het

Fermi National Accelerator Laboratory

FERMILAB-Conf-88/165

A Floating Point Engine for Lattice Gauge Calculations*

D. Husby, R. Atac, A. Cook, J. Deppe,

M. Fischler, I. Gaines, T. Nash, T. Pham, and T. Zmuda
Advanced Computer Program
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

E. Eichten, G. Hockney, P. Mackenzie, H. B. Thacker, and D. Toussaint
Theoretical Physics Group
Fermi National Accelerator Laboratory
P.O. Box 500, Batavia, Illinois 60510

November 1988

*Talk presented at the 1988 IEEE Nuclear Science Symposium, Orlando, Florida, November 8-13, 1988.
€

e Operated by Universities Research Association Inc. under contract with the United States Department of Energy

A FLOATING POINT ENGINE FOR LATTICE GAUGE
CALCULATIONS

D. Husby, R. Atac, A. Cook, J. Deppe, M. Fischler, 1. Gaines, T. Nash, T. Pham, and T. Zmuda
Advanced Computer Program
Fermi National Accelerator Laboratory
Batavia, IL 60510 USA

E. Eichten, G. Hockney, P. Mackenzie, H. B. Thacker, and D. Toussaint
Theoretical Physics Group
Fermi National Accelerator Laboratory
Batavia, IL 60510 USA

The latest in low cost computing solutions from the
Fermilab Advanced Computer Program is targeted at
Lattice Gauge theory calculations and delivers
supercomputer performance at a fraction of the cost. A
typical system with 256 processors, 2.5 Gigabytes of
memory, and 64 Gigabytes of on-line tape storage,
delivers a peak performance of 5 billion floating point
operations per second. The programming environment,
Canopy, provides a comprehensive, hardware
independent, distributed processing platform from
within the more familiar environments of FORTRAN,
C, and UNIX. This paper describes the individual
processing elements of the system and gives a brief
description of the Canopy software.

Introduction

Recent advances in computer technology have made
it possible to build a processing engine that is sufficiently
powerful, flexible, and inexpensive to be dedicated to
solving certain problems in the field of Quantum
Chromodynamics (QCD) theory. Several such machines
have been / are being built, each of which uses a slightly
different approach to solving the problem [1-5].

As the most recent entry to the race, the Fermilab
Advanced Computer Program (ACP) Multiple Array
Processor System (ACPMAPS) has been able to take
advantage of some of the most recent developments in
computer technology including:

1) Fast floating point processors from Weitek, Inc.
that are supported with high level language compilers.

2) Large, fast dynamic memory chips.

3) High speed communication chips from Texas
Instruments that implement a full 16 port crossbar
switch.

4) High density, low cost magnetic tape drives from
Exabyte, Inc. that allow up to 2 Gigabytes of data to be
stored on an 8mm video cassette cartridge.

In addition, the ACPMAPS approach is somewhat
unique in that one of its goals is to create a productive
environment for the development of new algorithms.

System Overview
As shown in figure 1, a system is built from three
basic building blocks:
1) Processors, called FPAP's (Floating Point Array
Processor), which have a peak performance of 20
Megaflops, a data memory capacity of 8 Megabytes, an

instruction memory capacity of 2 Megabytes, and can be
plugged into...

Floating Point Array Processor.
Single board computer

Bus Switch Backplane crate.
16 port crossbar interconnection

Branchbus Cable

Figure 1. Arbitrary connection topologies can be

constructed usixiLthree basic bujlding blocks

... 2) Interconnection crates, called BSB's (Bus Switch
Backplane), which have 16 ports (slots) and support an
aggregate data rate of 160 Megabytes per second or 20
megabytes per second per channel. Each of the 16 ports
is identical and can accept either an FPAP or...

... 3) A connection to another BSB crate, called a
Branchbus [6], which has a peak data rate of 20
Megabytes per second. The Branchbus is a block
transfer bus that allows up to 16 devices to communicate
across twisted pair, 50 signal, ribbon cable.

In principle, these building blocks can be assembled
to create arbitrarily complex interconnection networks
with as many as 2048 FPAP's. The ACP will support
standard configurations of 15 to as many as 256 FPAP's.

This paper focuses primarily upon describing the
¥PAP and supporting software. The BSB and
Branchbus have applications in other ACP systems and
are described in a companion paper [7].

The FPAP Hardware

As shown in figure 2, the FPAP contains four major
subsystems:

Microprocessor

The processing power of the FPAP comes from the
Weitek XL microprocessor. The XL processor consists of
three separate chips to handle instruction sequencing,
integer processing, and floating point operations. The
processor is microcoded and pipelined so that on each
100 nanosecond cycle it can generate an instruction
address, generate a data memory address, transfer a
piece of data from memory, and do two floating point
operations with corresponding register operations.

The 64-bit wide microcode is very well designed and
provides many complex instructions (though it is called
a RISC processor), all of which execute in 100
nanoseconds. The instruction set includes: very low
overhead branching, looping, and subroutine calls,
indexed memory addressing with pre and post
increments, 3-address arithmetic and logical
operations, and bit field manipulations.

nstr

The instruction memory uses page-mode dynamic
RAM's to deliver a 64-bit instruction on almost every
100ns cycle. An extra two cycles are needed to fetch an
instruction if it is not in the same 512 word page as the
previous instruction. Since program execution is
sequential and localized, the 200ns penalty will occur on
less than 0.5% of instruction fetches.

The data memory also uses page-mode DRAM's and
is capable of delivering a 32-bit word every 100ns with an
additional 2 cycle penalty for crossing a 1024 word page
boundary. Since data accesses are not inherently local,
a second access mode is available. This non page-mode
access takes 2 machine cycles, however there is no
penalty for crossing a page boundary. The programmer
can switch between modes by accessing a control
register.

The FPAP communicates to the outside world via its
BSB interface. BSB protocol is a fairly simple block
transfer protocol. Each message consists of a two word
header followed by as many as 64K data words. Byte
parity and handshake signals are used to insure data
integrity.

The BSB interface does many operations
automatically, including opening a channel to a
destination, retrying a failed open request, and notifying
the microprocessor via interrupts when an error occurs.

As a master, the CPU controls BSB operations via a
set of control and status registers (see table 1). The CPU
is also responsible for generating the memory addresses
that are used to transfer data between the memory and
BSB. This allows the CPU to scatter or gather blocks of
data from non-sequential locations in memory as the
transfer is in progress.

As a slave, the BSB interface requires no CPU
intervention unless an error occurs. Data is transferred
to sequential memory addresses starting at the address
specified in the second word of the block header. Bits in
the second header word can also halt, start, or interrupt
the CPU.

TABLE 1. BSB CONTROL AND STATUS REGISTERS
REG. FUNCTION
OPEN Open a channel to a slave node. This is the

first of two header words and contains an 11-
bit destination node address and a 16-bit
transfer count.

ADR_RD | Send a 32-bit memory address to the slave and
prepare to receive data from the slave.

ADR_WR)| Send an address and prepare to send data.
REOPEN | Terminate a transfer and start a new one.

CLOSE | Terminate a transfer and close the channel.

STATUS | Read the status of the channel.

CLEAR |[Clear errors.

BBA BRANCHBUS ADDRESS BUS §
&
BSB S &
CODE ADDRESS 24
BSB |
SEQ INTERFACE I B %
: F
ADDRESS [sEQuENCER ; 5
INST .- =gz
MEMORY PU — _
-—
256K x 64 AD DATA ADDRESS DATAS—23
INTEGER FIFO (==
PROCESSOR -—
_ DATA -
FPU)
e % A
Figure 2
D DATA BUS FPAP Block
BBD BRANCH BUS DATA BUS Diagram

CANOPY

The Canopy environment is designed to aid in the
development of lattice and grid oriented programs. To
the user, it appears as a set of subroutines and pre-
processor directives that can be called from within a
FORTRAN or C program. Internally, Canopy
maintains the structures, pointers, and communication
routines necessary to distribute a lattice across multiple
processors.

A lattice, in the context of Canopy, is a set of
interconnected sites (see figure 3). The structure of
Canopy permits arbitrary connectivity, however
currently available routines.support -hypercube. lattices
of arbitrary dimension and size.

A site is a point on a lattice. Each site contains a
number of user defined data structures called fields.
Sites also contain system information such as pointers to
neighboring sites and synchronization data.

4,
AT A SATAS 4
S e e e

Pointerg to neighbor sites

System Site Data

Field data
Field 1

—

Field 2

Field 3

Field 4

Figure 3 A site is a point on a lattice that contains user
defined data fields as well as links to

neighboring sites.

Canopy provides routines to support most aspects of
lattice gauge calculations. Some representative
routines are described here.

Several tools facilitate the definition of a lattice. In .

addition to describing lattices and fields, there are
functions to describe sets of sites, directions, paths, and
fields that reside on links between sites (link_fields).
Some of the basic functions have the form:

/* Identifier of new lattice */

lattioe_id =
define_periodic_lattice(
ndims, /* Number of dimensions */
sizes[ndims]) /* Array containing the size of */
/* each dimension */
field_id = /* Identifier of new field */
define_site_field(
lattice_id, /* Id of lattice that contains field */
size) /* Number of bytes in field */

complete_definitions
/* End of definitions, distribute the defined */
/* lattices among the available processors */

- Canopy allows processing to be distributed among
multiple processors. The primary facility for distributed
processing, do_task, is a remote subroutine call of the

form:

do_task(subroutine, set_of_sites, parameter_list)

Do_task will cause subroutine to be executed for each
site in set_of_sites. Execution of the subroutine takes
place in parallel, with each processor processing the
sites that belong to it. The subroutine is a standard C or
FORTRAN subroutine and is passed the parameters
that are specified in parameter_list.

Data access routines in Canopy deal primarily with
fields and pointers to fields. Fields can be accessed by
specifying a site address and field identifier. A site
address can be specified absolutely (coordinates on a
lattice), or in some direction or path relative to another
site. The two basic data access functions are:

field_pointer(field_id, site_address)
/* Return a pointer to the field. If the fieldisona */
/* remote node, then first transfer the fieldtoa */

/* temporary local memory location. */
put_field(field_id, site_address, *source)

/* Copy the data pointed to by source to the */
/* addressed field. If the field is on a remote */
/* node, transfer it. */

There are many variations on these routines that
incorporate various site addressing modes, operate on

. link_fields, and synchronize access to fields.

File System

Canopy supports most UNIX operating system calls
and thus can support file and terminal I/O using
standard C libraries. UNIX calls are channeled from
FPAPs to a host MicroVax/ULTRIX system via a
Branchbus connection.

In addition to UNIX I/O, Canopy can store entire
fields (i.e. field data from each site on a lattice) on a
distributed tape system. The tape system uses multiple
Exabyte tape drives connected via Branchbus. Each tape
drive has a formatted storage capacity of 2 Gigabytes.

Canopy provides subroutines to create tape sets,

- create named field files, and store field data.

Random number generation poses problems that are
unique to multiple processor systems. It is desirable to
allow each processor to generate its own random
numbers, however it is also desirable to be able to
reproduce results, even when a job is run on different
hardware configurations. Toward that end, Canopy
supports the concept of multiple random number
streams. For reproducible results, a program can have
a separate random number stream for each site.

A library of optimized math routines is provided.
The library includes a variety of SU(3) operations as well
as transcendental fuctions.

Advanced users have access to low-level routines and
data structures. Documentation is provided to allow
programmers direct access to internode
communications, lattice distribution, resource
allocation, and remote processing functions.

ACPMAPS System Design

The ACPMAPS hardware and software were
designed as a balance of several forces: Special purpose
versus general purpose, efficiency versus flexibility,
burden on the user versus burden on the system
programmer.

While a gpecial purpose system can squeeze out the
most performance for a particular problem, it is not
neccesarily easily adapted to solve other problems
efficiently. In addition, special purpose hardware
places a burden upon the hardware designer and end
user: The designer must know many aspects of the

prablem to be solved while the application programmer, ..

must learn hardware specifics including
communication details and perhaps even microcode. It
also places a burden upon the system programmer to
develop tools such as hardware specifiic assemblers and
compilers.

On the other hand, general purpose systems are ideal
for efficient development of new software, yet they place
a great deal of burden upon the system programmer to
develop parallelizing compilers and operating systems.
Such systems require more resources than are usually
available to non-profit oriented projects.

The ACPMAPS project has taken an approach that is
intended to optimize overall productivity. It is specific
enough that system software implementation is fairly
straightforward. Much-of the system software already
exists as products supported by the microprocessor
manufacturer: compilers, assemblers, linkers,
debuggers and simulators. It is general enough to allow
a user to bring up applications quickly while
minimizing the number of new concepts which must be
learned.

One might expect to pay for this middle of the road
approach through a loss of performance. The cost,
however, is not as great as might be expected. Again,
the middle of the road offers some advantages from both
worlds. Programs can be developed and tested in a high-
level language environment.. Then, when a user is
satisfied that he has chosen the right algorithm and that
it is working, he can concentrate upon optimizing and
hand-coding selected parts of his program. For
programs that are dominated by compute intensive
inner loops, this tactic approaches the performance of
full hand-coding but with much less effort.

The validity of the ACPMAPS approach has already
been proven to a certain extent. System software
development for the project has taken approximately a
year, requiring 30 theorist/programmer-months of
effort. In that year, the Canopy software has been ported
to several systems including VAX/ULTRIX, VAX/VMS,
MIPS workstation, IBM PC/AT, and of course, the
multi-FPAP prototype system. Two application
programs have been brought up on the system with less
than 1 month of work. Other application programs are
currently in development.

A prototype hardware system consisting of 16 FPAPs,
2 BSB crates, and 4 tape drives has been working since
September, 1988. According to benchmark results from
two different programs, the system is delivering the
equivalent processing power of a Cray X-MP processor.
The system is currently being used by theorists for
program development.

The parts cost of the prototype system was
approximately $100,000. About 60 percent of that cost is

due to the cost of memory chips which is expected to drop
by about 50 percent in the next year.

Development time from concept to prototype was
about 21 months. Hardware development required 45
engineer-months and 12 technician-months of work.

A production system consisting of 256 FPAPs, 32 BSB
crates, and 32 tape drives is currently being constructed

.and,.depending upon the availability of memory, is

expected to be finished by mid 1989,

Work is also being done on a "Turnkey" system
package. The turnkey system will consist of 15 FPAPs in
a single BSB crate with an integrated host processor,
disk, and tape drives.

Both systems will become standard ACP products
which means that the systems will soon be available
from a commercial manufacturer.

Of course, there are plans on the back burner to build
bigger and more powerful systems. Branchbus will
likely be replaced with faster, smaller optical fibers.
Future FPAPs will use faster microprocessors and more
memory. The modular design of the ACPMAPS
hardware and software can easily accomodate new
technology as it becomes available.

References

[1-4] Papers presented at the 1988 Symposium on
Lattice Field Theory, Fermilab, Batavia, Illinois,
September 22-25, 1988 .

[1] F. Butler, "Present Status of the Columbia Parallel
Supercomputer Project”,

[2] E. Remiddi, "APE100: Project for a 100 Gigaflop
Supercomputer"

[3] J. Sexton, "Status of GF11"
[4] J. Richardson, "The Connection Machine"

[5] F. Brown and N. Christ, "Parallel Supercomputers
for Lattice Gauge Theory", Science, vol. 239, pp.
1393-1400, March, 1988 ‘

[6] R. Hance, "The ACP Branchbus and Real Time
Applications of the ACP Multiprocessor System",
i i , Vol. NS-34,

No.4, pp. 878-883, August, 1987

[71 R. Atac, "Crossbar Switch Backplane and its
Applications”, presented at the IEEE 1988 Nuclear
Science Symposium, Orlando, FL, Nov. 9-11,1988

[8] E.T. Nash, "High Performance Parallel Computers
for Science", presented at the Workshop on
Computational Atomic and Nuclear Physics at One
Gigaflop, Oak Ridge, TN, April 14-16, 1988

