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Abstract 
We translate the problem of finding the self-intersections of an 

evolving loop of cosmic string into .s topological problem. We use this 
picture to discuss the relationship between cusps and self-intersections 
and give a lower bound on the total number of self-interrections any 
particular loop can have. Thin bound can be calculated by studying 
only the kinks and cusps present on the loop. We discuss the ways 
in which the number of cuaps and self-intersections ULIL change under 
smooth deformations of the initial conditions. 

1 Introduction 

It has been proposed that gravitational collapse around loops of “cosmic 
string” could have caused the formation of galaxies, clusters of galaxies and 
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other large-scale structure in the universe [1,2,3]. In addition, radiation from 
superconducting cosmic strings might also have played a role in structure 
formation [4]. Cosmic strings are a string-like form of matter which appears in 
some field theories with spontaneously broken symmetries. If such symmetry 
breaking were to occur at an energy scale of around 10’s GeV , a network 
of cosmic strings would form in the first 10m3s set after the big bang. These 
strings would have a thickness of about (lOisGeV)-’ (or lo-sscm ) and a 
mass per unit length of roughly (10”GeV)’ ( or lO’rgm/cm). (Throughout 
this article we take h = c = 1) As the tangled network of string evolves, a 
piece of long string can self-intersect and break off a loop [5,6] (Fig. (1)). 
At any given time this mechanism is expected to produce loops with sizes of 
order t, the time since the big bang. By today a range of loops up to lOi 
light-years in size would have been produced. 

An important aspect of our understanding involves the self-intersection of 
a loop of string as it evolves. If a loop continually self-intersects and breaks, 
it can rapidly shatter into a debris of extremely tiny loops. Loops which do 
not self-intersect can survive over a much longer time. 

In this article we consider the simpler problem of strings in flat spacetime 
where the strings equations can be solved exactly. This should be a good 
approximation for loops which are much smaller than the Hubble length. 
Section 2 is a review of the flat spacetime string equations. We develop a 
topological picture of the self-intersection process (Section 3 ) and construct 
a (loop dependent) lower bound on the number of self-intersections which 
depends only on the behavior of the string near kinks and cusps (Sections 
4 and 5). In Section 6 we discuss effects such as the emission of a self- 
intersection by a cusp which can occur as the initial conditions are smoothly 
varied. We expect that our topological point of view can help us gain further 
insight into the behavior of cosmic strings. 



2 The Equations of Motion, the Kibble-Turok 
Sphere, and Cusps 

Loops whose size is substantially less than t and much greater than the string 
thickness are described by the Nambu equation in flat spacetime [7]: 

i(u,t) = r”(U,t) 0) 

subject to 
+.r’=O (2) 

and 
(i)’ + (r’)’ = 1 (3) 

where r is position, c is a parameter which runs along the string, r E &/at 

and r’ s &/au. The gauge choice given by Eq. (2) means there are no 
longitudinal modes, while Eq. (3) h c oases a particular parameterization with 
constant energy per unit o. The general loop solution is given by: 

r(u,t) = ; [a(~-) + b(cr+)] (4) 

Where Q* E G & 1. Equations (2) and (3) translate into 

(a’)’ = (b’)r = 1 (5) 

so a’ and b’ lie on a sphere with radius 1 (known as the Kibble-Turok sphere). 
Let 1 be the total length of CT around the loop. The choice of rest frame 
coordinates and the fact that the loop is closed imply 

/01doi=i’dtr’=O. (6) 

which gives 

ldlra’= /ddcb’= 0. (7) 

This means the average position or “center of mass” of a’ and b’ is at the 
center of the sphere. The continuity of i and r’ implies the continuity of a’ 
and b’ Thus, it is often said that loop solutions correspond to pairs of loops 
on the Kibble-Turok sphere with the center of mass of each at the center of 
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the sphere. In practice 6 and r’ can be discontinuous. These discontinuities 
are introduced when strings cross and reconnect the other way (see Fig. (1)) 
Although the v and t derivatives are actually continuous on the scale of the 
thickness of the string, that scale is extremely small compared to the cosmic 
sizes of the loops of interest. 

The case where r’ = 0 (or a’ + b’ = 0) is particularly interesting. At 
these points the string moves with the speed of light (see Eq. (3)). On the 
Kibble-Turok sphere one can equally well plot -a’ rather than a’ . Then the 
r’ = 0 points correspond to points where the -a’ and b’ curves intersect. 
Given that the center of mass of the -a’ and b’ loops must be at the cen- 
ter of the sphere, such an intersection seems likely to occur if there are no 
discontinuities (kinks). 

The functions ti and r’ (and thus a’ and b’ ) are periodic in cr with period 
1. The motion of the loop will then be periodic in time with period l/2. If 
the curves -a’ and b’ intersect at some o; and ~1 respectively there is only 
one eC and corresponding t, in any given period such that C; = o. - t. and 

UC + =uc+t,. Thus, the crossing of the -a’ and b’ curves corresponds to 
a single moment in the period of the loop where r’ = 0 at some particular 
point, which is referred to as a cusp. 

3 Self-Intersections and Linking Number 

A loop of string intersects itself at a time t; if r(ui,t;) = r(ar,&) for some oi 
and 01. This statement is equivalent to 

J 

0, 
r’(u, ti) dg = o 

-1 

We have found a useful formalism which uses the Kibble-Turok sphere to 
study self-intersections. Equation 8 implies 

- Jr2 a’(a - t;) du = r b’(cr + ti) dg. (9) 
-1 -1 

For every A ( = or - c1 ) we define 

J 

wi+~ 

e-p 
,a’( u) du (10) 
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PA(u) 3 ;[-;‘b’(o)du. 
2 

These quantities are just the averages of -a’ and b’ over a length A. Then, 
defining 8 = l/2(0, + us), Eq. (9) is equivalent to 

czi&(cr - ti) = &(e + ti). (12) 

Each of the functions a’ and @defines a family of closed curves (labeled by A) 
lying inside the Kibble-Turok sphere . When A goes to zero a’and @approach 
-a’ and b’ respectively. As A increases the curves shrink until a’ = p = 0 
when A = 1. Self intersections of the loop correspond to the curves G;a and 
$A intersecting for some value of A, as demonstrated by Equation (12) . For 
a particular choice of A there is no reason to expect a’ and 8 to intersect. 
(They have plenty of ways to avoid one another.) On the other hand, as A 
varies from 0 to I it seems reasonable that somewhere along the way they 
may cross. To each such crossing would correspond an intersection which 
would cut off a loop of length A from the rest of the string. 

It$ useful to define Y(A) as the linking number of the two curves G&(o) 
and fib(u). For most values of A, Y(A) takes on some integer value. At 
special values of A, Y(A) changesup or down discontinuously by one unit. 
These are the values of A where a’ and $ cross, and they correspond to 
self-intersections of the loop. 

4 A Lower Bound on Self-Intersections 

The above formalism can be applied to give a lower bound on the number of 
times a loop self-intersects. It should be made clear that in this discussion 
we let the loop pass on through when it self-intersects, rather than having it 
break in two. 

For every self-intersection there are two discontinuities in Y(A) , one for 
0 < A <_ l/2 and one for Z/2 5 A < 1 (corresponding to the big half and 
the little half of the intersecting loop). We limit our discussion to the range 
0 < A < l/2 so that every intersection is counted only once. The loops which 
break exactly in half have “measure zero” and do not concern physicists. 
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The linking number of two closed curves can be calculated by constructing 
a surface bounded by one of the curves and determining the number of times 
the other curve passes throughout that surface. The curves a’ and p have an 
orientation (direction of increasing c ) so the surface also has an orientation. 
The linking number is the number of times the other curve goes “in” minus 
the number of times it goes “out” of the surface. The overall sign of Y 
depends on convention and is of no importance. 

We will now show that Y(Z/2) = 0. We choose as our surface the set of 
line segments connecting the curve C&(u) to the center of the Kibble-Turok 
sphere . Since a’ has period 1, 

J 

1 
- 

0 
doa’ = C+(U) + Zr,r(-g) (13) 

for any cr , and Eq. (7) implies that 

Similarly 

G/2(Q) = -G/3(--). (14) 

&s(u) = -&2(-u), (15) 

so the curves are symmetric under reflection through the origin. This re- 
flection symmetry means that if one of the line segments that makes up the 
surface is extended through the origin, it continues to lie in the surface and 
eventually reaches another point on the curve. Now consider a point where 
fi,,r(u) pierces the surface for some cr = a, . The reflection symmetry as- 
sures us that &s( -or) is passing through the surface in the opposite sense, 
and the net result is no contribution to the linking number. In this way all 
contributions to the linking number come in pairs with opposite signs and 
Y(1/2) = 0. 

The above result leads immediately to: 

Total Intersections = [Y(O)1 + 2N (16) 

where N 2 0. As A varies from 0 to I/2 , Y must go from Y(0) to 0. It 
can do so directly by simply taking jY(O)l unit steps, or it could take 2N 
additional steps. The additional steps must be even in number since they 
must result in no net change in Y. Each step (regardless of sign) corresponds 
to a self-intersection, thus Eq. (16). 
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5 Calculating Y(0) 

The linking number Y(A) is not defined for values of A for which &, and p’LI 
intersect. In particular, if & and 6s (-a’ and b’) intersect - that is, if the 
loop has cusps - then their linking number is undefined and Y(0) must be 
understood to mean the limit of Y(A) aa A goes to zero. We first show how 
to calculate Y(0) in the case where a’ and b’ are continuous by looking at a’ 
and b’ near cusps. Then we discuss how to handle discontinuities (kinks). 

If we define the surface bounded by /?A as in Section 4, the points where 
I& pierces this surface will, for small A, be close to crossings of a’ and b’ 
(cusps). We examine a Taylor series expansion for GA(C) around A = 0 
and Q- = u;;, the value of K at the cusp. Equation (10) can be integrated 
to give 

GA(U) = 2 [a(u + $) - a(u - %)I . 

Which to second order is 

(17) 

GA(“i + e-) = - a’(u;) + a”(u;)e- + am(,;)(q + !?!t) 1 . (18) 
and similarly 

$A(u: + l ‘) = [b’(uz) + b”(uf)e+ + b”‘(gz)(q + g)] . (19) 

From here on we suppress the arguments u: in the derivatives of a and b. 
For small A, should PA pierce the surface bounded by & it will do so 

near the cusp (i.e for small c+ and E-), and will do so when Z and fi point 
in the same direction: 

a’. p = Iz;IIpI. (20) 

This constraiftt is satisfied to second order by c+ = s- = 0, so to this order 
&(b;) and @A(-$) are parallel and we may just compare their magnitudes 
to see whether PA pierces the surface bounded by a’& or not: 

ai = (a’)’ + 2a’ - a ,,,A2 24. (21) 
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Since a’ lies on the sphere, (8’)s = 1, and one can differentiate this constraint 
twice to get a’ . a”’ = -(a”)s . Equation 21 may be simplified accordingly: 

a:(~;) = 1 - A(a”)‘As (22) 

and similarly 

p;(u.+) = 1 - ;(b”)‘As. (23) 

One can see that near a cusp, for small values of A, the curve with the largest 
magnitude of a” or b’C lies closer to the center of the sphere. 

Using the above analysis one can write down the following expression for 
Y(0): 

Y(0) = c f-is; (24) 
i 

where i counts over all the cusps (intersections of -a’ with b’). The number 
fi makes sure that linking number is only counted if p passes inside of a’: 

f ~ 
1 

1 (if WI > la”l) 
0 (if lb”1 < Ia”I) 

The number gi gives the sign of the contribution to Y(0): 

g c sign [a” x b” . a’] = rtl. (26) 

In this way we have defined completely Y(0) for a kinkless loop in terms of 
first and second o derivatives of a and b at the cusps. 

The presence of kinks actually makes the problem simpler. Kinks appear 
as gaps in the curves on the Kibble-Turok sphere . The curves a’ and @ are 
just averages over sections of a’ and b’ so they interpolate smoothly across 
the gap. In the limit where A goes to zero, GA and $A coincide with a’ and b’ 
on the Kibble-Turok sphere , but they connect any gaps with straight lines. 
These straight lines lie inside the Kibble-Turok sphere , and they essentially 
never intersect with one another. The contributions of the straight segments 
to Y(0) can be calculated using standard methods of analytic geometry. We 
have explicitly checked’Eq. (16) for a variety of specific solutions (with 
kinks) and we have found it to hold. Typically N > 0 in the class of loops 
we considered. 
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6 Appearance and Disappearance of Cusps 
and Self-Intersections 

It is interesting to consider continuous deformations of the curves a’ and b’ 
on the Kibble-Turok sphere . Such deformations may occur due to physical 
processes such as the expansion of the universe, or gravitational radiation 
from the loop, which are not accounted for in Eq. (1). 

If a’ and b’ are continuous they must cross an even number of times so 
a kinkless loop must have an even number of cusps. As Thompson [E] has 
pointed out, there are really two types of cusps, ucusps ” and “anticusps”. 
If a’ and b’ are continuously varied the number of cusps can only change by 
creation or annihilation of cusp-anticusp pairs which accounts for the total 
number of cusps (i.e. cusps plus anticusps) being even. Here we extend 
this idea td include processes involving the appearance and disappearance of 
self-intersections. 

The quantity g defined in Eq. (26) is +l for a cusp and -1 for an anticusp. 
The quantity j, defined in Eq.(25), describes a new property of a cusp which 
must also be taken into account when considering the relationship between 
cusps and self-intersections. In this section it will be useful to define j to be 
3~112 rather than 1 or 0, i.e. 

+’ (if lb”\ > la”/) 
f E ( -i (if lb”1 < Ia”I) (27) 

which gives the same result for Y(0) as before. There are then four kinds of 
cusps which we indicate by c(+, -) f or a cusp with j = +1/2 and g = -1, 
etc. 

Next we consider self-intersections. At values of A = Asr corresponding 
to self-intersections the linking number Y(A) changes by fl and accordingly 
we define 

h E [Y(Asr + c) - Y(Asr - c)] = If1 w 

where s is a small positive number. We use the symbols Sl(i) to indicate 
self-intersections with h = fl . The relation between Y(0) and the number 
of self-intersections (Eq. (16) ) may be wr$ten 

Y(0) + Nsr(+) - Nay(-) = 1’(1/2) = 0 (29) 
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Where Nsr(+l is the number of SI(i) ‘s in the range 0 < A < l/2 (to avoid 
double counting). Equation (29) can be written in terms of f, g, and h as 

2, figi + g,hj = 0. (30) 

Equation (30) tells us something about how the numbers of cusps and self- 
intersections of each type can change as the a’ and b’ curves are continuously 
varied. If Y(0) does not change, the number of self-intersections can only 
change by creation or annihilation of a pair of self-intersections with h = +1 
and h = -1 as shown in Fig. (2). At the moment when such a pair is created 
or annihilated the self-intersections will be degenerate, having the same A , 
b, and t. 

The number of cusps can only change by cusp-anticusp annihilation, but 
now we must consider the role of g in such a process. The process of cusp- 
anticusp annihilation is illustrated in Fig. (3). As -a’ and b’ are varied their 
crossing points get closer together until they coincide, and then disappear. 
Just before annihilation lb”/ - la”1 will have the same sign at both cusps. 
Equivalently, we may say that for two cusps to annihilate their j’s must 
be the same and their g’s must be opposite in sign. Thus, when two cusps 
annihilate C,,,,(jigi), and therefore Csls,(hj), must remain the same. If, 
however, the two cusps in Fig. (3) start with opposite j’s we see that at some 
point, as they come closer together, the value of j (= isign(lb”( - \a”\)) at 
one of the cusps will change sign. When this happens a self-intersection must 
appear or disappear in order to satisfy Eq. (30). Thompson 18) has stated 
that the disappearance of a single self-intersection is associated with cusp- 
anticusp annihilation. Instead, we have shown that the disappearance (or 
appearance) of a single self-intersection is associated with a change in type 
of a cusp, which will generally not coincide with cusp-anticusp annihilation. 

Consider a cusp with g = +I and j = +1/2. If its f now changes to -l/2 
it can either emit a self-intersection with h = 1 or absorb one with h = -1, 
in either case CN,,,(jigi) + c,,,(hj) is conserved. If a self-intersection 
is absorbed then as lb”1 - [a”[ approaches zero the A of one of the self- 
intersections will shrink to zero while its 8 and t will approach those of the 
cusp, and similarly for emission 191. Whether a cusp absorbs or emits a self- 
intersection when lb”l- /a”[ changes sign depends on higher order derivatives 
of a and b at the cusp . 
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The allowed processes are summarized below. 
Cusp-anticusp creation/annihilation: 

c(*, *) + c(zk, i) - nothing 

Pairwise creation/annihilation of a self-intersection: 

(31) 

SZ( +) + SZ( -) t* nothing 

Self-intersection emission/absorption by a cusp: 

(33) 

c(+,k)-c(-,*)+sz(+) (33) 

c(-,%) -c(+,i)+sz(F) (34) 

These are the only ways that the number of cusps or of self intersections can 
change when a’ and b’ are deformed continuously. 

This picture can be extended without too much trouble to handle loops 
with kinks. One imagines the discontinuities in a’ and b’ to be connected by 
great circle arcs along which a” and b” are very large. Crossings involving 
these sections (“microcusps” [g]) may then be assigned an f and 9 as before. 
Where two such sections cross one must instead examine the straight lines 
connecting across the gap, as discussed in Section 5, to determine the type 
of cusp. 

7 Conclusions 

The formalism we have developed may help provide a better understanding 
of the evolution of loops of cosmic string. We are presently pursuing the 
possibilities in several ways. 

In this article we have only applied our topological picture to loops which 
pass on through one another when they self-intersect. We are working on a 
treatment of the more physica situation in which loops which self-intersect 
break in two. It would be interesting to know how the Y(A)‘s of the frag- 
ments are related to the original loop. So far all we can say about this is 

that C+., Y(O) is not conserved when loops break up (or recombine), but it 
may be possible to place some constraints on how it can change. We should 
note, however, that the formalism is already well suited to addressing the 
physically important question of whether a loop self-intersects or not. 
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Figure 1: A string can self-intersect and break off a loop. A crossing will 
introduce discontinuities in the space and time derivatives of the curves 

Figure 2: Snapshots of three related loops. At the left the section shown 
has two self-intersections. Varying a’, and b’ may lead to degenerate 
self-intersections (middle) and then no self-intersections (right). 

-a’ Y-X-X b' 

Figure 3: Cusp-anticusp annihilation 


