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Abstract 

The properties of a noncritical c = 1 lattice Virasoro algebra for the ex- 

actly solvable Baxter eight-vertex model are studied in the decoupling limit 

in which the Baxter model is equivalent to a staggered pair of Ising models. 

The Virasoro operator Le is given by the fust moment of the XY spin chain 

density which is proportional to the logarithm of the corner transfer matrix 
(CTM). The eigenmodes of Le are explicitly constructed in terms of lattice 

fermion operators. They are related to the eigenmodes of the XY Hamiltonian 

by harmonic analysis on the spectral (rapidity) torus, which arises as the CTM 

group manifold. At the critical point, the results reduce to a momentum space 

formulation of space-time conformal symmetry. Two related Viiasoro algebras 

are constructed from the fetionic eigenmode operators of Lo. One is a gen- 

eralization of the 2’ = Tc conformal algebra away from the critical point. The 

other represents dlfTeomorphlsms of the real rapidity circle, which is compact 

due to the presence of the space-time lattice. Both are spectrum generating 

algebras of the corner transfer matrix. In the scaling limit, the Viiasoro opera- 

tors are expressed in terms of a massive, f&e Dlrac field. For n 2 -1, the L,‘s 
are given by integrals of local densities. We discuss the relation between these 

densities and the integrals of motion and higher spectral flows that characterize 

the integrability of the system. 



-2- FERMILAB-Pub-88/49-T 

I. Introduction 

A number of recent developments in two-dimensional field theory have suggested 

a deep relationship between conformal symmetry and complete quantum integrabil- 

ity for exactly solvable lattice models (1,2]. The application of conformal symmetry 

arguments to the study of critical statistical mechanical systems has already yielded 

new insight into their properties.[3] On the other hand, the algebraic structure of non- 

critical integrable systems is generally expressed in terms of Yang-Baxter relations 

[4,5], and the relation between this structure and that of conformal field theory is still 

rather mysterious. One approach to the study of this connection [I] has focused on 

Baxter’s method of corner transfer matrices[6] (hereafter called CTM’s), which seem 

to be generic to integrable quantum systems. In a previous paper[l], we showed that, 

in the eight-vertex model, the logarithm of the CTM (which is also the first moment 

of the XYZ spin chain Hamiltonian density) was in fact the central element Lo of a 

Virasoro algebra[‘l]. This provides some insight into the remarkably simple eigenvalue 

spectrum of the CTM first derived by Baxter[G]. An important consequence of the 

CTM-Virasoro connection is that, in a certain sense, the infinite dimensional sym- 

metry of the critical eight-vertex model is still present in the non-critical theory, and 

that the noncritical realization of the Virasoro symmetry is therefore characteristic 

of the more general phenomenon of integrability. In this paper, we present a detailed 

discussion of the Virasoro symmetry of the noncritical (Ising)’ /XY spin chain model, 

which is a special case of the Baxter model with vanishing four-spin coupling. After 

fermionization, this model becomes the theory of a free massive Dirac fermion on a 

lattice. It therefore provides a relatively simple framework in which to investigate 

the significance of the noncritical lattice Virasoro algebra and its connection with the 

conformal symmetry of the critical theory. 

In Section II, we briefly review the relationship between the Baxter eight-vertex 

model, the XYZ spin chain, and the massive Tbirring model[8]. This establishes, for 

later reference, the connection between the spin variables of the lattice model and 

the Dirac fermion field operators. Specializing to the (Ising)‘/XY-chain/massive- 

free-fermion case, we begin Section III by examining the well-known diagonalization 

of the XY spin chain Hamiltonian. This is accomplished by the lattice version of 

a Bogoliubov rotation. This discussion also serves to introduce the elliptic function 

(lattice rapidity) parametrization of momentum space on a lattice, which is a central 
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feature of the entire discussion. Then, we go on to discuss the diagonalization of the 

corner transfer matrix. Just as the eigenstates of the row-to-row transfer matrix of 

the Baxter model are the same as those of the XYZ Hamiltonian (the zeroth moment 

of the Hamiltonian density), the eigenstates of the CTM are the same as those of the 

first moment of the XYZ Hamiltonian density. Thus, for the (Ising)s/XY case, we 

are again faced with the problem of diagonalizing an operator which is quadratic in 

the fermion operators, 

Lo = F ,-5 Nj, j + 1) , I----m 

%j + 1) = -$+T;+~ + k+;+ll , 

(1.1) 

O-2) 

where k turns out to be the elliptic modulus. The diagonalization of Ls is in fact 

closely related to that of the XY Hamiltonian. The eigenmode operators of Lo are 

simply the Fourier transforms of the Hamiltonian eigenmode operators over the elliptic 

rapidity parameter. 

In Section IV, we give a more detailed account of the lattice Virasoro algebra con- 

structed in ref. ([l]). Much of this discussion applies to the more general case of the 

eight-vertex model (massive interacting fermions). However, the explicit construction 

of CTM eigenstates is more subtle in the interacting case and will not be discussed 

here. The lattice Virasoro algebra, which we will denote by {{.C,,}}, is constructed in 

terms of the co eigenmode operators. It is a natural generalization of the exact lat- 

tice Poincare algebra [9] in fact, L-1 is a certain linear combination of the conserved 

charges associated with commuting row-to-row transfer matrices (RTM’s). This im- 

plies, for example, that the eigenstates of the Virasoro operator t-i are given by 

the same Bethe ansatz that diagonalizes the RTM and the XYZ Hamiltonian. This 

structure, therefore, exhibits a close relation between the Virasoro algebra and the 

sequence of mutually commuting conserved charges and consequently a relationship 

between the Virasoro verma module and the Hamiltonian spectrum. This connection 

persists in the general interacting case, where the Hamiltonian spectrum includes an 

adjustable number of bound states. As discussed briefly in [lo] , these considerations 

lead, via the ABF models[ll], to a relation between the bound state thresholds and 

the FQS sequence of Virasoro central charges[l2,13]. This will be discussed in detail 

in a subsequent publication, 
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One crucial ingredient of the lattice Virasoro algebra is the discreteness of the &- 

eigenvalues which is due to the periodicity of momentum space on a lattice. Moreover, 

lattice momentum space is compact not only in the real but also in the imaginary 

rapidity direction : the topology of momentum space on the lattice is that of a torus 

in the rapidity parametrization. (We will refer to this as the spectral torus. See 

Fig. 1). Because of this double perk&city, it is possible to construct two distinct & 

eigenmode operators corresponding to the doubly periodic nature of the momentum 

space topology. The operators constructed by Fourier transformation around the real 

rapidity direction are the eigenmode operators of the CTM, while those constructed by 

Fourier transformation around the imaginary direction of the spectral torus become 

the fermionic oscillator modes of the conformal algebra at T = T,. To construct 

the eigenmode operators in the imaginary direction, we discuss the extension of the 

Hamiltonian eigenmode operator into the complex rapidity plane. This entails the 

introduction of a “harmonic conjugate” mode operator, which is given by the Fourier 

series conjugate to that of the original Hamiltonian eigenmode operator. The even and 

odd combinations of the Hamiltonian eigenmode operator and its harmonic conjugate 

are given by lattice Fourier sums over either the positive or negative z-axis and provide 

the analytic continuation needed. In this way, we construct the Euclidean version 

of the original lattice Virasoro algebra. We denote it by {(L,,}). At the critical 

point this reduces to either the left- or right-moving conformal algebra, depending on 

whether we have chosen the fixed real part of the rapidity to correspond to lattice 

momentum near 0 or near r. Thus, from this point of view, the appearance of two 

independent (left and right) algebras in the critical theory is related to the familiar 

species doubling of lattice fermions. (Away from the critical point, the left and right 

movers are connected by mass terms, and the two algebras do not commute.) 

So far, the Virasoro operators we have mentioned have a fairly direct connection 

with those of the critical conformal theory. Their physical effect may be described as 

a noncritical, lattice generalization of space-time conformal transformations. There 

is, however, another construction of a Virasoro algebra from the eigenmode operators 

of the CTM. This one is motivated by observing the analogy between the spectral 

(momentum) torus of the noncritical lattice model and a coordinate-space torus in 

conformal field theory. Here we will also consider this algebra, which is associated 

with diffeomorphisms of the spectral (rapidity) parameter [14]. This algebra will be 

denoted by {{fZ:fl]}. The & operators for the two algebras {{&}} and {{L,$fl}} 
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are in fact the same (in each case ~2s is essentially the log of the CTM). This results 

from the equivalence of rigid rotations in coordinate space and momentum space. 

In Section V, we investigate further the relation between the lattice Virasoro 

algebra and the conformal algebra at the critical point. (We will denote the latter by 

{{L;}}.) In the low temperature limit, the discrete eigenvalue spectrum of the CTM 

arises from the periodicity of real rapidity, while the periodicity in the imaginary 

direction is responsible for the discrete integer eigenvalues in the critical regime. The 

L; of the critical conformal algebra has discrete integer eigenvalues in the radial 

quantization scheme due to the periodicity of Euclidean rotations. In the limit T -+ 

T, we identify the lattice Virasoro algebra ((~3,)) arising from the periodicity in 

imaginary rapidity with the critical conformal Virasoro algebra formulated in the 

analytic momentum plane. 

The conventional critical Virasoro algebra is obtained by taking the moments of 

a conserved traceless stress-energy tensor. Clearly, this structure does not persist 

away from the critical point since the tracelessness is unique to the theory with 

zero mass. A main purpose of Section VI is to establish a corresponding - but by 

no means identical - statement in the noncritical Virasoro algebra. We investigate 

the near-critical behavior of the model. In the scaling limit, this reduces to the 

continuum field theory of a massive free fermion. This allows us to study, in a field 

theoretic context, the role of mass in the noncritical Virasoro symmetry. For this 

massive continuum limit, we find that the Viraaoro operators L, for n 2 -1 can 

all be expressed as integrals of local space-time dependent conserved densities. Each 

new Viraaoro operator L, turns out to introduce a new member of the sequence 

of higher conserved densities associated with integrabillty. We see, in this way, a 

direct link between the noncritical Virasoro algebra and the higher integrals of motion 

representing the integrability of the system [15]. Finally, the relation between the 

transformations generated by the L, d*‘s and the higher spectral flows is discussed. 

In Appendix A, we give some details leading to the elliptic function parametriza- 

tion used in Section III. In Appendix B, we collect some explicit formulae for the 

local densities of commuting charges. 

Throughout the paper, our essential viewpoint is that the boost operator can 

be viewed as an evolution operator of the system. There are some indications that 

this point of view is very natural in many integrable systems. We will refer to the 
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quantisation scheme based on the boost operator as “angular quantization” since 

surfaces of fixed angular “time” radiate out from the origin in Euclidean space. (In a 

conformal theory, one may map the z(= z + iy) plane onto a cylinder by a conformal 

mapping r + iu = log z. In this case, the angular quantisation scheme is related to 

the more familiar radial quantization by an interchange of c and r.) 

II. The Eight-Vertex Model and Massive Dirac Fermions 

on a Lattice 

In the spin or “interaction round a face” (IRF) f ormulation, the eight-vertex (8V) 

model consists of a pair of staggered Ising lattices coupled together by a four-spin 

interaction. In an elementary face shown in Fig. 2, the spins are labeled 01, er, os, and 

04 with et and os on one Ising sublattice and es and CT, on the other. The Boltsmann 

weight of a face is given by 

exp[Kroius + Kruru~ + K”U~QQ~QI] . (2.1) 

with oi = &l. Here K1 and Kz are the horizontal and vertical spin-spin couplings 

of the two Ising sublattices (which are oriented at 45 degrees to the axes of the 8V 

model). The four-spin coupling K” connects the two sublattices and gives rise to a 

Thirring four-fermion interaction in the corresponding field theory. 

The fermionization of the model is most easily carried out in the vertex or “arrow” 

formulation, where we place up (right) or down (left) arrows on each link of the dual 

lattice according to whether the spins on either side of a vertical (horizontal) link are 

the same or opposite, as shown in Fig. 2. A face of the spin lattice becomes a vertex 

of the arrow lattice, and, in the absence of external field, there are eight different 

vertex configurations with four possible Boltzman weights a, b,c, and d given by 

a = exp(& + K, + K”) , 

b = exp(- Kl - KS + Ktf) , 

C = exp( -K, + Kg - K”) , (2.2) 
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d = exp(Kr - Kz - K”) . 

In the arrow formulation, we may write an elementary vertex as a two-spin operator 

acting on the upper and right arrows and turning them into the lower and left arrows 

respectively, 

K = ; [(a + c) + (a - c)u,+:+~ + (b + d)u:u;+l + (b - d)+:+:,,] . (2.3) 

To dispel some possible confusion, it may be useful to note that, in the quantum 

inverse formalism for the eight-vertex model (5,161, a somewhat different notation is 

used for a vertex. In that formalism, the vertex (called the “L-matrix”) is a two- 

by-two matrix labeled by the horizontal arrows, with each element of the matrix 

being a one-spin operator acting on the vertical arrow at site n. This formulation is 

appropriate for the row- o-row transfer matrix, while the description of the vertex as 

a twespin operator (2.3) is more natural for the corner transfer matrix. The latter 

description also provides the connection to the Heisenberg spin chain Hamiltonian, 

whose seroth and first moments are a central focus of our discussion. Introducing the 

elliptic function parametrization of the vertex weights, 

o = snh(A - u)/snhA , b = snhu/snhX , 

c=l, d=ksnhusnh(X-u), 
(2.4) 

where k is the elliptic modulus and snhu G -i sn(iu), we see that for u = 0, a = c = 1 

and b = d = 0. Thus, the vertex (2.3) becomes proportional to the unit operator at 

u = 0 and we may expand around this point to give 

v,-yo)v,(u) = 1 - u’Hm?(n,n + 1) + O(uZ) ) (2.5) 

where 

‘Hxyz(j, j + 1) = J.u~v~+~ + Jyo~o~+l + J,o~u~+~ . (2.6) 

Using properties of elliptic functions, it may be shown that the spin chain coefficients 

are related to the Boltzmann weights by J. : Jv : J, = ab + cd : ab - cd : +(a’ + ba - 

c2 - 6) c 1: l? : A. 

Throughout our discussion, we wilI be considering operators in the infinite volume 

limit and manage to avoid any specific reference to boundary conditions. This treat- 

ment causes no great difficulties for the (Ising)s/fiee fermion case we are considering 
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here. (As pointed out in [17], this leads to the h = i representatation of the c = 1 

Virasoro algebra, corresponding to fixed boundary conditions.) A discussion of the 

interacting case requires much more careful attention to boundary conditions. For 

the case of the row-to-row transfer matrix (RTM), the proper treatment is well un- 

derstood [18] and leads to the Bethe ansatz equations which determine the spectrum. 

Much less is known about the diagonalization of the CTM. Although its eigenval- 

ues are completely determined by Baxter’s arguments, its eigenstates are not. We 

suspect that the lattice Virasoro algebra provides a clarification of the structure of 

these eigenstates and their relation to those of the row-to-row transfer matrix and to 

the Bethe ansatz equations. For the present free fermion discussion, however, we can 

avoid these complications and immediately define our operators in au infinite volume. 

The “sea filling” which gives rise to the Bethe ansata integral equations in the general 

case can be accomplished by a simple normal ordering prescription in the free fermion 

theory. Thus, we take the row-to-row transfer matrix to be an infinite row of vertices, 

T(u) = l$nanTrV-~V-~+~. . . VN . (2.7) 

To define the CTM, we first denote a finite row of vertices by 

G(T) = v,v,-Iv,-, . . . v 3 3 . (2.8) 

The CTM operator AN(U) is then defined by stacking rows together, 

AN(U) = G$NN)G$NY)G$N). . . Gp) . 

Physically, this operator represents one quadrant of a lattice and connects a semi- 

infinite row of arrows with a semi-infinite column of arrows. As Baxter has shown, the 

CTM is well-defined in the thermodynamic limit N + m if we divide by the largest 

eigenvalue AN of AN in the region where u is real and positive (this corresponds to 

normal ordering the log of the CTM), 

A(u) = $iI AN(uy/AN . (2.10) 

(Again we note that, in both (2.7) and (2.9), the naive infinite volume limits taken 

here will require a more careful treatment for the general eight-vertex model.) We 

also define an “extended” CTM d(u), which is the direct product of a lower-right and 
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an upper-left CTM. ( See, Fig. 3.) The extended CTM acts on a full row of arrows 

and connects it to a full column of arrows. 

Expanding the RTM (2.7) and the CTM (2.9) around u = 0, it is easy to see that 

the terms of order IL are given, respectively, by the zeroth and first moments of the 

XYZ spin chain density : 

T-‘(O)T(u) = l-u Hxyz + . . . , (2.11) 

d(u)=l-u&l+... , (2.12) 

where 

H XYZ = 5 ~xuz(j,j + 1) , 
j=-w 

C0 = $ ,-?I jwxwi(j, j + 1) p-m 

(2.13) 

(2.14) 

In the expansion of T(u), the higher order terms provide an infinite number of mutu- 

ally commuting conserved operators. For the CTM, the higher order terms actually 

exponentiate to give the exact relation 

d(u) =exp(-Zfo) . (2.16) 

where K is the real elliptic quarter-period (complete elliptic integral) associated with 

modulus k. This exponentiation follows from the remarkable group property of the 

CTM: A( = A(u + u). (Note that the sum in (2.15) is taken from -oo to 00, 

corresponding to the log of the extended CTM. We have postponed here the problem 

of normal ordering the extended CTM, which is required to obtain a highest weight 

representation of the lattice Virasoro algebra. This will be discussed Section IV.) 

To conclude this review of the model, we want to recall the precise connection 

between the XYZ spin chain Hamiltonian and the Hamiltonian of a massive Thirring 

fermion. We first introduce canonical lattice fermion operators by a Jordan-Wigner 

transformation, 

c?” = , +yg 4) . (2.17) 



-lO- FERMILAB-Pub-88/49-T 

The XYZ spin chain Hamiltonian is then written as 

HXYZ = 5 i(cfi’~;+~ - I-c~<+~ - ~Ac;c$~+~c;+,) (2.18) 
j=-m 

It is convenient to introduce the following complex fermion operators : 

Cj Z 5 (CT + i+!) , =; G q! ($ - ;4) . 

As is well known, one complex fermion on a (l+l)-dimensional lattice yields a 

2-component Dirac fermion (two complex Weyl fermions) in the continuum limit 

(fermion doubling). Going into momentum space, we identify the upper and lower 

chiral component of the Dirac fermion in the 7s diagonal representation as 

41(q) = e-fi&C e-+y-l)jctj , 

?h(n) = ei’&~e-iG-cj , 

j 
-+<g I 

respectively. Here a is a lattice spacing and we introduced a phase factor which 

is designed to give a conventional Dirac mass term. Note that the range of the 

momentum is half of the entire Brillouin zone. In the 70 diagonal basis, the above 

expression is equivalent to the staggered structure with even and odd sites occupied 

respectively by the upper and lower component of the Dirac fermion. 

By inverting the above expressions and substituting them into eq. (2.18), we obtain 

HXYZ = Ho + Hm... + Hth > (2.22) 

Ho = (T) jzA.2 sinpa (&(n)h(n) - ?&(n)&(d) , (2.23) 

En.,. = (q) /+;2ag =‘sq= (‘h(d’bk) + ‘&h(q)) , (2.24) 

61th =-44A~~(~~)2~~(q~+p,-q~-q,)c~s(q~+qs)~ 

~1(a)~s(qs1)~,1(4s)~~(q,) . (2.25) 
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Here, we denote by & the hermitean conjugate of &J in fixed time quantization. 

Eqs. (2.22)-(2.25) reduces, in the continuum limit a -+ 0, to the massive Tbirring 

Hamiltonian. Note that, according to (2.18), the case where the four-spin coupling 

vanishes (i. e. ab = cd) corresponds to l? = 0. By an interchange of Pauli matrices 

~9 t--) CT’, this is equivalent to the case A = 0 which we discuss here. 

III. Diagonalization of the Corner Transfer Matrix 

In order to proceed with an explicit investigation of the CTM and its eigenvectors 

we now restrict ourselves to the free fermion case. Let us first consider the diagonal- 

iaation of the XY spin chain Hamiltonian. The solution to this problem is of course 

well-known ([19]), but it is useful to review it here, since it turns out to be closely 

related to the diagonalization of the CTM. The XY spin chain Hamiltonian is 

H = 2 X(j,j + 1) , (3.1) 
j=-ca 

where 

‘H(j, j + 1) = -:[$I++, + k0~$+,] . (3.2) 

Upon introducing the Onsager/Baxter elliptic function parametrization, the param- 

eter k will become the elliptic modulus. We rewrite the Hamiltonian in terms of the 

fermion operators constructed in the preceeding Section, 

cv = I +vp 
The Hamiltonian becomes 

H = i C[+;+, - kcj’,$+J . (3.4) 
j 

We will make use of the following elliptic function expressions : let (L = p+ F - K 
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and define 

S(P) = -idxsna = (I- k)snfl+icnpdnp f 

(1 - k) snp - i cnp dn@ 1 
= (1 - k)snP + icn&W 

1 - k&P 
_ eiP 

, (3.5) 

C(p) =i&cna = m isnl_““,“.n~,““” 
[ I 

, 

o(P) = dna = m i ksnP 4 + dnp 

I 1-k&p ’ 

(34 

(3.7) 

for -K < ,8 < 3K. In Appendix A, we briefly outline the diagonalization of .Co and 

how it leads to this elliptic parametrization. This parametrization is also crucial to 

understanding the relation between the eigenvectors of the CTM and those of the 

XY Hamiltonian. 

In order to diagonalize the XY Hamiltonian, we introduce the momentum space 

operators 

BZ,#(P) = ~[s(P)lj-‘cy . 
j 

Using simple properties of elliptic functions, it is easy to show that 

(34 

BY wP=(P)l = W)C(P)~ll(P) (3.9) 

P, %w,(PI = wwP~(P) 1 (3.10) 

where 

ii(p) z -scj;;‘p’ = (1 - k) : T ;:;I; 

= (1 + k)‘cdp(P) + (1 - k)‘sin’p(P) > 0 _ (3.11) 

The eigenmode operators of the Hamiltonian are 

B*(P) = PwL(P) f C(P)~&ql /Jz , (3.12) 

(3.13) 

which satisfy 

[H, &@)I = WPP4P) . 
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For 0 < k < 1 we see that h(S) 1 Il-kl and there is a finite mass gap (fermion mass). 

The critical point is reached at k = 1 where the mass gap vanishes. The operator 

B+(-)(P) defined over the fuI.l elliptic period in the real direction (-K < p < 3K) is 

an annihiIation (creation) operator with respect to the physical ground state of H, 

namely the one obtained by fiUing up aU negative energy states. 

We list some useful properties of the functions S(p), C(p), and D(p) which follow 

kom the periodicity properties of the Jacobi elliptic functions [20]: 

W + ‘4 = -S(P), C(P + W = -C(P) , W + W = D(P) , 

S(P + iK’) = -l/S(p) , C(/3 + iK’) = -iD(p)/S(p) , D(p + iK’) = X(/3)/S(p) , 

S(P + 2X’) = S(p) , C(p + 2iK’) = -C(p) , D(p + 2iK’) = -D(p) , 
(3.14) 

WW-PI = DWX-9) = A(P) . 

Also note that, for ,S real, 

(3.15) 

s’(P) = -s(d), C*(P) = C(-P) , D’(P) = 0(-P) (3.16) 

From now on, we let B+(p) = B(P). Then B-(P) = B(-,8-iK’) (/3 real). B(P) 

satisfies the foIIowing properties: 

B’(P) = fB(P + 2K riK’) , (3.17) 

B(P+ 2iK’) = -B(p) , (3.18) 

as weII as canonicaI anticommutation relations 

{B(P), B(P’ + 2K - iK’)} = 2d(p - /3’) 

{W), W)l = 0 > (3.19) 

for @, p’ real. These properties are represented schematically in Fig. 4. The second 

equation (3.18) expresses the double-v&redness of the fermion operators under Eu- 

Iidean rotation by 2~. In the subsequent discussion it wiII be necessary to decompose 

B(P) into two sums over positive and negative directions on the lattice : 

B(P) = B’(P) + B<(P) . (3.20) 
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where B> and B< are given by (3.12) with B. and B, replaced by 

B&(P) = ~[s(P)lj-‘c3’” , (3.21) 
j>O 

B&(P) = c[s(p)]j-‘cy . (3.22) 
SO 

Next, we consider the diagonalization of the corner transfer matrix. In reference 

[21], Baxter diagonalized the corner transfer matrix directly. Here we will consider 

instead the operator 

'0 = F : 2 jX(j, j + 1) : +COW~. 
j=-m 

=: 
( 1 

,g +Jz jX(j, j + 1) : +cast. = ti+’ + f$l . (3.23) 

which has the same eigenstates as the CTM. In the second line, we separated the sum 

into positive and negative parts again. The constant will be chosen later. In (3.23) the 

normal ordering is to be taken with respect to the vacuum (lowest lying eigenstate) of 

f& This vacuum state may be obtained by first diagonalizing fZco and then taking its 

negative eigenmodes to be filled. As Baxter has shown, the operator /$+l is related 

to the (normalized) corner transfer matrix A(+)(u) by A(+)(u) = exp[-(7~/2K),Ce)], 

and thus has the same eigenstates as the CTM. Again using elementary properties of 

elliptic functions, it can be shown that 

LWP4P)l= y$ (WWW4) , 

[Lo, WPW)l = $6 (D(P)&(P)) . 

and therefore, 

. 

Thus, we define the operators 

qe) E /_y & exp 
( 1 

-g B(P) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
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(3.28) 

(for 1 =integer) which obey anticommutation relations 

Pw),W’)) = &.P , {q(L), Y?(f)} = {v!(l), T!(t)} = 0 (3.29) 

and have a complex conjugation property W(L) = G(L). These operators diagonalize 

G: 

[&,qq = -t w I 

[La,@(L)] = 1 @(4 

Thus, up to a normal ordering constant, 

(3.30) 

- 
Lo = c L aqqP(L) . (3.31) 

f 

This clearly demonstrates that the eigenvalues of the CTM, in contrast with the 

eigenvalues of the RTM, stay discrete in the infinite-volume limit. Moreover, the 

eigenvalues of (2K/7ru) log CTM are integers. The periodicity of the Brillouin zone 

is responsible for this discrete eigenvalue structure. 

Eq. (3.27) exhibits a direct relation between the eigenstates of the Hamiltonian 

created by B(p) and those of the CTM created by 9(L). It is precisely what one 

would expect from the physical interpretation of the CTM as a lattice Lorentz boost 

operator which shifts the rapidities of all the particles in a Hamiltonian eigenstate 

by an equal amount.[9] The states obtained by Fourier transforming the Hamiltonian 

eigenstates over the rapidity of each particle are thus eigenstates of the CTM. The 

lattice fermion theory described by the XY spin chain represents a compactification of 

momentum space which preserves the Lorentz symmetry while discretizing the eigen- 

values of the boost operator. Here we have exhibited this structure in the particularly 

simple context of a free fermion theory. However, the physical picture we have ar- 

rived at also applies to more general interacting theories such as the eight-vertex/XYZ 

model, and should provide a framework for investigating the eigenvectors of the CTM 

and their relation to the Bethe ansatz equations which describe the eigenstates of the 

XY 2 Hamiltonian. 
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One of the important results of Baxter’s work on corner transfer matrices is that, 

with the appropriate definition of the spectral parameter, the integer eigenvalue struc- 

ture we have discussed for the Ising/XY spin chain case is also valid in the full eight- 

vertex model. Correspondingly, the role of the CTM as the rapidity shift operator 

and its relation to the RTM and the XYZ Hamiltonian remain intact for the inter- 

acting case ([9]). The main complication in constructing eigenstates of the CTM in 

the full eight-vertex model arises from the filling of the Dirac sea and the attendant 

Bethe ansatz equations needed to describe eigenstates of the RTM. Although our 

main focus in this paper is on the Ising case, we will briefly indicate here how the Vi- 

rasoro structure of the full eight-vertex model may be abstracted from the eigenvalue 

spectrum of the CTM [l]. However, the explicit construction of the eigenstates of the 

CTM for the general eight-vertex model will not be discussed here. The eigenvalue 

structure of the eight-vertex model CTM may be represented as 

Lt;” = 5(L/2)(a; + 1) , (3.32) 
kl 

in the diagonal representation of the CTM [l]. Here, the matrices uJ’“” are the Pauli 

matrices, but are physically distinct from the matrices in the arrow representation 

used in the last section. In other words, the suffix L should not be confused with the 

label j for the lattice sites. (In the low temperature limit, L does reduce to a site 

index in what Baxter referred to as the “third-spin representation” [6].) One can 

deiine a parity conjugate of &” obtained by 13i-j G P&‘)P- with PoVP-’ = 

-Q?;, PvTP-’ = ulj. A fulI boost operator which corresponds to a no:malized 

extended CTM is defined to be f$‘l + Lie’. Note that this operator is positive 

semi-definite by construction. 

One can apply again the Jordan-Wigner transformation to the Pauli spin operators 

defined in this diagonal representation of the CTM to construct canonical fermion 

fields ‘I’(L) and G(f’) by 

q(f) = flu; 7; , 
( 1 i<l (3.33) 

(3.34) 

with the anticommutators (3.29). In the Ising case, the mode operators Q!(L), G(e) 
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are given explicitly by (3.27) and (3.28). 
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IV. Lattice Virasoro Algebra 

Let us now turn to the construction of the lattice Virasoro algebra [l]. We require 

that the central element of the lattice Virasoro algebra is 

~o~~~)+~I;)+h=:Cf~(f)~(f):+h. (4.1) 
L 

Here, h is a constant term and the normal ordering is with respect to the state 1 h > 

defined by 

V(f) 1 h) = 0 , for L 2 1 , G(f) 1 h) = 0 , for L 5 -1 . (4.2) 

To anticipate the form of the Virasoro operators for n # 0, recall that, classically, 

the conformal generators may be written as differential operators J,, = -+z”+r$ - 

+$zn+r acting on analytic functions of I. In our case, an analogous operator L;, acts 

on the analytic plane denoted by < E ezp(i@/2K). Since the algebra relies upon 

the property [&, z] = 1 alone, we may construct the L’s by replacing z by $ and 2 

by -C : 

i, = gun !F $ (22; ( dC”+’ 
(W 

= (‘I’ (-$ - i(n + I)-$;) Cl/’ for n 2 -1 . (4.3) 

This formula also holds for n < -2 if we take negative powers of the derivative to 

represent indefinite integration, 

(-$)-I = fdc’ (4.4) 
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In this way, the lattice Virasoro algebra 

W” , Ll = (n - m) L,+, + kc”” - n)&+*,o 

is given by 

(4.5) 

2K - iK’) @(p) : + hb,,, , 

= C(‘~~~)~~~:~,~~~):~(f)~(f+n):+h6~,o . (4.6) 
t 

The physical Hilbert space based on the angular quantization and built from the 

state ] h > forms a highest weight representation of the lattice Virasoro algebra: the 

eigenvalues of the operator .Ce are bounded from below. Also,the eigenvalues of Lo are 

doubly degenerate due to the zero modes of the operators ‘X’(.! = 0) and $(L = 0). 

The highest weight vector, therefore, forms a two-dimensional representation under 

parity conjugation. ( Ramond sector ). 

As we will see in the next section, eq. (4.6) is identical in form to the Virasoro 

operators of the standard critical conformal algebra written in the momentum rep- 

resentation. However, the physical significance of the algebra is more subtle when 

we are away from the critical temperature. It is only at T = T, that the eigenmode 

operator ‘3(L) is proportional to the Fourier transform of a local field in r-space (see 

the next Section). Away from T. the relation between ‘l!(f) and the local lattice op- 

erators of the theory is more complicated, and is closely related to the structure of 

the Hamiltonian eigenstates. It is amusing to note that at T = T. the eigenvalue e is 

an “angular momentum” variable (i. e. it is Fourier conjugate to the angle variable 

in coordinate space) while in the low-temperature limit T 4 0 it becomes the lattice 

site number. 

The calculation of the central charge c and the highest weight h is done in a 

standard way [22]. One calculates 

(h 1 [,&L-J 1 h) = 2nh + i”z(n” -n) . 

Calculating the left hand side using eq. (4.7), one finds, after a proper treatment of 

the zero modes, c = 1 and h = i. 
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As is well-known, the expression for &., is not the only form of the “first quantized” 

operator satisfying the classical Virasoro algebra. We may construct a one-parameter 

family of first quantized operators L, = -( 1 - ~)z”+r$ - 7$zn+l. Likewise, 

-L = c- (1 - 7)s +7c$$ c6 ( ) 
= (le6 ($ - -y(n + l)$i) Cs for n 2 -1 . (4.8) 

For n 5 -2, we replace the derivative by eq. (4.4). We obtain 

L=={(l-r)n+L+6-7) r(;(; qp(fp(f + n) . (4.9) 
t 

The highest weight vector is nondegenerate for 6 # 7. (Neveu-Schwarz sector). We 

fmds 

c = -l27”+127-2, 

h = ~(6-7)1-~(6-7)-~7~+~7. 

The degenerate (Ramond) case corresponds to b = 7 with the same results as above 

after treating the zero modes differently. 

From now on, we focus on the c = 1 Virasoro algebra. Among the Virasoro 

operators we have constructed, La and L-1 are known symmetries of the system: Lo 

is a rapidity shift (boost) operator and L-1 is a certain linear combination of the 

sequence of conserved charges. (This can be seen from eq. (4.6) since ,C-r is just an 

integral over the conserved operator B’(P)B(P) which describes the particle density 

in P-space.) In the above construction of the lattice Virasoro algebra, however, the 

role of the rest of the operators as the realization of an infinite dimensional symmetry 

of the system is not immediately evident. In later sections, we will try to further 

clarify this point by i) showing the connection to the conventional Virasoro algebra 

at the critical point and by ii) revealing a relation with infinite conservation laws in the 

massive scaling limit. Let us here describe the qualitative behavior at k -+ 0 (T + 0) 

and k + 1 (T + T.). At k = 0, the lattice momentum is identified with the lattice 

%I ref. [l], we naed a form corresponding to 7 = 0 by adding half of the number operator to Lo. 
This produced c = -2. 
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rapidity and the index ,! is identified as the site index j. The operator L,, is local in 

the sense that q and % are separated by n sites. As k deviates from 0, the above 

structure is modified by some smearing function decaying with the distance. On the 

other hand, as k goes to 1, the eigenvalues of the CTM become continuous, and 

one loses the Brillouin zone perodicity. The continuum limit of eq. (4.6) with mode 

operators defined by eqs. (3.27), (3.28) (or (3.33), (3.34)) is not directly related to the 

standard Virasoro algebra at the critical point. On the other hand, the periodicity of 

the imaginary rapidity survives the continuum limit. It is this period which gives rise 

to the discrete eigenvalue structure at the critical point. We would like to construct 

CTM eigenmode operators Fourier-transformed over the imaginary rapidity direction. 

We will refer to these as Euclidean eigenmode operators. 

For that purpose, let us first recall that the energy eigenmode operator B(P) 

is given as an operator-valued Fourier series with respect to the lattice momentum 

(c.f. eqs. (3.21)- (3.22) : 

B(p) s Cj(j).?j@) = B>(P) + B<(p) , (4.11) 
j 

for p real and real SK’. Following a standard procedure of harmonic analysis [23], 

we introduce a conjugate Fourier series 

B,,+(P) = -iCf(j)sgn(j)e’+@) = -i (B’(P) - B<(p)) (4.12) 
j 

Viewed as a complex function of w E &@), th ese series have extensions from the unit 

circle 1 w ]= 1 to the unit disc D = {{ w I I w ]< 1)) through the convolution with 

the Poisson kernel ‘P and its harmonic conjugate Q respectively : 

ll(P,~) G Cf(j)deiid8) = P * B , 
i 

(4.13) 

13eo,,j(P,r) 3 -iCf(j)sgn(j),U’eij~8) = Q + B..e . (4.14) 
j 

Here. 

P=Re:“,zz, Q = Irni t ::?I . 

Equivalently, the expressions for B(P)+IB,ti(P) = 2B’(p) and B(fi)-iB,.nj(P) = 

2B<(p) are convergent at the shaded areas of Fig. 5 and Fig. 6 respectively. They 



-21- FERMILAB-Pub-88/49-T 

separately give rise to an (anti-)holomorphic operator in the corresponding regions of 

the complex w plane. The extension of B’“<(p) to the entire imaginary period of 

p is done by analytic continuation in the w plane. All in all, the CTM eigenmode 

operators are given by 

qe(f) = ei’/c, &C.+‘+‘l’~>(p + K) + eTi J,< &ce+t+vaB<(p + Kl 
, 

‘@e(f) = =fi Jc, ~(.-‘-‘f’~‘(~+3K-iK~)feii j 
(4.16) 

c< ~C-~-“‘B’(P+3K-iK’) . 
(4.17) 

Here, C. = es and the contours 0, C<, &‘, Cc are shown in Fig. 7. It is 

straightforward to check the canonical anticommutation relation (eq. (3.30). The 

paths in the real direction shown in Fig. 7 do not give rise to any contribution but 

are introduced to indicate the location of the cuts of B(/3) in the C. plane. The above 

eqs. (4.16), (4.17) can be rewritten as 

!@‘,(f) = =f-+ 
(/:a, +/I:::-‘“) &+f+l%o& + K) 

+ =” (/% + /:;;,-,,) &t’+‘b’(/3 + K) 

+ =:’ (/yi,. + /:;y) &+‘+“‘B<(p + K) , 
(4.18) 

if@) = e’” (/6’” + /;e<K,) &c’L+“‘&.,-(@ + 3K - iK’) 

+ IZ” (/1,, + /;I:““‘) &(:+‘b’(p + 3K - iK’) 

+ e’i (11’ + /I::-iK.) $&$+“‘~‘(p + 3K - iK’) . (4.19) 

(4.20) 

This shows that the integrand on the real axis is the conjugate function defined in the 

positive p region. The Euclidean version of the Virssoro algebra ({L,)} is generated 

by 

L, = c (f + in) “,‘;r ,: ;,;:” : tte (f) i!e (f + n) : +h&,,o 
L 

(4.21) 
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The calculation of the central charge and the highest weight is the same as before, 

but the state forming the highest weight representation is distinct from the original 

case. 

So far, we have been discussing the Virasoro algebra based on the first quantized 

operator i,,. A main reason is its relation to the critical Virasoro alwebra which we 

will discuss in the next section. However, it is possible to form a Virasoro algebra of 

a completetely different kind by using the operator &, = -$‘+‘$ - i$(“+l. This 

algebra denoted by {{Ct*}} generates diffeomorphisms of the spectral (rapidity) 

parameter.[l4] It is given by 

p?3 = : n I “_“,$B (0 + 2K - iK’) .!,,B(/3) : , (4.22) 

= ~(L+~n):~(L)~(L+rr):+hs,,a . 

The Euclidean version {{Li#}} is constructed by replacing the CTM mode operators 

in eq. (4.22) by the Euclidean mode operators (eqs. (4.16), (4.17)). From any of the 

noncritical Virasoro algebras given above, we can construct its parity conjugate by 

replacing C by -l/C. This pair of Virasoro algebras, however, do not commute due 

to the presence of the mass gap. 

Note that the hermitean conjugation property [q(!)]t = G(L), appropriate to fixed 

time quantization, leads to the unitarity property [fZ:ff] t = .C?if for the Virasoro 

operators defined in (4.22). On the other hand, the Euclidean algebra (4.21) should 

be understood as a generalization of the radially quantized conformal algebra. In the 

limit 2’ + T., the conjugation property appropriate to radial quantization leads to 
t the unitarity of (4.21), L, = L-,, as we will see in the next section. 
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V. Behavior at the Critical Point and CFT in the Analytic 

Momentum Plane 

In this section, we will consider the form of the Euclidean eigenmode operators 

!I’.(.!), G.(L) and the Virasoro operators L, at the critical point (i.e. k = 1 case). 

This permits us to exhibit the connection of the lattice Virasoro algebra (4.21) with 

the conventional critical Virasoro algebra generated by massless Dirac fermions. As 

we showed in the previous section, the eigenmode operators of Lo (and of the CTM) 

are simply the Fourier components of B(P) around the Brillouin zone period. Since 

this period is going to infinity at the critical point, the eigenvalues of the CTM, 

which are discrete for T # T,, become continuous in the critical limit. However, the 

periodicity in the imaginary rapidity direction, corresponding to Euclidean rotations, 

still survives at the critical point. It is this period which gives rise to the discrete 

eigenvalue structure of the critical Virasoro algebra. In the standard treatment of 

the critical theory, this is implemented by defining fermion field operators which are 

analytic functions of complex Euclidean coordinate z = t + iy and Fourier-analyzing 

them around the unit circle in the z-plane (radial quantization). We will show that 

an equivalent momentum space formulation of the critical Virasoro algebra can be 

obtained by defining analytically continued momentum-space operators and Fourier- 

transforming them around the imaginary direction of the spectral (rapidity) torus. 

This momentum space formulation allows the relation between the conformal algebra 

and the noncritical algebra to be exhibited. 

Let us first examine the elliptic function expressions (eqs. (3.5)-(3.7)) again, but 

this time, at the critical point, k + 1. Since K has gone to infinity, (and K’ + ?r/2), 

one has to carefully locate the lattice rapidity p. . This can be most clearly seen in 

eq. (3.11) : the energy- momentum dispersion curve develops a cusp at p = naklr/2, 

and A. = I cosp 1 . (See Fig. 8). This leads us to employ another Brillouin zone 

scheme different from the one adopted in Section III. The proper shift turns out to 

be a = PC-2K+iK’/2 and &+iK’/2 with -K < p. < K. These two distinct shifts 

cover the original full period 4K and we call these two regimes, regime I and regime 

II respectively. Similarly, regime III and regime IV are the regions -K < PC < K 

for Q = & - 2K - iK’/2 and pe - iK’/2 respectively. Eqs. (3.5), (3.6), (3.7) are now 

m%) = i tanh(Pc + ir/4) = &4%) 1 (5.1) 



-2P FERMILAB-Pub-88/49-T 

c:(b) = -i/ cosh(& + k/4) = ,/m e+@.)/~ , (5.2) 

R(Pc) = 11 cash@ + k/4) = iJ-Zcosp(P,) &@=)I~ , (5.3) 

in regime I and 

sf’(fle) = 4 tanh(& + k/4) = eiP(8.1 , (5.4) 

cf’(&) = i/ cosh(& + k/4) = iJ% eWW , (5.5) 

Df’(@.) = I/ cosh(h + i*/4) = J- @@.)/a , (5.6) 

in regime II respectively. The expressions at regime III and regime IV arc given 

by replacing PC by Be - ia/ in regime I and in regime II respectively. The energy- 

eigenmode operator is now 

WC) = ie’“‘JaJx$i& $l(qc) , for P(&) = T/2 - qca ) (5.7) 

= -+“J~ &(-qc) , for p(&) = -x/2 - q,a , (5.8) 

B”(A) = -iei*‘iaJa &(qJ , for p(P.) = r/2 - qca , (5.9) 

= e’““aJJqiai &(-qe) , for p(P.) = -*/2 - q&7 ) (5.10) 

in those regions indicated by the superscripts. We have given two different expressions 

in one regime. They are the relevant expressions at either & N +m or PC N -m 

and describe independent fermionic degrees of freedom with either positive (0 < qC < 

n/212) or negative (-n/2a < q. < 0) momenta in the continuum limit. Similarly, in 

regime III and in regime IV, we have 

B’“(P,) z E’(pc -iK’) , 

= e'*q=faJsin(q,a)la+l(qc) ,for PM) = r/2 - qea , (5.11) 

= ieiag~'a Jw 42(-s) ,for p&) = -x/2 - qca , (5.12) 

lP(j3.) E Err@. - X’) , 

= eisqe”J~ 1cfs(q6) ,for p(A) = u/2 - q.a , (5.13) 

= iei'q*/a Jw ql(-qc) ,for p(p.) = -a/2 - qca . (5.14) 
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These are schematically summarized in Fig. 9. The upper (lower) components of 

the Dirac fermion are located near the cusp at p = :(-t) or, equivalently, at PC + 

+co( -co). Positive and negative v&es of momentum are on opposite sides of each 

Next, we construct the Euclidean eigenmode operators by Fourier transforming 

the B(P) operator extended to the imaginary rapidity direction in Section IV. We 

locate the full imaginary period at Re & -+ koo so that they reduce to the proper 

continuum limit expressions. Thus we have 

q.(f) = ei’ J *~E+~+~~~,P(pc) + eSi J dp.d+tt~~~Br<(p,) 15.15j CJ’ d%- CI< dsr 
+$) = ,:i J 

+efi J -L dpe -f-l/agrr<(& _ #) C”< dir (5.16) 

Note that the power l/2 is dictated by the fact that the operator B(P) is double-valued 

as an analytic function of Cc G I?‘. The contours are shown in Fig. 10. We have 

extended the original contours by adding two paths in the real direction (which cancel 

by periodicity) without changing the definition of the mode operators. The difference 

between crarr> and crmrr< is dictated by the requirement that the summation over 

the lattice sites in B’<-“> (A) ( Br’Orrr%%-)) IS convergent so that the integrand 

can be analytically continued into the region 0 5 Im PC 5 f (-; 5 Im PC 5 0). 

Let us now study the continuum limit of eqs. (5.7)-(5.14). We find 

B’(A) + it-n.)“‘?h(%) I -(qc.)‘%(-qc) I (5.17) 

B”(P4 + -+lc)“‘%h(~c;) 7 (-QJ1’%(-qc) , (5.18) 

B”‘(A) -+ (qJ1’%(qc) , 4-d’V2(-ne) , (5.19) 

@“(PC) --t (-4;Fh(n4 , i(n.)“%(--~~) , (5.20) 

as a -P 0 ,pc --t fm with qc - *aei2fle. (The sign may be read off in each individual 

case from Fig. 9). Resealing the CTM mode operators and the Virasoro operators 

by q.(L) z e-~(-2/a)‘+“‘~~~(f), 3.(f) e ef~(-2/a)-‘-‘/s~~al(~), 
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and L, = (-2/a)“L;, we obtain, in the continuum limit, 

q-(t) = J 2 J dtc~tc,<q~-(-lfae-‘~~=~l(~) , (5.21) 

G,“‘(L) = ;(-,1/ ~JdECZt~~q~-l/l~-is=z~l~Z) , (5.22) 

(5.23) 

The contours C,> and Cz in the qc plane are shown in Fig. 11. One can open up these 

contours wrapping the cut so that they lie on the real axis. The fact that we have to 

choose the cuts in the analytic qc plane dependent on the phase of z is crucial, as we 

discuss below. 

So far, we have been considering the left mover +i and the resulting Virasoro alge- 

bra. The right moving Virasoro algebra can be constructed in a completely analogous 

way by starting with the expressions for CTM mode operators with contours seen 

in Fig. 12. From now on, we restrict our discussion to the left mover ( the analytic 

part). 

After the continuum limit is taken, the system is described by the Lagrangian: 

(5.24) 

In the remainder of this section, we show how the above expressions reduce to the 

conventional framework of the conformal field theory of massless Dirac fermions. 

Let us very briefly sketch the standard radial quantisation based on the complex 

coordinates z = 2 + itE = exp(ic + r), % = 2 - itE. Here, T is taken to be a time 

variable. The mode expansions of the analytic fields read +1(z) = ~b,,z-“-‘/s , 

&(.z) = ~i),~-“-~/s , with (bn,im} = 6,,+,,0 . Following thendiscussion in 

Section IV, “we consider the case rz E Z , namely the double-valued (Ramond) field. 

We suppress the subscript 1. The stress-energy tensor leading to the Virasoro algebra 

with the central charge c = 1 is 

T(z) = -;$(z) ; T)(Z) = CL,CF=P- , 

n 

(5.25) 
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with 

LCFT = c (L + n/2) kcbr+, . n (5.26) 

The natural hermiticity condition is with respect to the states constructed on the 

unit circle : 

(W(W1~‘)~~l,z = ~~~(4(d~Z)“a 
i.e. iq = +bt_, . (5.27) 

Motivated by eqs. (5.21)(5.22), we introduce the following double-contour inte- 

grals 

‘P,“T(l) s & c dpdt(-ip)-‘-“2e-iP’~(t) , J 
*t,CPT(t) E x(-l)‘& c dpdt(--ip)-‘-“ae-i~z~(z) . J 

(5.28) 

(5.29) 

Here, we denote by C a two dimensional surface of the four dimensional space defined 

by the direct product of the complex p plane and the complex z plane. The inte- 

grand contains square root branch cuts both in the pplane and the z-plane. The cut 

forms a two-dimensional surface in the four-dimensional space whose orientation is 

determined by the requirement that the factor e-’ ‘r’ is always exponentially decaying 

asymptoticahy. For any fixed value of the one integration variable, the contour C 

in the other variable is defined to wrap around this surface in the counterclockwise 

direction. (See, Fig. 13.) In the special case where the z plane is restricted to 

the real line, the above expression reduces to eqs. (5.21),(5.22) up to an irrelevant 

phase. (The factor w in eq. (5.28) is due to the difference in the normalization of the 

anticommutators in fixed time and radial qua&ration schemes.) 

To identify P, ( CFT L), let us perform the p integration first. The p integration is 

nothing but the Hankel representation of the inverse r function. The subsequent z 

integration does not have a cut in the integrand. We find 

qCFT(4 = qt $,2) . c (5.30) 

Thus, gCFT(.!) is equal, up to a normalization factor, to the mode operator in the e 
radial quantization scheme. On the other hand, one can carry out the z integration 
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first and subsequently, the p integration. Eq. (5.27) then reads 

a(p) E &J, dze-iPz$(z) , 
1 

PT(f) = / .$ip)-“~‘a(p) . c 

(5.31) 

(5.32) 

Again, the contour C, of the z integration wraps around the cut of the double valued 

field r,!~(.z) which is chosen such that emirz is exponentially decaying. Eq. (5.30) is 

similar to a one-side Laplace transform but the origin of the integrand is avoided so 

that it is applicable to fields introduced by Laurent expansion. Substituting these 

expressions into eq. (5.30), we see 

a(p) = $;f';-;;;,bm 
n 

= ~(ipywJ.CFT(n) . (5.33) 

The operator a(p)(ip)‘l’ is Laurent expandable. The field o(p) can be viewed as a 

weight l/2 conformal field in the analytic momentum plane and is double valued. The 

qCFT is the mode operator in the analytic momentum plane. Inverting eq. (5.32), we c 
obtain 

$1(z) = / $l(p)~f(n + 1/2)(ipz)-“-“s . 
n 

(5.34) 

Here, the contour is’around the origin. Writing p = en we see that the integration 

is over a period in the direction of imaginary rapidity. One can similarly proceed to 

the conjugate field 111 . We just give the corresponding formulae : 

$CFT(l) = “(-I)‘& c dpd=(-ip)-‘-“ae-‘P*~(z) e J 
= Ir(-1)’ if 

r(L + l/2) 

= w(-l)f J ~(-ip)-‘-‘qp) , 

(5.35) 

(5.36) 

(5.37) 

c(p) G 2 Jdze-“s1~1(z) (5.38) 

= ~~(-l)“(ip)“-‘lat!,CFT(n) , (5.39) 
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+(z) = ~~~(p)Cr(n+1/2)(ipr)-"-1'a . 
n 

The additional normalization factor in eq. (5.34) is necessary so that the canonical 

commutator 

{*y(r), y(L)} = 6ftf’,o . (5.41) 

follows from eqs. (5.28)(5.29) and th e reflection formula for the F function. 

We are now ready to express the Virasoro operators LzFT’s in the momentum 

representation. In terms of the momentum mode operators, they read 

LCFT = c(f + ~~)r(~(:1;_:/~~2)B,,(-f)~~FT(f + n) , n (5.42) 
f 

This corresponds precisely with the expression we obtained for the XY spin chain at 

the critical point, i.e. eq. (5.23). 

VI. Scaling Limit and Massive Free Fermion Algebra 

In this section, we study the massive scaling limit of the XY spin chain. As we 

stated in the Introduction, our motivation for this study is that restriction to the 

scaling regime allows us to more easily study the connection between the noncritical 

Virasoro algebra and the infinitely many mutually commuting charges in more familiar 

field-theoretic terms. First let us describe the procedure for taking the continuum 

limit of the XY spin chain and recovering a massive Dirac fermion theory. We must 

take the elliptic modulus k t 1 and simultaneously scale the lattice spacing a to 

zero in such a way that the mass of the fermion remains finite. Note that, as k -+ 1, 

snp -+ tanhp , 

cnP,dnP -+ sechp . (‘3.1) 

Using this and eqs. (3.5)-(3.7), we find the continuum limits for S(S),C(p), and 

D(P) : 

S(P) -a ieeiq , qc Tsinh28 , 
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k’ 
C(P) -+ -[e 2 

-:i+D + ,+qi-81 , 

k’ 
W) + -k 2 

+Ti+s + e-z~-~] . 

(6.3) 

(6.4) 

Here, k’ = m is the complimentary modulus and the the range of p originally 

from -K to +K is now extended to the real line while the imaginary period 2K’ 

becomes r. Note that $ -+ 2p z a is the continuum rapidity of a one particle state. 

The above scaling limit is described by the relativistic Lagrangian 

~=2d1(~+~)VLL+~~~(~-~)ljil-m(hh+hY)I) . (6.5) 

In fact, it is straightforward to check from eqs. (2.22)-(2.25) that in the continuum 

limit, a + 0, k -+ 1, with fixed k”/a, the quantity (HO + a,,,.,,) /a goes over to the 

Dirac Hamilton+ with the fermion mass given by k”/4a. The diagonalieation of 

the Hamiltonian naturally leads us to define a set of operators 

m - 
x; = $1 

z -m dze-imruP (fe*““&(z) + e+++s(r)) , 

g;= 24 
/-/ 

2 -1 dze+i-*P (*e*qJ+) + e-‘yJ,(z)) 

(6.6) 

(6.7) 

Here, the signs are associated with the upper and the lower entries of the subscripts 

for x and 2. For later purpose, we also introduce 

(6.6) 

(6.9) 

From eqs. (6.2)-(6.4), we find that the eigenmode operators B(p) reduce to the above 

ones in the scaling limit : 

W) --+ --ix2((2) , (6.10) 

B(-P + 2K) --+ 21(a) I (6.11) 

W-P rw + Fxl(n) , (6.12) 

B(P + 2K TF X’) -+ hi&(a) . (6.13) 
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These are schematically represented in Fig. 14. The diagonalized Hamiltonian reads 

H= 
/ 

m da 
-m G cd a (21(a),i4a)) (: "1) (:::I;) ' 

(6.14) 

The operators jj1,(1), x1,(z) are respectively creation and annihilation operators of 

positive (negative) energy states with respect to the empty Dirac sea. They axa 

simple (albeit somewhat trivial) example of the Bethe ansatz creation and annihilation 

operators. Furthermore, these positive and negative energy states are succinctly 

described by extending the domain of Q to the line a = real + ix. Define 

x(4 = x1(a) (6.15) 

over this extended contour denoted as C. (See Fig. 15.) Then, x(a) = -ixs(ir - Q) 

for Q the real + in line. Similarly, define 

%(a) = 21(a) (6.16) 

over the real line, and 

%(a) E lil(cY - 2rrd) = &(i?r - a) (6.17) 

over a = real + ia line. The canonical anticommutators are now given as 

tX(“),aQ’)) = 24a - a’) , (6.18) 

over the C contour, with the &function taken to vanish when LX - u’ has a nonzero 

imaginary part. The Hamiltonian is given by 

H= 
/ 
c E cash (r e g(a)x(a) . 

Here e is 1 for cz real and -1 for a real + ia. 

In the Bethe ansatz solution to a relativistic fermion model, the construction of 

the physical Hilbert space associated with the Hamiltonian (6.19) is accomplished 

by first diagonalidng the Hamiltonian in an empty Dirac sea, and then fUing up the 

negative energy modes. In a similar way, we construct a highest weight representation 

of the Virasoro algebra by diagonalizing the lattice boost operator LO and taking its 
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negative eigenmodes to be fdled. Of course, in this approach we must be careful to 

compute the central charge anomaly in the fdled vacuum.4 Some expressions we will 

use below in the fixed time quantization are, therefore, strictly speaking formal ones 

mainly to reveal the locality of the algebra. 

Before considering the scaling limit of the lattice Virasoro algebra, it is useful 

to consider the form of the infinite sequence of conserved densities. This sequence 

results from the fact that not only the total momentum, but the entire momentum 

distribution, is conserved in time. Thus, we define a set of operators 

Q”& e-g(a)x(a) 7l E 2 . (6.20) 

One may verify the action of the Boost operators on Q,, : 

[Lo, Q-1 = nQn . (6.21) 

This means that, for an arbitrary eigenstate 1 h ) labeled by Lo eigenvalue h, 

Q,,Ih)=ln+h) or QnIh)=O. (6.22) 

One can perform the cx or C E e” integration, substituting eqs. (6.6), (6.7) into 

eq. (6.20). The following formula due to the symmetry under C -+ (-l/C) is funda- 

mental to the locality of conserved densities : 

$5(z) for 71 E 2 . (6.23) 

Here the integration is over the real axis and we introduced a set of polynomials J’,,(z) 

defined by 

= zP,-l(Z) + Pn-z(z) . (6.24) 

‘Note that the eigenmode operator B(P) along real 0 1s automatically B creation operator with 
respect to the jilled vacuum. On the other hand, in the Bethe ansats or quantum inverse formalism, 
one starts out from the pseudovacuum and builds the physical vacuum 111 a state with Wed negative 
energy modes. 
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+ ,+*i/, iK”= 
/ --3iK,,2&Se-f-fBc(-P - K + iK’) t (6.29) 

G.(l) = et+ 
J 

~;,,l&C.‘+tB’(-P + K) 

+ ,t+ 
/ 

Here, the contours in the above expressions are shown in Fig.16. Since the integrands 

are all periodic, one can add to the original contours two paths of length 2K ex- 

tending to the real direction without changing anything. (See Fig. 16.) Substituting 

eqs. (6.29), (6.30) into eq. (4.21) and performing the e summation, we obtain 

L, = $B(-p + K) i, B(-P - K + iK’) . (6.31) 
e 

L = c. ( (~)n+l-~(~+l,(~)“~~-l) fOrn I-1 . (6.32) 

and the derivative is replaced by the integration for n 5 -2. One can check that, 

as K becomes large, the integrands in eqs. (6.29)- (6.31) have exponentially decaying 

contributions at the shaded areas in Fig. 16. We can then effectively turn the full 

period in the imaginary direction into a half period so that the two paths running in 

the real directions are separated by K’ + ;. Resealing the Virasoro operators L, by 

L, G e*“Kfx’L;, we obtain the scaling limit c. -+ C E e* : 

L;= g 

/ / 
%..&‘)i,(a~, a)x..ti(a) . 

c 2iT c 2% 
(6.33) 

Here &,(a), a) is , along the C contour this time, given by 

(~{(~)n+1-~(~+1)(~)nC'-1]6(r.'-~) , for nz-1 (6.34) 

For n 5 -2, the integrations are explicitly performed to give 

pn+ll+ftfp~) I 

(6.35) 
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for o’ 2 Q and 0 for CZ’ 5 Q. We extend this expression to the other regions by 

demanding the ordering Ret 2 ReC Eq. (6.35) is also succinctly represented as 

L(a’, a) = / 
-+ ds(is + l/2 - (n + 1)/2) F(‘s + 1’2) 

qrs - 7&f l/2) 
C’ i’-n[-i’ , (6.36) 

for n E 2 and CY’,CX real. This formula indicates that the Q , CX’ contour is now 

deformed to the real axis. 

We first discuss the case n 2 -1 . It is easy to see, from eqs. (6.33), (6.34) that 

L;‘s are spatial integrals over local operators. The lowest few cases are 

L ,c -1 = / 
drjp’)(z) , (6.37) 

Lr = j&(F) (jr’(z) + j!-‘)(z)) G / dz(4z)l-l . (6.38) 

The operators Lr and LL; are the boost and the light-cone Hamiltonian respectively 

and are elements of the Poincare algebra. The L;’ is the first unfamiliar operator 

arising from the Virasoro algebra: 

Lyl = /dz (F)‘. (j6f’) (z) + 2j$-‘l(z) + jd-“‘(z)) - (p) l (jr)(z) + j:-‘)(z)) 

(4&,, m) i 

2P+, 
( 

2 $ 

+ 7 
, 2P+o 2 & 

9 
‘,:,,)(+;:$;) 

-2P+a 2 $ 
, 

+ (41(4,4&)) 1’ 

L 

.T 
:.(i”‘l ( 

1 

*l(z) 
.Ti -P+a 2 x 

) 

*a(z) 

Here, the s indicates that the power of z is inserted right after the derivative operators 

In general, the term with the highest power of z in LE, (n 2 -1) 

is a linear combination of conserved densities j0 ““‘(z) alone seen in eq. (6.26) : 

(+y” gck,n+l jp-z*)(z) (6.40) 

(6.39) 

The terms with lower powers of I do not have such a direct relation to the higher 

conserved densities. Eq. (6.40) p rovides a direct link between the infinite conservation 

laws and the Virasoro operators. 



-36- FERMILAB-Pub-88/49-T 

Let us denote the local expression for the Virasoro charges by 

L” = 7% / 
dz@(z,t = 0) , n>-1. (6.41) 

For massive free fermions, we have demonstrated the locality of the Virasoro operators 

as well as their relationship with the higher conservation laws. Each Virasoro operator 

requires us to introduce a new member of the sequence of conserved densities. This is 

in contrast with the standard conformal Virasoro algebra where the Virasoro operators 

are generated by a single conserved traceless light-cone stress-energy density. The 

demonstration made here provides a reason why the lattice Virasoro algebra is a 

dynamically realized symmetry despite the non-traceless stress-energy tensor of the 

system. 

One might ask in what sense the densities for the Virasoro operators are conserved. 

Since the Virasoro algebra is a spectrum generating algebra, one should not expect 

&(z,t = 0) to produce a conserved quantity in the usual sense, as for example the 

conserved operators Q,,. This is because the Virasoro charges contain an explicit 

space-time dependence. Nonetheless, they obey a local conservation law, 

.$+(“)(z, t) + -$+‘(2J) = cl , (6.42) 

Note that, for t # 0, the densities contain explicit powers of t as well as I. The 

simplest well-known case is 

$=O)(z,t) = (-i2)31+ (qJ . (6.43) 

Let us write generically 

J’/“(z,t) = ~$o(~)‘(+)“Tf) ‘“‘(z) ,/A = 0,l (6.44) 

and demonstrate, by a recursive procedure, that the series in fact terminates due to 
the fact that @ f=“tf’=n+l is a conserved density. (Lorents invariance alone tells us 

that we must have Lu = n + 1.) From eqs. (6.42) and (6.44), we obtain a recursive 

equation 

(I + l)z$(“l (+iJ’ + z&$~’ U’ + K.&H U’ + (l’ + 1)3;t”) u'tl = 0 . (6.45) 
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This recursion formula is represented by the arrow in Fig. 17. The last term is absent 

for the P = n + 1 line, and the first term is absent for the 1 = to line. The quantities 
7(n) l=W1 (I’ = o t 

0 o n + 1) are inputs. One begins with solving !’ = n + 1 line and 

leads to the conclusion that 7$‘1 “” (L = It o s is vanishing up to total derivatives. e ) . 

The lines P’ = m (0 5 m < n) are then solved one by one from the right and 
7(“) t=n+u’(p = 1 N n) are determined up to total derivatives. Line .! = & is simply 

u:ed to determine ?;‘“’ f=ntl’f’ (e’ = 1 N n + 1). Finally, we obtain a nontrivial 

constraint 
2i d 7(n) c=t+,+l(z) + 2”d7(m) t=w=.yz) = o 
-- 0 mdt mdz ’ 

(6.46) 

This can be easily implemented since 7(“’ f=“f’=n+l(n) is a total derivative of an ar- 

bitrary function. If 5$’ f=“‘f’=n+l (z) were not a conserved density, however, it would 

not be possible to do so, and the entire recursive procedure would not terminate. In 

this way, we see that the conservation law (eq. (6.42)) is guaranteed to hold. ( Actu- 

ally, eq. (6.44) is more general than is necessary. By Lorentz covariance, nonvanishing 

elements up to total derivatives are in I+!’ 5 n+ 1. The operators 7(“’ ‘=“tl-f”f’(z) 

are going to be conserved densities. ) 

The above discussion is sufficient to demonstrate the local densities of the Virasoro 

operators Lr (n 2 -1) as conserved quantities. Let us now discuss the case rz 5 -2 

briefly. A detailed study using eq. (6.23) shows that the operators Lr with n 5 -2 

have nonlocal expressions in the scaling limit. The basic reason is that the inversion 

of the momentum rapidity relation 6 = m(< - $)/2 has a branch so that the ordering 

with respect to C does not translate into the ordering with respect the momenta which 

will guarantee the locality. The nonlocality is order m and becomes irrelevant in the 

massless limit. (See, Fig. 18.) 

In the previous section, we argued that there is another Virasoro algebra parity- 

conjugate to the original one and that they correspond to the left and right Virasoro 

algebras at the critical point. The parity-conjugate Virasoro operators LLp)” are 

obtained by replacing C by -l/C in eqs. (6.33)-(6.36) and eqs. (6.37), (6.38) are 

replaced by 

&--PC = 
/ 

drj!-‘j(z) , (6.47) 

,~p)'c = j& ($?) (ji+‘)(z) + j:-“(z)) = /dz(+iz)31 . (6.48) 
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So far we have discussed the continuum scaling limit of the lattice Virasoro algebra. 

This continuum algebra can naturally be viewed as an integrable extension of the 

conventional Virasoro algebra away from the critical point. We have shown that 

there is such an integrable extension and it originates from the remarkable integer 

eigenvalue structure of the CTM. 

As we discussed in Section IV, there is another Virasoro algebra defined on a 

lattice which represents the diffeomorpbisms of the spectral parameter. Let us study 

the scaling limit of this algebra. One starts out from the expression Lie with mode 

operators given by eqs. (4.16),(4.17). Going through a similar procedure leading to 

eqs. (6.33), (6.34), we obtain the scaling limit of the Virasoro operators Lt*+ : 

p,.. = I !!!?g 
c 27r 

e.,;(~)Lx..,(a) . (6.49) 

L = -,,$ - ;(?a + l)[” . 

This expression is local for all n E 2 : 

,feo’e = / dz (F) . ($+‘)(z) + &‘+l)(.)) - A,(+) (9.51) 

An(+) E tn + ‘1 2 

This time, only terms with first moment and zeroth moments are generated. The 

operator taking the first moment is again a linear combination of the conserved cur- 

rents, guaranteeing that these operators are symmetries of the system. The operators 

,5ffl+ can be viewed as generators of the higher spectral flows in the angular quan- 

tization scheme. We conclude this section with a discussion of this point. (From now 

on, we omit the superscript SC.) 

In conformal field theory, the physical significance of the Virasoro generators LzFT 

is that they describe analytic distortions of complex Euclidean space-time, z = + +iy. 

This is seen directly from the form of the local conformal charge t”+‘T(z), noting 

that the light-cone stress tensor T(z) generates local motions of the coordinate z, e.g. 

r%),W)l = S(z - z’,&W, (6.53) 



-39- FERMILAB-Pub-88/49-T 

Similar considerations applied to the non-critical Virasoro operators provide some 

insight into their physical significance. In particular, the connection discussed in 

this section between the Virasoro charges and higher conserved charges provides a 

geometrical relation between the Virasoro generators and higher spectral flows. To 

exhibit this relation, we again consider the massive scaling limit of the XY/(Ising)s 

model. Let us begin by discussing the geometrical transformation generated by Lo, 

which is the boost operator for massive fermions at fixed time t = 0, 

Lo = i 
/ 

dz &(a!) , (6.54) 

where 31 is the Hamiltonian density, 

+ m(&b2 +7&b*) . (6.55) 

This, of course, yields the familiar Lorentz transformation properties of the Dirac 

field, 

[L0,dJ,(~)] = 42 (-i-$ ++) - ;+, 

a 1 
= -+l-~~” at 

Lh112(~)1 = -iz (i$ +mg + + 
a = “at$‘+$h 

(6.56) 

where the last expressions follow from the equations of motion. The first term on the 

right hand side of each equation (proportional to z) arises from the t = 0 coordinate 

shift t -+ t + EZ. The second term represents the induced transformation on the 

internal (spin) degree of freedom of the Dirac field. We may think of the space-time 

transformation generated by Lo 1u1 an “angular time evolution,” with each point on 

the x-axis at t = 0 evolving in the time direction, the evolution being proportional to 

the distance from the origin. 

Now let us apply a similar reasoning to interpret the space-time significance of the 

higher Virasoro operators. We will consider the algebra {{Lff’}} which appears to 
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have the simplest interpretation in terms of higher spectral flows. Using the expression 

(6.49), we can write the transformation induced on the fields by Lt" at t = 0 as 

[L~",?bil = iz [%,dJc] + O(1) , (6.58) 

where 

qn = ; (Qn+l + Qn-I) , (6.59) 

and the O(1) term in (6.58) represents terms which do not contain an explicit factor of 

z. The operators Qn are the higher conserved densities defined before in this section. 

We may gain some insight into the significance of (6.58 by recalling the role of higher 

conserved operators in classical soliton theory. [24] There it is often advantageous 

to regard each of these operators as a Hamiltonian, and to consider not only the 

time evolution generated by the original equation of motion, but rather an infinite 

set of possible time evolutions arising from the same initial data. For example, this 

“many time variables” approach was exploited by the Date, et al. [25] to reveal the 

profound role of vertex operators and Kac-Moody algebras in the theory of classical 

KdV solitons. For our case, let us define the infinite set of time variables t, whose 

evolution is generated by the nlh conserved charge q,,, 

Gh$il = $Jj . n 

Then the transformation of the fields under L$" may be written 

W’, $4 = Z&i + O( 1) . 
n 

Thus, just as Lo could be interpreted as the angular time evolution operator associated 

with the original time variable to, the Virasoro operators L, for n > 0 are angular 

time evolution operators associated with the heirarchy of time variables t,. Instead 

of a single space-time plane as in conformal field theory, we are led to consider an 

infinite sequence of space time planes, all of which intersect on the z-axis. The relation 

between the higher Virasoro operators Lt" and the higher conserved charges qn is 

completely analogous to that between Lo and the Dirac Hamiltonian. The O(1) terms 

in (6.58) arise in a manner similar to the spin terms in (6.56)(6.57), but we do not 

have any direct physical interpretation of them. 
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APPENDIX A 

In this Appendix we derive the canonical transformation that diagonahzes the 

operator 

LO = i E j { +;+, - kq4+,l} (A.11 
j=l 

where e; and q are real lattice fermions Satisfying {9,4} = b.&&j(. we want to 

construct a linear transformation 

9(L) = 2 { Atjcy + BtjG} 
j=l 

(-4.2) 

where we require ‘l!(L) to be an eigenmode operator of LO 

[W), Lo1 = M(4 (A.3) 

where Xc is the eigenvalue associated with mode f. Inserting (A.3) into (A.2), we 

obtain two sets of equations 

j&j+, + k(j - l)Ac,j-, = iXcBci (A.4a) 

(j - l)Bt,j-l + kjBt,j+l = -iXlAlj 

Introducing the Fourier transformed coefficients, 

(A.46) 

A&) = 2 eeiPiAlj 
j=1 

Bt(p) = 2 e-‘PiBij 
j=l 

we find that A&J) and B&) must obey the following equations 

$ ( eiPAt (PI) + ke+$At (p) = &Bc (P) 

e-“$Bf (p) + k; (eiPBr (P)) = -~AI (P) 

(A.5a) 

(A.5b) 

(A6.a) 

(A6.b) 
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Now we want to find a change of variables which will simplify these equations. This 

is done by introducing a parametrization of momentum space p + p(a) where a will 

be the spectral or lattice rapidity parameter. We write 

eip = g(a) (A.7) 

The specific form of the function g(a) wilI be chosen in the course of the following 

derivation. 

Equations (A.6) become 

(g’ + k) aAt 
9’ 

a(L + gAc = -iXlBc (A.9a) 

(1 + kg’) BBr 
- + kg Bc = &At 

gf aa 
(A.9b) 

These equations can be further simplified by taking out integration factors, 

& (a) = fi (a) PC (a) (A.lOa) 

Bf (a) = fa (a) QL (a) (A.lOb) 

and choosing jr(o) and fs(n) to satisfy the first order differential equations 

filfl = -j$ (A.&z) 

filfa = -gl y;-, (ASlb) 

Thus, we choose 

fi = Cl [g' + k]-I” (A.1213) 

f2 = C, [g2 + k-‘]-l’l (A.126) 

where Cr and Cr are constants. Choosing Cl = 1 and Cr = 4, Eqs. (A.9) simplify 

to 

h(a)P;(a) = -&(a)Qt(a) (A.13a) 

h(a)Q;(a) = &(k)fi(k) (A.13b) 
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h(Q) = hi [(g’ + k) (ga + k-‘)]I” /g’ 

Up until now, we have not chosen the function g(a) which defines the rapidity 

parametrization (A.7). The Onsager-Baxter elliptic parametrization is obtained by 

requiring that L(a) in (A.13) and (A.14) be a constant. Note that if we choose (cf. 

Ref. [21] 

eiP G g(a) = -i&sna (A.15) 

Then 

(9’ + k)l” = JiTccna 
(9’ + k-l)“’ = $dno 

and 

g’(a) = -i&cnadno! (A.18) 

Thus 

h(a) = i (A.19) 

and 

P;‘(a) = -bQc(a) 

Q;(a) =.W’t(a) 

(A.11 

(A.21 

Thus we obtain the eigenvalues 

XL = 42K (A.3) 

where f is constrained by periodicity to be an integer. The solution to (A.l) leads 

to the result (3.27) of the tent, where the integration contour a = real +dK’/2 is 

dictated by the requirement that the momentum p(a) be real. 
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APPENDIX B 

In this appendix, we collect some explicit formulas for local densities 

P(z) = (44,42) 

P(z) = tjtlP,+~ 

for the sequence of conserved charges 

Qn = /,$eWa)x(a) 71 E 2 , 

E J dzjp)(z) . 

(B-1) 

03.2) 

(J3.3) 

(B-4) 

inroduced in the text. Here, a set of polynomials P,,(z) is defined in eq. (6.24). The 

first several terms are 

PO(z) = 0, PI(z) = 1, Pz(z) = z, P3(z) = 1+ zs and Pi = 22 + t3 . (B.5) 

Also, it satisfies 

P-,(z) = (-)““P,(z) . 03.6) 

As one expects, the lowest few currents correspond to familiar conserved quanti- 

ties; 

.(n=W = 
30 413h + hh , Pa) = r&h - 4 2 a 4~ 

.(n=*l) _ 1 
30 - --(W&P) ,jp=*l)= $PfS) , (B.7) 

where 1-1 = T,,‘P = To1 = T,, and S = 2’11 are the Hamiltonian density, the 

momentum density and the momentum flux respectively and they are the components 

of the stress energy tensor T,,,,: 

71 = -;4* ; 111 + ;lt, ; $2 + m (&& + ljp+l) , P3.8) 
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P = + ; ** - ;qa ; $ja 
2 amis = -+jl-& + $.-4a~ 

The next few currents are explicitly given by 

P.9) 

(B.10) 

(B.ll) 

(B.12) 

( ;) , (B.13) 
a 

(B.14) 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

A picture of the spectral torus 

An elementary face of the eight-vertex model in the spin formulation 

A picture of the extended CTM A 

A schematic representation of the Hamiltonian eigenmode operator B(P) in 

the p plane : the operators located at two points connected by the dotted 

line are canonically conjugate to each other. 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

B’(P) is convergent in the shaded areas of this figure. 

B<(P) is convergent in the shaded areas of this figure. 

The contours used in eqs. (4.16), (4.17) 

This figure illustrates how the energy-momentum dispersion curve develops 

a cusp in the critical limit. 

A schematic representation identifying the Hamiltonian eigenmode opera- 

tor with the complex fermion operators defined in eqs. (2.20), (2.21) in 

the critical limit. 

Fig. 10: 

Fig. 11: 

Fig. 12: 

Fig. 13: 

Fig. 14: 

Fig. 15: 

Fie. 16: The contours in eos. (6.29). (6.301 I \ ~~,I \ ~, 

The contours used in eqs. (5.15), (5.16) 

The contours C,>, C,< in the complex q. plane 

The contours used for the right moving Virasoro algebra 

This figure illustrates how the two dimensional surface C is defined. As 

arg z increases, the cut in the complex p plane also rotates. 

This figure illustrates the identification of B(P) with eigenmode operators 

in the massive continuum limit in various regions of p. 

The contour C is defmed to consist of the real line + the real line + ix 

in the Q plane. 

Figure Captions 
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Fig. 17: An illustration of the recursive procedure given by eq. (6.45) 

Fig. 18: This figure illustrates that the ordering with respect to the momentum 

p leads to a discontinuity when two points in the curve arc on different 

branches. 
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