since baby universes take away some of the global charge out of our Universe.
(Baby universes are considered as small universes created from nothing and collapsing
into nothing in Minkowski time except by tunneling from or into big universes. A

half of a wormhole connects a baby universe with a big universe.)

Let us consider wormholes with n = +1. The creation (annihilation) operators of
one half of a wormhole are denoted as al and a! (a; and a.). The contribution to

the potential energy of axions from wormholes is then
Vor = Ke™58("/°C + e~*/*Ct) (1)

where C = ol +a_,Ct = ay+al. (Note that Sg is a half of the action for a wormhole
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solution.) V4 is invariant under the nonlinear global U(1) rotation a/v — a/v +
€,C — e~*C and Ct — €Ct. In addition, [C,C?] = 0 and our Universe is supposed
to settle in an eigenstate |@ > of C and C!: Cla >= aja > and Ctla >= a*|a >.

Then, V,,, can be written as
Vun = —2K exp(—Sg)|a| cos(% — 6o) (2)

where a = |a|e~%. In Eq.(2), we note that one can always shift a such that a/v—6, =

27 (integer) is the minima of V5.

As wormbhole physics turns on below the axion scale v, the massless axion field
a will oscillate and settle down at the minimum of the potential, cos(a/v — 8o) = 1.
(For the antisymmetric tensor field there is no spontaneous symmetry breaking at
the scale v. But that is not important for the following discussion.) Then the total

cosmological constant is
Atot = —2K exp(—Sg)|a| + Ao (3)

It is assumed that Ag is independent of « since it is the contribution arising from
the constants in particle physics, vacuum fluctuations of other fields, supersym-
metry breaking, etc. Note that A, can be vanishing only if Ag > 0 and |a| =
Aoe®® /2K . According to Coleman?, the probability function for |a| is proportional
to exp[—|a|?/2 + exp(3M)/8Aix(a))]. Thus, the wave function of the Universe is
peaked at A = 0. It is assumed that wormhole physics somehow knows the cosmic
evolution, like the damped oscillations of axions and the QCD confinement transi-
tion long after its turn-on scale v. Unlike wormholes which may arise independently
from axion fields, the total cosmological constant in the present case can be zero only

if Ag > 0. In addition, Ag much larger than K exp(—Sg) can not be cancelled by
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Ayn = Ke 5B|a| if a is required to be of order unity. For the dilute gas approximation
to be good, the average number density per unit volume, I}, K exp(—Sg)|c|, should
be much less than one. This implies that |a| < exp(Sg). Otherwise, the corrections
including that due to interaction between wormholes should be understood. Also it

seems very unlikely to us that a could be much bigger than of order unity.

Let us now investigate cosmological consequences of the potential for the axion
field a. We will not consider cosmic strings or domain walls. Possible consequences
of these are model-dependent and may give additional constraints. Our analysis is
similar to that for the conventional coherent axion oscillation®. Since we anticipate
very weakly coupled axions, the finite temperature effects can be neglected. It is
also interesting to note that the wormbhole size 1/ \/v_lllp is smaller than 1/v, which
guarantees the temperature independent treatment even at the symmetry breaking
scale v. Note that for the conventional axion case'® the axion potential depends
crucially on QCD physics such that the axion mass turns on below ~ 1GeV scale. In
our present case of wormhole physics, the wormhole potential V,,; can be treated as

temperature-independent below the scale v.

We will comment on three interesting cases; Case (i): a does not couple to the
QCD anomaly, Case(ii): a does couple to the QCD anomaly and Case (iii): a decays

to neutrinos. In the cases (1) and (ii) a is considered to be almost stable.

Case (i): a does not couple to the QCD anomaly.

In this case, V,,, is the only potential violating the global symmetry and hence
is the unique source contributing to the mass of axion. In the standard big bang
cosmology, one can take the phase difference fa/v of order unity over a horizon
distance when a starts to oscillate. In the inflationary scenario, if the symmetry

breaking occurs before the inflationary epoch, @ is uniform in the inflated bubble
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but we may take a/v to be of order unity to avoid fine tuning. If the symmetry
breaking occurs after the inflationary epoch, the phases over horizon distance are not
correlated. Thus in any case, we can take a/v to be of order unity where the classical
field a starts to oscillate. (The cosmic time ¢; for this starting time is always much

later than the inflationary epoch.)

The effect of the wormhole potential turns on below the wormhole scale, but the
expanding universe® will notice it by making the field start to oscillate after ¢; where
3H(t;) ~ m,. The dynamical equation for a, d’a/dt? + 3Hda/dt + m2a = 0, leads
to the conservation of the total number in a comoving volume after ¢;. The energy
density in a comoving volume will be m2A42?/2. Here A is the amplitude of oscillation.
The energy density at the time t; is p; = 7w2g!T#/30 where T; is the temperature at
the cosmic time ¢;. Noting that H? = 87p/3M} and 3H(t,) = m,, we obtain

5
473g?

T =

mI M)A 4)

The condition for the constant number density in the a comoving volume

1
S AR} = %m,,,A;R; (5)

and the constant entropy condition
GTORS = g TSRS ©

determine the present time energy density

_ 1 1 A,; g} T_f
ps = Emi.fA§ = Emﬁvz(—q;)zg—l,('ﬁ)s (7)

where m, is treated as a constant in the temperature range T; ~ Ty. From a wormhole
solution, one gets K = 6r*v*M? and Sg = 3w M, /4. mZ = 2K exp(—Sg)|al|/v*

from Eq.(2) becomes
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m2 = 120° M exp(— /37 M, /4v)|a (8)

Using Eq.(8), T; and ps can be expressed in terms of v. Since the critical energy
density is p. = 2.2 x 10~*7h2GeV* where Hy = 50hkm/sec/Mpc and 1 < h < 2, we

obtain
Q, = Pt
pe
P—l(ﬁ)lﬂﬂ's‘apﬂﬁexp(— V 37rMp) g;’ (A(Tl) )2
¢ 125 M, 160 'gA\
3T M,
— 2.6 % 10% Ry _ P\R—2| |1/ 9
< 1077 exp(- L ) ()
which can be less than A~2|a|'/* for
v < 4.15 x 108GeV (10)

Here we have used g} = g} = 2, which makes sense because T; < 5.4|a|'*KeV.
In this case m, < 3.9 x 107%°|a|/2eV. Hence o = O(1) and k = O(1) can settle
the cosmological constant A = (4.0KeV)* ~ 1072°A%p and still does not cause
the energy density problem. However, we expect that supersymmetry is broken at
an energy scale larger than that of strong interaction and so Ag should be larger
than A%op. This conflict is the key observation in this letter. (For curiosity, if

|a| is stretched to its maximum possible value €52 instead of O(1), we obtain v <

2.4 x 10*hGeV from 2, < 1.)

Case(ii): a is coupled to the QCD anomaly

The potential gets contributions from both QCD instantons and wormbholes,

V(a) = —2K exp(—Sg)|a| cos(% — b0) — fim? ¢ cos(% —01) + Ao (11)
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where ( = m,mq4/(my+mq)? and N is the vacuum degeneracy in the axion literature’®.
N is related to the domain wall number Npw according to how some of the degener-
ate vacua are identified. Here we will take N = 1 for an estimate of v. 6, and 6, are
independent. 6, is the parameter determined from the wave function of the Universe,
and 6, is the coefficient of the FF gluon anomaly below the electroweak symmetry

breaking scale.

If 5 = 6, by a unknown reason, we recover the axion bound v < 10'2GeV because
around this scale wormhole physics is unimportant . Then the field a will dynamically

settle § = a/v — 6, at zero.

However, the natural relation is o # 8;. In this case, § will not settle at zero but

at the point where 8V/8a = 0,
2Ke %2|q| sin(% — o) + fim? ( sin(g- —6;)=0 (12)

Since we are interested in a small 4, § ~ sin(a/v — 61). Thus Eq.(12) determines

2Ke 52 |q|

frm3,

To solve the strong CP problem, # should be within the limit 10~°. Eq.(13) then

f =

(13)

leads to an upper bound on v,
v < 8.5 x 108 GeV (14)

where we used m,/mq = 0.56.

In the case (ii), there is another bound on v. The axion energy density constraint®
will give v < 10'2GeV as the QCD instanton contribution dominates in the potential.
As the bound on v is much lower than the Planck scale, wormhole physics ceases

to be important. The cosmological constant due to wormhole physics for v = 8.5 x
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10*GeV is of order 10=° x Ay;p from Eq.(13). Thus, the axion for the solution of
the cosmological constant problem cannot be the axion for that of the strong CP

problem.

Case(iii): a decays into neutrinos.

One may circumvent the argument given in Case(i) if a decays to light particles
quickly enough because the cosmological energy problem for axions will not arise. (Of
course, these light particles should not raise the same problem, say by decaying to
more light particles.) For definiteness, we assume the coupling (im/2v)(3y — ¥tyt)a
where 7 is a singlet Majorana neutrino and m is its mass. With m = fv, the
energy conservation implies m, > 2m. If f = O(1), this decay condition gives
v > 0.9 x 108GeV, where Eq.(8) is used. If f is much smaller than 1, v can be

somewhat smaller. The decay width of an axion into two fermions is

2

mim, 2m?  r :
= 1- V1 — 4m2/m2 15
I 6411"02( m2 W1 = dm?/mg « (15)

a

For the energy density of axions not to interfere with nucleosynthesis, we require
-1 < 1sec for f = 1. Eqgs. (8) and (15) then give v > 1.3 x 10'®GeV, which is softer
than the initial bound v > 10'®GeV. Hence v > 108GeV seems to be consistent

~42gec for m << m,. In this case the cosmological

and then e decays quickly in 10
constant can be much larger without the cosmological energy density problem. But

we will not exploit any explicit model for this case.

In conclusion, the contribution from wormhole physics to the potential of the
axion field restricts the wormhole scale v (the wormholes size is of order 1/ \/H/.r—p )
by the cosmological energy density and strong CP probleﬁs. The axion to solve the
strong CP problem has its scale bounded by v < 10'2GeV and can not be the one to

solve the cosmological constant problem. If axions triggering the wormhole creation
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are stable, the energy density of axions gives the constraint on the wormhole scale
v < 4.15 x 1018GeV for @ = O(1). Then, the action is so large (Sg > 56.4) that
only a tiny initial cosmological constant A < 107%°A%;p can be settled to zero in the
dilute gas approximation. Finally if axions are made to decay into lighter particles,
v can be larger than 108GeV which contains the interesting region for the solution

of the cosmological constant for a = O(1).
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