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Abstract 

It is obtained here a space conformal to the Einstein space-time, making the tran- 

sition from an internal bosonic space, constructed with the Majorana constant 

spinors in the Majorana representation, to a bosonic “superspace”, through the 

use of Einstein vierbeins. These spaces are related to a Grassmann space con- 

structed with the Majorana spinors referred to above, where the “metric” is a 

function of internal bosonic coordinates. The conformal function is a scale factor 

in the zone of gravitational radiation. A conformal function dependent on space- 

time coordinates can be constructed in that region when we introduce Majorana 

spinors which are functions of those coordinates. With this we obtain a scalar 

field of Brans-Dicke type. 

‘This work ‘I- supported in part by CAPES, Braril, and was also supported by NASA and the DOE at 
Fermilab, USA 



I. Introduction 

Due to the frequency with which symplectic spaces have been used in theoretical physics, 

there has been a big development in the techniques of the treatment of these spaces. The 

most well known example of such a structure in physical theory is the phase space. Another 

example is the vectorial (internal) p s ace of two component spinors in special and general rel- 

ativity. A current example is the Fermi space, which is used as a half part of supersymmetry 

spacel’l. 

From 1943 to 1945, H.C. Leelrl developed the analogue of a local Riemannian geometry in 

a real symplectic manifold, represented by the phase space of Analytical Mechanics. However, 

his theory is different than the usual Blemannian geometry in spaces with symmetric metrics. 

First, it does not include affinities and second, the curvature tensor is an object with three 

indices which are completely skew-symmetric. Finally, the Killing equation for the “metric” 

involves the curvature tensor. Fronsdal131 proved that these difficulties disappear if the 

manifold is replaced by a Grassmann spacer’]. 

In this work we use the Majorana spinors for the realization of the Grassmann algebra in 

the Majorana representation. A complexification of this basis, in such a way that it remains 

complex even in the Majorana representation, permits us to realize the Grassmann algebra 

by means of Dirac spinors (in the form of $ + ix, where + and x are Majorana spinors). 

By using Majorana spinors we will introduce a local, internal, flat bosonic space whose 

coordinates ~(-1 are formed through the combination of the two components of Majorana 

spinors in such a way that we have an even element in the Grassmann algebra where the 

metric is conformal to the Minkowski metric. It is also necessary that the “metric” of the 

Grassmann space generated by the Majorana spinors, in the Majorana representation, be a 

function of the coordinates ~(~1. Next, the gravitational field is introduced in this space by 

means of a transition from ztpl to y” through local vierbeins. This makes the ~(~1 transform 

into the yp variables, which are superfields with an even character in the Grassmann algebra. 

The metric in this new space is conformal to the Einstein metric and it is shown that the 

conformal function is a constant scale factor in the zone of gravitational field. A Brans-Dicke 

scalar field is obtained in this region, when the Grassmann variables 8’ transform themselves 

into spin f fields, which are now functions of space-time coordinates. 

In this work the greek indices are bosonic indices and the roman are fermionic (or Grass- 

mann) indices. The associated Grassmann parity is zero for the bosonic indices and one for 
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each fermionic (or Grassmann) index. The Einstein summation convention is also used here 

for all types of indices. The signature of any bosonic space defined in this work will be +2. 

II. The Grassmann Algebra and the Grassmann Space. 

Let {l,@}, i = 1 ,...,R, be the generators of a Grassmann algebra [4] over C, the set of 

complex numbers. In this set, 1 is the identity element of the algebra, and the product of 

two elements, 6”, Bj, satisfies the properties of the exterior product of Cartan for differential 

forms, i.e.s, 

@gj+ej@=o. (2.1) 

The Grassmann algebra will be denoted here by A . One realization of A takes place when 

we take spin l/2 Majorana spinors (or a combination of them that form Dirac spinors). 

In this case, 8’, i = 1 . ...4, represents the four components of a constant Majorana spinor. 

Another realization of A happens when we take the exterior algebra of Cartan for differential 

forms [6] over a space of usual coordinates xi, i = 1,2,3. 

Due to the property (2.1), we observe that: 

1. Every 6’ satisfies (ei)’ = 0. 

2. For a product of generators {ei} to be non-zero, all indices must different. 

3. Every element of A can be obtained as a polynomial of the generators with coefficients 

in C. 

Every element of A which is formed as a sum of monomials of odd (even) degree of the 

generators is an odd (even) element of A. A “mixed” element of A will be then formed with 

odd and even elements of A. Every odd (even) element of A has parity t-1 (0), which is the 

so called “Grassmann parity” of the element. The “mixed” element does not have definite 

parity. 

It is easy to see, then, that the product of any two elements A and B of A which have 

definite parities, i.e., excluding the mixed elements, follows the “graded rule” of commuta- 

tion: 

AB = (-1)“PBJ3A , w 

‘Hi~toricdly, Grassmann was the first to introduce the concept of exterior algebra; the algebra of differ- 
ential forms of Cartan is a rediscovery of Grslmrmnn’s works in projective geometry [s]. 
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where PA is the parity of A, and pi is the parity of B, and where A and B are each 

polynomials in the generators (see ref. [3]). A t ransformation of the coordinates in A is 

defined as 

BE’ = f’(e) , (2.3) 

in such a way that the new coordinates are odd functions of the old ones, i.e., f’(0) is an odd 

function of 8. This is clearly an automorphism of the algebra. In the case of infinitesimal 

transformation we must have 

fP = e’ + l +ycq ) (2.4) 

where $‘(6) must be an odd element, function of 8 in A, and where E is an infinitesimal 

element of first order in C. The relation (2.4) permits non-linear transformations 8” = Oti(6). 

In the Grassmann algebra, the concept of derivation, which will here be called “antideriva- 

tion” to distinguish it from the more commonly known derivation, must be introduced in 

two forms: the operator 8.” defined by: 

a,Lp= A,, , (2.5) 

where P = BOA., + Q, with Q independent of 8” and fixed “an indice, and the operator 0: 

defined by 

19fP = B, , (2.6) 

where, for the same Q above, P = B-0” + Q. (In general, A., = (-l)P+‘B, and B,, = 
(-l)P+‘A..) The relation (2.5) is called a “left antiderivation over A”, and the relation (2.6) 

is called a “right antiderivation over A”. The differential d6” can be written then, in terms 

of right and left derivatives, as 

doi = de*?.f$ = ?fT$ de’ = 6’,d@ 

It is easy to show that taking two polynomials PI and Pa of definite parity, p1 and ps, 

respectively, we have: 

8.” (PIPS) = (afP*) P2 + (-l)P’P1 (ao”p2) 

@(PlPZ) = PI (a”Pz) + (-1)” (@PI) Pz . 

(2.8 - a) 

(2.6 - 6) 



In the treatment of the Grassmann algebra we can use the operator at as well as the operator 

a,“, as long as we keep in mind the relations: 

@P = (-l)p+‘a,LP , (2.9 -a) 

afP = (-l)p+‘B,RP ) (2.9 - b) 

which gives the relation between them. In (2.9) P is any polinomial in A of definite parity 

p. The operator at will always be used here indicated simply by a., remembering that it is 

now always a left antiderivative. 

If we now introduce a non-singular skew-symmetric matrix in A, w = (U<j), we can 

define the 2-form 

d.? = dOiwijdei . (2.10) 

(This expression has all the properties of a a 2-form of Cartan.) It is invariant under a gen- 

eral coordinate transformation. The quantities (A, dsz) compose the so called aGrassmann 

symplectic space”, 0. In (2.10), th e matrix w = (wij) can be proportional to the identity of 

the algebra (constant in the e-space) which corresponds to a flat space, here indicated as Br. 

On the other hand, if the matrix w is a function of the B-coordinates, it should correspond 

to a “curved” space and it will then be indicated as 4.. In both cases, obviously, we assume 

that there exists curvature in fZ=, and that it is zero in Pr. 

The 2-form defined in (2.10) corresponds to the line element in a “Ftiemannian space” 

CT=,, for W = Wij (e), in general. We saw that dB’ and dtJj in (2.10) are odd elements in A. 

So, the matrix wij has a definite even parity3. In this case, ds’ is even and corresponds 

to a complex number in C, the algebra of complex numbers, and this is the nearest to the 

usual Riemannian line-element. In B, there exists a canonical coordinate system where wij 

goes to a constant proportional to the identity element of the algebra, and where the affinity 

and the curvature go to zero globally. This coordinate system is the analogue of Cartesian 

coordinates in symmetrical spaces. Performing non-linear transformations over Br we can 

construct the non-zero affinity and metric, since the curvature remains globally zero. 

The coordinate transformations in the flat Grassmann space, Gr, which are symmetry 

transformations, are linear, i.e., 

e” = Li,ek , (2.11) 

*The vectors and tensors used in this work are functions of 13 and respect the graduation of parities. For 
-pie, vi odd, t+j even, etc. See the ref. [.?I. 
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and for dss to be invariant under these transformations, we must have the relation 

LTwL=w . (2.12) 

where L and w are the matrices L’, and w ‘j, respectively, and LT is the transpose of L. For 

infinitesimal transformations, we have, 

L=l,+N, NT=N, (2.13) 

where N is an infinitesimal matrix and la is the unitary matrix in this n-dimensional space. 

Therefore, for the case of linear transformations, the relation (2.11) must be, for L of the 

type above: 

86 = 0’ + sij+ , (2.14) 

where the infinitesimal constant coefficients c = (cij) are symmetric (c;k = CL;) . The set 

of linear transformations satisfying (2.12), makes up the n-dimensional symplectic group, 

denoted here by Sp(n). This group has 9 parameters which are in general complex 

numbers. 

We choose here, the relation: 

Vi = Wijd (2.15) 

as the process of lowering indexes of the vectors v j. From eq. (2.5) it follows that the scalar 

quantity us = uiui is positive. The indices of an arbitrary tensor Pi&..., are lowered as: 
wijTjkl... = q kl... . In the same way, we define the process of raising indexes of an arbitrary 

tensor, for example Th,j..., as: &jTju... = Tih,,.. , where w’j is the inverse “metric”, such that 

wijwjk = wjkwji = si* , 

The inverse matrix & is also, a skew-symmetric matrix of even parity in A. 

The “line element” defined in (2.16), can then be written alternatively, as: 

(2.16) 

dsa = -deiwijdej = doid@. 3 3 (2.17) 

where the minus sign is due to the convention of “positive contraction” for vectors defined 

above. 



III. Realization of Grassmann Algebra through Ma- 

jorana Spinors. 

A Dirac spinor satisfies the condition, 

lpi = (ciq = (c$#y ) ; = I,...) 4 , 

where 7 = tit70 and C is the charge conjugation matrix, which satisfies the conditions 

CT = -C and Ct = C-1. (+) d enotes the charge conjugate of $.) The Dirac matrices (see 

Pauli[fl), are such that 7,’ = -C-‘7,,C, which gives for +tc): 

$A” = -7&Y . (3.2) 

A Majorana spinor satisfies then, the condition $I tc) = #. From now on we will represent it 

as 6’. Also, it will be useful to consider a coordinate independent spinor. We will represent 

it as : 

e(c) = e = cBT = -70ce* . (3.3) 

Taking now the Majorana representation, we have C = rO. Then, from (3.3) and remem- 

bering that 7,’ = -1, we have 0’ = B. This means that the Majorana spinor is real in the 

Majorana representation’. B’, i = 1 . . .4, represents then, the four components of a Ma- 

jorana constant spinor and the charge conjugation matrix satisfies, besides the conditions 

above described, the conditions C’ = C. Therefore, for a Majorana spinor we have the 

anticommutation relations: 

&ei + Hi = 0 , (3.4 - a) 

eiej + ejei = 0 , (3.4 - b) 

8iiiij + 7ijai = 0 * (3.4 - c) 

The relations (3.3) and (3.4) suggest that the charge conjugation matrix may be used as 

the metric of a Grassmann space in four dimensions, where the “line element” is defined as 

the 2-form: 

da’ = dB’C;:dO* = d#‘d& (3.5) 

‘Inversely, if we impose 0’ = 8, we obtain C = I., the Majorma representation. 
&The Dirac matrices are real in the Majorma representation and space-time signature +2. 
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da3 = d&Cihd& = d8’d& I I . 

(The minus sign in (3.6) is due to the convention of “positive contraction operation” for 

tensors made in the last section.) Therefore, in this case, the “metric” of the Grassmann 

space is 

wii = c;; , wij = cij . (3.7) 

As the charge conjugation matrix is a constant matrix, of this four-dimensional Grassmann 

space is flat. 

The Grassmann space generated by the Majorana constant spinors is frequently called 

a “Fermi space”, since it refers to objects of spin l/2 (fermions), where 8’ are the “Fermi 

coordinates”. Due to the relations (3.4), the algebra generated by the 6’ is a four-dimensional 

Grassmann algebra, d,, and every element of s2, will have then, the properties defined in the 

last section. The symmetry group which describe them is the Sp( C) in four dimensions. This 

group has 10 (ten) parameters which are real quantities in the Majorana representations. For 

a generalization of the Grassmann space generated by the Majorana spinors, to an analogous 

Riemannian local space, see C.G. Oliveira in reference [3]. In this reference, a treatment of 

the curved Grassmann space &., in four dimensions, was made using an analogue of the 

tetrad formalism. (The existence of unique tetrads is one of the fundamental reasons for the 

choice of wij as an even object, made in the last section.) 

IV. An internal bosonic space associated to the Grass- 

mann variables. 

Let the zero-parity variables be 

&I = g7s7(-)e , 

in such way that the metric in c, is of the form 

(4.1) 

Wij = Wij (Z’a’) . (4.2) 

‘Another example of a space where the symmetry group hss 10 (ten) parameters is the S-dimensional Bat 
space which contains the De Sitter space. We can choose this space in such way that three dimensions be 
space-like and two be time-like, and so, its symmetry group will be SO(3,Z). In this space, the coordinates 
are (&),A = 1. ..5, and the signature of the “flat-metric,” GAB, is (+ + + - -), 
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Derivatives of even functions, depending on the ztp)! are of the form 

a. = &+) a (cl) a I waz(P)=‘i a+(p)’ 
This process of derivation obeys the properties of antiderivative defined in the Grassmann 

space: 

a) ajaj + ajai = 0 1 (4.4 - a) 

b) a;(*,+,) = (&%)*a + (-l)““(&*,)@l (4.4 - b) 

= (ai@l)% + (-ly’+l(ai@3) I 

where, in (4.4-b), p1 and ps are the Grassmann parities of a1 and @r, respectively. If & 

operates on tensors of CC;, (even functions of et”)), we must correct the antiderivative by the 

covariant antiderivative:& + Vi, 

Vi@” = ai@!” + I?&@” + r’,*& . (4.5) 

where the objects r:, are connections on &. 

Infinitesimal transformations in Grassmann coordinates generate infinitesimal transfor- 

mations in the variables &l. From the identity 

a&) 
&b) = ,jB’- = 88' 

dei.&) I 7 

it follows that the de(“) are even quantities. If we then form the product 

&)d&) = deie!‘)dejep) , 

= -deie!4Jv)dej 
13 ) (4.7) 

and observe that d& and da!(“) are quantities with even Grassmann parity, we can define 

an “internal flat space”, of coordinates z(p) and symmetric metric q,,,,(bosonic space). In 

this space a “line element” can be defined as: 

-dgl = Twdzb)dz(4 = -deie~)e~)dej7), . 

From this relation, we can write that 

(4.8) 

,+)ey)qw = -Wjj (4.9) 
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-dga = ~+&(‘)d&‘) = d&ijde’ = dX” , (4.10) 

where dA” indicates here the 2-form associated with the Grassmann space with metric 

wij(n(“l). Note from (4.9) that wij = -wij, since d&)dz(“) = dz(‘)d+(‘) (remembering that 

d&j are even variables), which implies that qP = nv,,. In the following, we will be more 

interested in the situation in which instead of (4.9), we have 

e!fi)eWrl, = -~(e*)wij = -G.. 1 3 v ! (4.11) 

-dd = m = qs(Bk)dX2 , (4.12) 

where d(e”) is an even element of A. Multiplying both members of (4.11) by w’j we have 

e!‘)ey)wijllw = +(qwijwij 

AS -w;j& = -&jw;j = 4, we have: 

ef4e(4wij,l 
J w =44(e) . (4.13) 

Then 

e!r),p)wij = d(qy , (4.14) 

Therefore, the introduction of even (bosonic) variables ~(“1 with the definition (4.8), and the 

relation (4.9), permits us to define an internal flat space of bosonic structure constructed 

over the Grassmann variables Ok. Due to the definition (4.8), the signature of this new 

bosonic space is opposite to the signature of Minkowski space. However, this does not affect 

the properties associated with signatures, such as the properties of Dirac constant matrices 

in the Majorana representation. Also, it does not affect any of the above equations. 

The variables ~(~1 were chosen as canonical coordinates of this internal space, i.e., in 

these coordinates the metric assumes the canonical form q,,,, = diag. (-l,+l,+l,+l). Some 

transformations of the form 60’ = C’(e) p ermitted in the space 0. will preserve this canonical 

form. In fact, in general 

6&) = 6ars7(-)e + 87a7%e , 

= &s7(=)e + iG7(-)( . (4.15) 



The variables z(“) can be written in the form 

where, 

.(a) = .+f,!,tgi@ , (4.16) 

M(P) = - [rlyl#] = - [c-‘#q . (4.17) 

so, 
&J*) = M/,96&+ + Mj;)@@ . (4.18) 

Taking 68’ = aikBk with aik constant, and observing that @‘,p) is skew-symmetric in (ij) we 

can rewrite (4.18) as’ 

&@) = M$)a’ kek@j + Mj,?)ai kgk,y’ , 

= 2M!Pjai k&j . $1 (4.19) 

For the case of transformations with infinitesimal coefficients ai k such that 

M.$)ai k = $4 (B)~~f) 
2 

(4.20) 

we will have 

J&) = &a) (a),@f)&j = ,(-I &~) , (4.21) 

which is a transformation of the “Lorente infinitesimal-type” under which vw --+ vry in 

(4.8). The other transformations in the e-space which do not satisfy this property will be 

equivalent to the introduction of new non-canonical coordinates I’(~) (as if they were internal 

curved coordinates). 

The metric in gc can be expanded as a power series in the variables z(“) of the form 

,ii(,(a)) &‘j +A’;f)+b) + B&(B)Z(P),(6) , (4.22) 

where I& C’j is the charge conjugation matrix in the Majorana representation. We have, 

by (4.16) and (4.22), that 

wij = C’j + A? $,,fj$,k~’ + 
P * 

‘See Appendix 

(4.23) 
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Also, from (4.16) we have, 

(P) _ a&) ef - ael = (M,$-’ - M/T’) 6” = 2M,f)B’ , (4.24) 

Given &(zfn)) from equation (4.23) and the ep’ from equation (4.24) we can determine 

+(ei) using (4.14): 

qS(#) =G +KijB’B’ + Lijueiejekcg’ , (4.25) 

with 

&o (4.26) 

Kij = ~,,@;“)Mjf) ikt , (4.27) 

Lijkl = [ (qaB~2)M$) Ai;] Mk) . (4.28) 

Straightforward but tedious calculation, using equation (4.23), gives the following result for 

the explicit value of the coefficients Kij in the Majorana representation, 

Kij = -4C.i’ a (4.29) 

Similarly, we can determine the explicit value of the coefficients Liju in this representation. 

(Notice that there exists a flat limit for the function d(e’) which occurs when Lijkl -+ 0, 

giving: 

where Kij is given by (4.29).) 

d(c?) = K+?‘Bj , (4.30) 

Another quantity which can be explicitly calculated in the Majorana representation is 

- qa = qdz(4z(B) = ppppp . (4.31) 

In this way, the internal space of the variables z(“), with metric qp~ in the interpretation 

of “bosonic space-like”, does not have an interpretation similar to that of Minkowski space; 

the position &f of a point in this space assumes always the above form and does not split 

into “time-like” and “space-like” sections. Therefore, in this internal space, the light cone 

does not exist. From the algebraic point of view, (-us) is an even element of the Grassmann 

algebra, such that (us)’ = 0. 
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V. The Einstein space associated to a bosonic internal 

space. 

Let a?’ be the coordinates of an Einstein space with local tetrads h?-,(z) and metric 

g”(z) = ym)(+)y&)tl 
08 

. 

Let us also consider the linear functions of the internal variables ~(~1 of the form 

(5.1) 

yfi = hya)(z)z(-) = yw (2, ei) , 

where y” are bosonic “superfields” with even character in the Grassmann algebra and xx are 

the coordinates of the curved space-time. From (5.1) and (5.2) it follows that 

8y’ 8yA 
--?p = gJ+) . 
&+) &(4 

Let us define now the quantity $4 through: 

As we can define the vierbein Ef through the identity: 

it follows that 

Ef = g = e{*)g = hTa)(z)e!") , 

$4 = ,Ip),i8),ij ‘Y’ 8Yx 
aloa20. (5.6) 

Using (4.12) and (5.3), we can rewrite this relation in the form 

pA = +(e)gwa(z) . (5.7) 

Therefore, the object $*’ is a bosonic superfield, with even algebraic character in A and 

with the space-temporal character of a field which is conformal to the Einstein metric. Its 

explicit form follows from the expression for 4(e) bt o ained through equations (4.25) and 

(4.28). Notice that the quantities 

ep)= !t$! , q = aY’ 
I jjj?’ 
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are fields with spin 3/2 of Rarita-Schwinger type. From this point of view, equations (4.14) 

and (5.4) are similar to the conditions proposed in the literature for these kind of fields. (See 

for example, the papers of I. Bars and S. MacDowell, reference [El.) 

VI. Spaces conformal to the Einstein space-time gen- 

erated by the Grassmann coordinates 

We saw from (5.4) that r,PA is a field which is conformal to the Einstein metric through the 

factor 4(e), equation (5.7). The functions yp(z,B) can be interpreted in the following way: 

given the ~(“1 associated to an internal bosonic flat space, obtained in Section IV, we can 

transform these variables to a curved space through the vierbein process, by means of: 

p (-:1:-y - YE(Z) = l&p,)(z)+) . (6.1) 

In this transformation (which is convmsionaly used in vierbein theory in curved spaces, and 

also known as the Bargmann theorylsl) we will have, obviously: ~(“1 --t y” (defined by 

the equation (5.2)), since, in the Bargmann theory, 7s -) 7s. Therefore, the y” are locally 

the variables &l when they are seen by an observer in curved space. This can also be seen 

through the equation (5.3), which shows that all happens as if a “coordinate transformation” 

.(-) - y- (z’“‘) is performed, such that @ -+ 94. 

On the other hand, the quantities + w, being superfields, also depend on the 8’ and are 

more general than the g @A. From (5.4), the +‘A can be imagined as coming from the “coor- 

dinate transformations” ei + y’, Jj + +fix. (It is important to notice that the terminology 

“coordinate transformation” must be thought of as a transition between variables that are 

non-homogeneous, such as ztpl + ya ,8’ + y”, and therefore, distinguishable from the 

usual coordinate transformation, which are different mappings in the same manifold. Here 

we have transitions between different spaces.) 

We saw in the previous section that, according to the analogy with “mixed vierbeins” of 

Rarita-Schwinger-type, we have the equation (5.5): 

p = 8”: = h’ (-1 I z talei . 
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In this notation the equations (4.14) and (5.4) are written as: 

* 4 = EfEp’j , 

hI”B = e~)e$8)wij . 

We see then, clearly, that in the local transition of gravitational vierbeins we have 

@+gd ,ep)+EP I 

and, therefore, 

w8 + ,#ags”B = Ei”Ef& = 4-8 , 

which is again equation (5.7). 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

It is convenient to notice the fundamental fact that the existence of variables yp pre- 

supposes the existence of gravitation (by means of Einstein vierbeins). It follows then, that 

all the relations previously involving Dirac constant matrices (in Sections 4 and 5) must be 

corrected. We have from equations (4.25), (4.26), (4.27) and (4.28), 

$5 = q.4M!;“)MjpyB’ej + 1 

+ rlpaM~)M~~Ai;iM~)eiejekeJ , Pw 

where, by equation (4.17), 

M(‘) = - (C-‘7s7(p)) , C-’ = -yco) . (6.7) 

In the transition to the vierbein theory we will have 

T-8 - W(~) ; ~76 -76(z) = 76 i 

- c-1 = 7@) = -.p - C-l(z) = 70(z) = h&p ; 

M(“) - M”(z) = -h&,hFa, (7(T)7s7(8)) , 

where we have used (6.7). 

Consequently, 4 will transform into a function of coordinates XJ‘ : 4 -+ r$(@,z”). For 

+(6”,z”) to be an Einstein scalar, we must restrict this transition. We see, from (6.6), that 
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4 will be an Einstein scalar under this transition if Mjt) + Mz, and A$ - A:“, as 

long as Mz is an Einstein covector in the index 7. We have that 

M(“) - M” = -~~&p, (7(T)7s7(8)) , 033) 

c-l - C-l(x) = q7,p . P-9) 

We will consider the class of gravitational radiation fields, with the coordinate conditions 

in the radiation zone: 

9 O”=-1, goi=O, i=1,2,3. (6.10) 

Under these conditions: 

9 %L.=-1 
900 

(6.11) 

which implies that it is neglecting, asymptotically, the static sources of Newtonian type 

(Q = 0 ). This is consistent with the conditions of fixing the frame of vierbeins (see, for 

example, ref. [IO]), hTi, = 0 and with the condition hyc,l = e = 1 . Given these 

conditions, it follows from equations (6.8) and (6.9) that 

M” = -h&, (7%d8)) = hT8, (7(o)+‘)) 
= -hP8, (C-‘#)) = h~j,Mi’jB’ , 

c-‘(z) = $0) = -7pq = c-1 , 

(6.12) 

(6.13) 

which implies that ME is a contravector and that C(z) = C is constant for the class of 

coordinate transformations which maintain the conditions (4.25). From now to the end of 

this section we will restrict ourselves to this class of space-time transformations. 

For the coetIicients Ai! which transform in A;“(z), similar conditions are imposed. As 

they appear in the expression of w”‘” , it follows that they are skew-symmetric in the spinorial 

(Grassmann) indices and therefore take, in general, the form 

A(,) = (AZ)) = a (-+)rsC) ,a = de . (6.14) 

Then for the above conditions, &i(z) is obviously a covetor in the a indice. In this way, 

4 (zp, ei) is a space-time scalar field and an even element in A. However,in these conditions, 

and from equation (6.6), +(ei, 2’) degenerates in a constant in ZJ’, identical in value to the 

4(ei) original (see the equations (6.12, (6.13), and (6.6)). This is the only way to obtain 
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an Einstein scalar by means of the transition of local vierbeins; this scalar is, necessarily, a 

constant scale factor in the gravitational radiation zone. 

VII. Conclusion. 

By the use of “internal coordinates” ~(~1, we define an internal bosonic locally flat space. 

This space is obtained when we combine two Majorana components (3,6’) to form an even 

element in A The metric of this internal bosonic space is related to the “Grassmann metric” 

of the form ,ij(n(pl) through equations (4.11) and (4.14). These equations permit us to 

determine the element d(e), an even element in d, through the equations (4.25) to (4.26). 

In the transition of local vierbeins , which define the gravitational field, the variables et-1 

transform to variables yn which are superfields with an even algebraic character in A. They 

defme the Einstein metric through (5.3) in the canonical coordinates z(~). The variables @‘A 

are defined through (5.4). These variables are superfields of the form (5.79, conformal to the 

Einstein metric. In the transition of local vierbeins for gravitational radiation in the gauge 

given by (6.10) the conformal factor 4 is a scale in the space-time. 

To obtain a Brans-Dicke field, ref.[ll], in the gravitational radiation zone we must con- 

sider a new contribution that is not included in the transition of local vierbeins. This can 

be obtained if we define the transition: 

ei .-+ eitx) = fcx)ei , (7.1) 

were zp are coordinates in the Einstein space-time and f(z) is an Einstein scalar. Then, 

4(ei) - +(ei, s) . (7.2) 

The field equation of the scalar f(z) f o 11 ows kom the Brans-Dicke equation for the radiation 

metric g,,,,, in the gauge (6.10). By (6.6), 

4(e) - (f(4)’ . w + (f(4)‘. w = 4 (ew) . (7.3) 

This is the conformal factor in the Einstein metric. 

As a final observation we note that the contribution of the scalar field in the radiation 

zone is of non-gravitational origin, because it does not come from the choice of the metric, 
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but appears by means of (7.2), independently of geometrical considerations. However, it has 

its origin in Grassmann variables. 

The treatment here presupposes that it is possible to define locally “internal axes” zt”) 

of a flat space with signature +2 in the “canonical coordinates” eta) . Such an internal space 

would be placed in the gravitational radiation zone. This hypothesis involves, at the same 

time, the use of “mixed vierbeins” of Rarita- Schwinger-type, which were also proposed in 

supergravity theories. 
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APPENDIX A: 

Dirac constant matrices satisfy the relation 

7H7V + 7v7r = 2%LuL (A.11 

where 7@ = (7,,ij) , i, j = 1 . . .4. The signature of the Minkowski space used here is +2, i.e., 

II w= diag.(-l,+l,+l,+l). Therefore, 7: = -1, 7: = +l, i = 1,2,3. In the Majorana 

representation (used in this work), the Dirac matrices are real. So, in this representation, 

rl! = 7,’ = -70 , 

7!=7?=+7i ) i=l.,2,3. 

A set of 7,, = (7: j) which satisfies these conditions is: 

0 0 I 
Y 
0.= 

0 -1 0 
01 -1 0 0 

0 1 

T= ( ,", 'O ) 1 0 0 

1 0 
Y = 

2 
c-t-~ 0 0 -1 

‘O 0 -1 0 

Y 
3 

= 
‘2 0 

H--/I 0 -12 

= 

= 

= 

= 
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where or,op,os, are the Pauli matrices and q = 12. In the Majorana representation 

70 E C, the charge conjugation matrix. 

With these four Dirac matrices we can define 10 (ten) symmetrical matrices 7,,C, a,,,C 

and 6 (six) skew-symmetrical matrices C,7sC,7s7,,C, where o, = f [7,,,7”] . Then, consider- 

ing the expression with Majorana spinors, && (7,c)i’ = 2% (0 (7,,c)T) , where 0 = (gigk) , 

we have: 

8iak (7pc)” = 37~0 , (A.4) 

which must be zero, because the majorana spinors do not have electric charge. 

8<8k(7wC)a = 0 ) (A.5) 

and then, 0 is a skew-symmetric matrix, i.e., 

8igk + $kgi = 0 (~.6 -a) 

and, as gi = C,:tSk, we also have 

aiiie’ + 8’3i = 0 ) 

eiej + ej@ = 0 . 

Analogously, we have that 

JiJk (uwc)ik = i?Uwe = 0 , 

(A.6 - b) 

(A.6 - c) 

(A.7) 

because the Majorana spinors do not have magnetic moment. Still, we have for the skew- 

symmetric matrices: 

Tr(t3c) = de+0 , 

T~(o7~c) = -erse#o , 

TT( 07s7~c) = -37s7,e # 0 

(A.81 

(A.91 

(A.lO) 

where the expression (A.8) is the analogue of the “line element”, written for the 8’ (see 

Section III). 

In the section IV, we saw that the bosonic field et”), 

&I = 37s7(4e (A.11) 
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where 7c-j are the Dirac constant matrices, can be written as 

.(a) = M$)eiej , 

M(Q) = (c-‘7s79 = - (717a7,7(q . 

Also, we have in the Majorana representation that, 

(A.12) 

(A.13) 

MT”’ = (p7s7w)= (A.14) 

i.e., the M(“) are skew-symmetric. Using the set of Dirac matrices (3) we obtain for IV(,) = 

q4M@) : 

where, 

M(a) = - t-xi,xar -x3,x4 7 (A.15) 

Xl = 7s; xa = 7!473; x3 = 7173; x4 = 7172 . 

Then, doing the calculation, we have the set: 

(A.16) 

(A.17) 

x,=(&p)’ x2=(+J-9) 7 

x3=(3$ x4-f-j-g* 
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Analogously, for MC”), 

76 

Mb) = - 7173 

-7173 

7171 1 i 
Xl 

Xl =- 
-X3 

X4 

(A.18) 

where we used the fact that, numerically 7' = -70, 7' = +7i, i = 1,2,3, for signature $2. 
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