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Abstract

A method is given to approximate the matrix elements squared for all parton
processes involving a quark-antiquark pair plus an arbitrary number of gluons.
Detailed comparisons are made between the results of this method and the exact
results which are known for the quark-antiquark plus four gluon processes in four
jet production at Hadron colliders. Together with Maxwell’s approximate result
for six gluon processes an excellent agreement is found for the total cross section

and shape of four jet production at Hadron colliders.
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Recently there has been a great deal of interest in multijet events at hadron colliders
by both experimenta.lists[ll and theorists2l. Unfortunately the theoretical situation is
such that for more than four jet production little is known of the QCD partonic cross
sections. For four jet production all QCD matrix elements exist in the literaturel®! but
intense computer usage is required to calculate each partonic cross-section. Berends and
Giele in ref.[3] have also given a recursive algorithm which allows calculation of the n
gluon amplitudes for arbitrary n but the complexity of this algorithm has so far prevented
rapid and simple usage.

A systematic procedure to approximate multi-gluon cross-sections was given recently
by Maxwelldl, He also suggested the use of the effective-structure-function approxima.tion[5]
to describe processes involving quarks as well. However this approximation for the

fermionic cross-sections is known to become progressively worse with an increasing num-

ber of partons.

In this paper we generalize the multi-gluon approximation of Maxwell and give ap-
proximate cross-sections for those processes involving a quark-antiquark pair plus n glu-
ons. We will specifically treat the n = 4 case, the generalization to larger n being
straightforward. Detailed comparisons are made with the exact matrix elements and
with the predictions of the effective-structure function approximation. When our results
are combined with the apptoiima.te six-gluon cross-section of Maxwell they provide a

powerful tool for analyzing the four-jet events of hadron colliders.

Our starting point is the exact non-zero tree level matrix element squared, to leading
order in the number of colors, for the processes involving arbitrary number gluons or
quark-antiquark plus an arbitrary number of gluons which maximally violates the con-

servation of helicity:

eg. gtgt —gtgtgtgt..., qtgt — qtgtgtgt... and gtg- — qtggtgt....

The matrix elements squared were given by Parke and Taylor[6]'[7] for the purely
gluonic process and by the authors(® for the quark-antiquark plus n gluon process and
can be simply given in terms of the elementary variables, S;; = 2p; - p;. For the n

gluon process the color sum for the matrix element squared for the sum of the maximally
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helicity violating amplitudes is given by
) 1
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where Y.,y is the sum over all non-cyclic permutations of the gluons (1,2...n). The

similar expression for the quark-antiquark plus n gluons is
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where ¥ ,.., is now the sum over all permutations of the n gluons and g¢,g are the

momenta of the quark and antiquark respectively.

For the six gluon process, Maxwelll4! has given us a method for including the contri-
bution from the more complex helicity conserving amplitudes. His approximation is to
multiply the matrix element squared for the helicity violating processes by a factor, x4,
such that the product has the Altarelli-Parisi® residue for the collinear pole of the pair
of gluons with the smallest |S;;|. Maxwell refers to this procedure as infrared reduction.
For the purely gluonic process, the multiplication factor is

o - (UFR)(A+z+(1-2)")
Xeo = T RtaAt(A-2 ®)

where R and z are determined by the pair of gluons (c, 3) which have the minimum |S;]

in the following way?

po
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In analogy with Maxwell’s method one can show that the infrared reduction procedure

applies to processes with a quark-antiquark pair plus gluons. Here the multiplication

2This prescription is clearly not Lorentz invariant, but the violation of Lorentz invariance is an effect
of order s;; /p?p;-’, which can be neglected consistently with the approximation.
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factor depends on the type of particles which make up the minimum |Sij| . For the case

where the particles with the minimum |S;;| are both gluons,

1+ R) A+ (1-2)Y)
w = T (RiAt+ (=29 (5)

as before, but with

z== , P=p.+pg
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If the pair with the minimum dot product is a quark and a gluon then

(1+R) (1+2%)

g 7
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where
¢
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., S3.5.;
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The result for an antiquark-gluon pair is the same as the above quark-gluon pair but

with each fermion momentum replaced by the appropriate anti-fermion momentum.

For the situation in which the minimum |S;;| pair is made up of a quark and an

antiquark the multiplication factor is

xie = (L+R) (9)
where

G = q+7q

R M (10)

YiS&

Thus our approximation is equal to x -3 |M"|? times a weight factor which averages
the incoming colors and helicities and also provides the appropriate statistical factor for

identical particles. All of these results can be generalized to processes with more than four
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partons in the final state by expressing the approximate cross-section as a product of the
maximally helicity-violating cross-section times more x factors, two for a seven-parton

process, three for an eight-parton process and so on.

To compare our results with the exact matrix elements squared we have looked at
the processes gg — gggg , 99 — 9999 , 49 — 999 and gg — gqgg in a proton
- antiproton collider at 1.8TeV, the Fermiland Tevatron. We omit the results for the
q§ — gggg process because its rate is very small. Processes with two quark-pairs can
be approximated in a similar way by using the simple helicity-violating matrix elements

given in ref. [10], but their rate is totally negligible.

We have used a fixed set of structure functions throughout, Duke and Owens! 1!
(A = 200MeV), and the cuts on the partonic jets for the transverse momentum,Pr,

pseudo-rapidity, ¥, and separation of the jets, AR, are as follows:

Pr > 25GeV

ly| < 3.5

AR=/A¢* + Ayr > 08. (11)

We choose the Q? scale for the QCD evolution to be the average p; of the event:
@?* = (T p:/4)?. For both the exact and the approximate matrix elements we have plotted
three differential cross sections, % versus Pr, EE%;? versus cosfys, and E;_:: versus P,y
in Figures 1 through 3. Pr is the transverse momentum of each jet. Poy = 23 |, | with
p: . the momentum of the i-th jet perpendicular to the plane given by the beam and the
jet of largest pr. The angle 0,3 is the angle between the second and third highest energy
jets in the center of mass of the incoming partons. For each differential cross-section
there are four plots each appropriate for proton anti-proton collisions with five flavors of
light quarks:

(a) for the purely gluonic process,

(b) for all processes with quark (antiquark) gluon to quark (antiquark) plus three gluons,
(c) for the process gluon gluon to quark antiquark plus two gluons and

(d) for the sum of these three.

The total rates for these processes are summarized in Table I.
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Table I: Cross Sections for Four Jet Production at the Tevatron.

Process Exact Cross Section | Approximate Cross Section
nanobarns nanobarns

(a) 99 — 9999 14 15

(b) g9 — 9999 21 20

(c) 99 — 9399 3 6

(d) Total: Four Jets 38 41

As is clear from Table I and from Figures (1) thru (3), the approximation to the purely
gluonic process and to the processes with one quark in the initial state are extremely
good, while the agreement between exact and approximated results for the process with
a quark-antiquark pair in the final state is rather poor. Fortunately this last process has

a small cross-section, and the induced error on the full cross-section is marginal.

The main reason underlying the accuracy of these approximations is the dominance of
the helicity violating amplitudes over the helicity conserving ones. This in fact guarantees
the stability of the infrared reduction when extrapolated from the collinear limit s;; — 0
to the observable kinematical configurations in which s;; # 0. This dominance holds for
the gg — gggg and qg — qggg processes. When integrating over phase space the helicity
conserving amplitudes contribute in average to 20-30% of the full amplitude. Even a
30% uncertainty in estimating them (uncertainty coming from the extrapolation of the

infrared reduction) would give rise to an error no larger than 10% on the full amplitude.

One way to understand why the helicity violating amplitudes are so important is the
following. Any six-parton amplitude squared can be expressed in terms of the kinematical
invariants 8;; = (p; + p;)? and ¢ = (pi +p; +pr)®. If 1 and 2 are the incoming partons,
it is easy to verify that 812 = s > |s;j|, |tije| for any choice of 7,5 and k. The cuts
that are imposed in the calculation of the rates, in particular the rapidity cuts and the
transverse momentum cuts, make the inequality even stronger. The cross sections are
then dominated by the terms with the largest power of s;3 in the numerator. For the
gg — gggg process these terms appear in the helicity violating amplitudes, which behave
as (s12)* as opposed to the (s12)? behaviour of the helicity conserving ones. Also, for the
gg — qggg process the terms containing the leading pb\:;ver of sy, again appear in the

helicity violating amplitudes, which behave as (s12)3.
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In the process g¢g — ggqg, whose amplitude is just obtained by crossing from the
amplitude for g¢ — gggg, the situation is however different. Here, in fact, no power of
812 can appear in the numerator of the helicity violating amplitudes, as is clear from
equation (2). In this case the full amplitude is dominated by the helicity conserving
component. As an example consider the situation in which the smallest s;; corresponds
to the qg pair: in this case x4y = 1 + R, with R arbitrarily large. Even if the infrared
reduction procedure is valid in the exactly collinear limit s;; — 0, its extrapolation
to the kinematical domain of a generic collision is rather unstable. As a consequence
our approximation tends to systematically overestimate the exact result. As we already
noticed, nevertheless, since the contribution of this process to the total rate is quite small

the total error introduced is also small.

In the perspective of applying this approximation scheme to other reactions, however,
the believe that the criterion of dominance of the helicity violating amplitudes is relevant
to establish a priori (or in absence of the exact result to compare with) the reliability
of the approximation. The above qualitative considerations, for example, will still hold
for QCD processes with more than four hard partons in the final state. The numerical
analysis of total rates for seven-gluon processes, carried out in ref.[12], shows a good

agreement between the exact result and the Maxwell multi-gluon approximation.

We now compare our approximation of the quark cross-section to the effective-structure-
function approximation. This approximation amounts to assuming that in most of the
relevant phase-space the differential cross-sections for processes initiated by gg, by gqg

and by gq or ¢g stand in a constant ratio:
dog, : dogy : dogg = 1 : 4/9 : (4/9)%. (12)
In this way the total cross-section, weighted by the appropriate structure functions, reads:
doe = F(z1)F(z2)dog,, (13)
F(z) = g(=) +4/9(q(=) + 3(=)), (14)
g(z) and g(z) being the gluon and quark structure functions.

This approximation is extremely good in the case of two partons in the final state,
but becomes less and less accurate when increasing the complexity of the final state.

Phenomenological applications of this approximation for multi-jet physics were given
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by Kunszt and Stirling in ref. [13]. These authors, however, used a simplified version
of the multi-gluon approximation. Namely, they choose for x9, a constant value given
by the ratio of the total number of helicity configurations with the number of helicity-
violating helicity configurations contributing to a multi-gluon process. For n = 6 we have
Xks = 5/3.

We have compared the prediction for the g¢g — gggg process obtained through the
Kunszt and Stirling (KS) approximation and through the Maxwell (M) approximation
with the exact calculation, which in turn agrees with our approximation (MP) within

numerical (Monte carlo) errors.

dodgp = x%doy™ (15)
doks = 4/9 xksdol™ (16)
dofy = 4/9 x5 doviel, (17)

The resulting distributions are shown in figs. 4 and 5. The total rates are as follows (in
nanobarns):

0daet =21 oyp=20 oks=30 o}, =24. (18)

From these results we conclude that the effective-structure-function approximation tends
to overestimate the contribution of quark-initiated processes. This suggests that for a
large number of partons the purely gluonic matrix elements dominates over the matrix
elements with quarks (this is not necessarily true of the rates, because of the effect of
the structure functions). However the mismatch between the exact result (or our ap-
proximation) and the result of the effective-structure-function approximation is certainly
compatible with the intrinsic uncertainty associated with these calculations, due to the
absence of higher order corrections, uncertainty in the choice of a,, of @2 and of structure

functions.

In conclusion, we have presented an approximation procedure to describe multi-jet
QCD processes. Our prescription completes Maxwell’s work on multi-gluon processes
by generalizing it to processes involving quarks as well. The calculation of four-jet pro-
duction in pp collisions at 1.8 TeV shows excellent agreement between the exact results
and our approximation. The agreement holds for both total rates and differential dis-

tributions. This is a net improvement over calculations based on the effective-structure-

8 [ RN



function approximation, with which we have compared our results. Qualitative arguments
suggest that this agreement should persist for higher order processes.

On completion of this manuscript we became aware of a preprint by C. Maxwell(14]

which contains similar results to this paper.
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Figure Captions:

Figure 1(a)-(d): The differential cross sections do/dPr versus Pr for the labelled pro-

cesses of four jet production at the Tevatron with the cuts given in eqn. (11). The solid

line is the approximation and the dotted line the exact result.

Figure 2(a)-(d): The differential cross sections do/dcosfz3 versus cosfz; for the labelled

processes of four jet production at the Tevatron with the cuts given in eqn. (11). The

solid line is the approximation and the dotted line the exact result.

Figure 3(a)-(d): The differential cross sections do/dPoy; versus Py, for the labelled pro-

cesses of four jet production at the Tevatron with the cuts given in eqn. (11). The solid

line is the approximation and the dotted line the exact result.

Figure 4: Comparison of the differential cross sections for the subprocess gg — qggg of
our approximation (dots) versus the approximation of Kunszt and Stirling together with

the use of the effective structure function approximation (solid).

Figure 5: Comparison of the differential cross sections for the subprocess gg — gggg of
our approximation (dots) versus the approximation of Maxwell together with the use of

the effective structure function approximation (solid).
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